Supplementary Information

A practical and scalable synthesis of carbohydrate based oxepines

Raghu Vannam and Mark W. Peczuh^{*}

Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U-3060, Storrs, CT 06269 USA mark.peczuh@uconn.edu

Total pages: 61

Description	Page(s)
Scheme S1. Possible products during ozonolysis reactions.	S2
Scheme S2 . Mechanism for the reductive elimination using anomeric bromide 3 as an example starting material.	S2
Figure S1 . Equipment set up and appearance of vinylation reaction on 20 g scale of 2,3,4,6-tetra- <i>O</i> -benzyl D-gluco pyranose.	S3
Figure S2 . Equipment set up and appearance of debenzylation reaction on 10 g scale of tetra- benzyl-di- <i>O</i> -acetyl gluco septanose.	S4
Table S1. Detailed Spectral data of the oxepines 1, 19, 25 and glycal 26	S5
General experimental procedures	S6
General procedure for alkylation and hydrolysis	S6
Characterization data for the new compounds in the Xylo-series	S7
Characterization data for the new compounds in the Manno-series	S7
Characterization data for the new compounds in the Galacto-series	S8
Characterization data for new compounds (manno-series with alternative protecting groups)	S8-S9
NMR spectra for compound 1 (¹ H, ¹³ C, DEPT135, COSY, HSQC, HMBC)	S10-S15
NMR spectra for compound 19 (¹ H, ¹³ C, DEPT135, COSY, HSQC, HMBC)	S16-S21
NMR spectra for compound 25 (¹ H, ¹³ C, COSY, HSQC, HMBC)	S22-S26
NMR spectra for compound 26 (¹ H, ¹³ C, COSY, HSQC, HMBC)	S27-S31
NMR spectra for compound 14 (¹ H, ¹³ C, DEPT135,)	S32-S34
NMR spectra for compound 33 (¹ H, ¹³ C, DEPT135,)	S35-S37
NMR spectra for compound $3(^{1}H, ^{13}C)$	S38-S39
NMR spectra for compound 9 (1 H, 13 C)	S40-S41
NMR spectra for compound 4 (1 H, 13 C)	S42-S43
NMR spectra for compound 11 (¹ H, ¹³ C)	S44-S45
NMR spectra for compound 12 (¹ H, ¹³ C)	S46-S47
NMR spectra for compound 13 (¹ H, ¹³ C)	S48-S49
NMR spectra for compound 17 (¹ H, ¹³ C)	S50-S51
NMR spectra for compound 18 (¹ H, ¹³ C)	S52-S53
NMR spectra for compound 22 (¹ H, ¹³ C)	S54-S55
NMR spectra for compound 23&24 (¹ H, ¹³ C)	S56-S57
NMR spectra for compound 32 (¹ H, ¹³ C)	S58-S59
NMR spectra for compound $34 (^{1}H, ^{13}C)$	S60-S61

Scheme S1. Possible products during ozonolysis reactions.

Scheme S2. Mechanism for the reductive elimination using anomeric bromide 3 as an example starting material.

Figure S1. Equipment set up and appearance of vinylation reaction on 20 g scale of 2,3,4,6-tetra-*O*-benzyl D-glucopyranose.

• 35% weight of 10% Pd/C was used if the starting material is >1.00 g scale.

Figure S2. Equipment set up and appearance of debenzylation reaction on 10 g scale of tetra-benzyl-di-*O*-acetyl gluco septanose.

Compound	Key Chemical shifts (δ ppm)		Key Observations
	protons	carbons	
$ \begin{array}{c} AcO & 7 \\ AcO & 5 \\ AcO & 6 \\ AcO & 2 \\ \end{array} $	$\begin{array}{c} \text{ H1-6.49 (d, } J = 6.9 \text{ Hz, 1H})) \\ \text{H2-4.85-4.81 (dd, } J = 6.9 \text{ Hz, 1H})) \\ \text{H3-5.39-5.36 (dd, } J = 5.9, 5.9 \text{ Hz, 1H}) \\ \text{H4-5.24-5.18 (m, 2H)} \\ \text{H5-5.24-5.18 (m, 2H)} \\ \text{H6-4.58-4.55 (m, 1H)} \\ \text{H7a-4.34-4.30 (dd, } J = 12.2, 5.1 \text{ Hz, 1H}) \\ \text{H7b-4.20-4.17 (dd, } J = 12.2, 1.8 \text{ Hz, 1H}) \\ \end{array}$	C1-150.3 C2-103.2 C3-67.5 C4-73.8 C5-71.5 C6-79.0 C7-63.4	(HMBC) H1-C2, C3, C6 H3, H4, H5, H7- C=O
$\begin{array}{c} AcO - 7 OAc \\ AcO - 5 - 6 \\ AcO - 4 \\ AcO - 4 \\ 19 \end{array}$	H1-6.41-6.38 (dd, <i>J</i> = 6.8, 1.5 Hz, 1H) H2-4.67-4.64 (ddd, <i>J</i> = 6.8, 3.4, 1.0 Hz, 1H) H3-5.77-5.75 (m, 1H) H4-5.23-5.22 (m, 1H) H5-5.12-5.09 (dd, <i>J</i> = 8.9, 4.1 Hz, 1H) H6-4.19-4.10 (m, 2H) H7a-4.19-4.10 (m, 2H) H7b-4.27-4.23 (dd, <i>J</i> = 11.7, 5.9 Hz, 1H)	C1-148.4 C2-105.4 C3-68.4 C4-73.3 C5-70.4 C6-80.5 C7-63.2	(HMBC) H1-C2, C3, C6 H3, H4, H5, H7- C=O
$AcO \xrightarrow{6}{4}AcO \xrightarrow{2}{2}$	H1-6.36-6.34 (dd, <i>J</i> = 7.6, 2.3 Hz, 1H) H2-4.70-4.68 (dd, <i>J</i> = 7.6, 3.0 Hz, 1H) H3-5.73-5.70 (ddd, <i>J</i> = 2.7, 2.7, 9.2 Hz, 1H) H4-5.09-5.07 (dd, <i>J</i> = 9.3, 2.8 Hz, 1H) H5-5.49 (d, <i>J</i> = 2.7, 2.7 Hz, 1H) H6-4.19-4.15 (m, 2H) H7a-4.19- 4.15 (m, 2H) H7b-4.07- 4.03 (m, 1H)	C1-145.9 C2-106.9 C3-68.4 C4-73.1 C5-68.5 C6-76.8 C7-63.1	(HMBC) H1-C2, C3, C6 H3, H4, H5, H7- C=O
$\begin{array}{c} 7 \\ AcO \\ AcO \\ AcO \\ 4 \\ AcO \\ 4 \\ AcO \\ 26 \end{array}$	H1-6.45 (dd, $J = 6.0, 1.2$ Hz, 1H) H2-4.82 (dd, $J = 6.0, 2.5$ Hz, 1H) H3-5.53-5.50 (ddd, $J = 7.2, 1.8, 1.8, Hz, 1H$) H4-5.30-5.26 (dd, $J = 9.8, 7.2$ Hz, 1H) H5-4.25-4.19 (m, 2H) H6-5.41 (m, 1H) H7a-4.25-4.19 (m, 2H), H7b-4.40-4.36 (dd, $J = 11.8, 4.8$ Hz, 1H)	C1-145.8 C2-100.2 C3-69.5 C4-66.3 C5-74.9 C6-66.7 C7-62.5	(HMBC) H1-C2, C3, C5 H3, H4, H6, H7- C=O

 Table S1. Detailed Spectral data of the oxepines 1, 19, 25 and glycal 26.

General Procedures

All reactions were performed under nitrogen (N₂) atmosphere unless otherwise mentioned. All commercially available reagents and solvents were used as received from the manufacturer. Reactions were monitored by TLC (silica gel HL, w/UV254, 250µm) and visualized either under UV lamp or by charring with 2.5% *p*-anisaldehyde in H₂SO₄, AcOH and EtOH solution. Flash chromatography was performed on silica gel (60 Å, 40-63 µm). Optical rotation was measured at 22±2 °C; ¹HNMR spectra were collected at 400 MHz or 500 MHz with chemical shift referenced to (CH₃)₄Si ($\delta_{\rm H}$ 0.00 ppm) or the residual peak in CDCl₃ ($\delta_{\rm H}$ 7.24 ppm). All the ¹³C NMR spectra were collected at 100 MHz and referenced to residual peak in CDCl₃ ($\delta_{\rm C}$ 77.23 ppm).

General procedure for alkylation and hydrolysis (*ChemSpider SyntheticPages*, 2015, http://cssp.chemspider.com/784)

Benzylation: To a three-neck RBF equipped with an additional funnel, mechanical stirrer, and a stopper was added methyl D-pyranoside (20 g, 0.103 mol, 1 eq.) and dioxane (5 mL per 1.00 g starting material). The mixture was then heated to 80 °C for 0.5 h with vigorous stirring. Then, finely powdered KOH (99.3 g, 1.17 mol, 17.2 eq.) was added portion-wise to the flask (coffee grinder was used to make KOH pellets into very fine powder). After stirring at 1 h at 80 °C, benzyl chloride (118.6 mL, 1.03 mol, 10.2 eq.) was added to the flask drop-wise by using the additional funnel. Reaction progress was monitored by TLC analysis. Upon disappearance of starting material ($R_f 0.0, 7:3$ hexane:ethyl acetate) usually (~12 h), water (10 mL per 1.00 g of starting material) was added to the resulting reaction mixture. The combined solutions were extracted with ethyl acetate (3 x 10 mL per 1.00 g of starting material), dried with Na₂SO₄ and solvents were removed under reduced pressure. The resulting residue was purified by column chromatography using hexane: ethyl acetate solvent system, initially with 10% ethyl acetate in hexanes to remove the excess of BnCl, then with 30% of ethyl acetate to liberate the methyl-2,3,4,6-tetra-*O*-benzyl D-pyranoside (75 - 85%).

Hydrolysis: A three-neck round bottom flask equipped with a condenser and two stoppers, was charged with methyl-2,3,4,6-tetra-*O*-benzyl D-pyranoside (31 g, 0.055 mol, 1 eq.) dissolved in AcOH (30 mL per 1.00 g of starting material) and freshly prepared 2N H₂SO₄ (15 mL per 1.00 g of starting material). The reaction flask was heated to 95 °C, and TLC was used to analyze the progress of the reaction. Upon complete disappearance of starting material (~18-24 h, R_f 0.5 in 7:3 hexane:ethyl acetate), cold water (50 mL per 1.00 g of starting material) was added to the reaction mixture.

• In the case of glucose -

The resulting white-solids containing solution was filtered, solids were sequentially washed with cold 80% methanol (10 mL per 1.00 g of starting material) and hexanes (10 mL per 1.00 g of starting material) to get pure 75% yield of 2,3,4,6-tetra-*O*-benzyl D-glucopyranose as a white solid, which could be used for the other reactions without further purification.

• In the case of xylose -

The resulting white-solid solution was filtered. Solids were sequentially washed with hexanes (10 mL per 1.00 g of starting material) and recrystallization from methanol to get pure 69% yield of 2,3,4,6-tetra-*O*-benzyl D-xylopyranose as a white solid, which could be used for the other reactions without further purification.

• In the case of mannose and galactose -

The resulting mixture was extracted with ethyl acetate (3 x 30 mL per 1 g of starting material). The combined organic extracts were sequentially washed with $NaHCO_3$ (2 x 10 mL per 1 g of starting material), water (10 mL per 1 g of starting material) and brine (10 mL per 1 g of starting material) and dried with Na_2SO_4 . The solvents were removed under reduced pressure and the resulting crude product was purified by column chromatography using hexane: ethyl acetate as a solvent system to give respective 2,3,4,6-tetra-*O*-benzyl D-pyranoses (75 - 82%) as colorless oils.

Characterization data for new compounds (xylo-series)

Compound 11. Obtained as colorless oil in 71% from **10** using **general procedure-1**. $R_f 0.4$ (10:3 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 17H), 6.03-5.88 (comp, 1H), 5.48-5.21 (comp, 3H), 4.96-4.43 (comp, 7H), 4.30-4.19 (comp, 1H), 4.05-3.59 (comp, 5.8H), 3.42-3.28 (comp, 0.2H), 2.83 (comp, 2H); ¹³CNMR (100 MHz, CDCl₃) δ 138.6, 138.1, 138.0, 137.8, 128.6, 128.5, 128.4 (2), 128.2 (2), 128.1, 128.0, 127.9 (2), 115.6, 81.5, 79.5, 79.3, 79.1, 78.7, 77.8, 74.8, 74.3, 73.3, 72.9, 72.7, 72.5, 72.0, 61.6, 60.5; TOF HRMS (DART) m/z calcd for $C_{28}H_{33}O_5$ (M+H)⁺ 449.2328, found 449.2343.

Compound 12. Obtained as colorless oil in 60% yield from **11** after two steps using **general procedure-2**. $R_f 0.5$ (5:1 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 7.42-7.27 (m, 23H), 6.30 (d, J = 2 Hz, 0.1H), 5.99 (d, J = 7.7 Hz, 1H), 5.45 (dd, J = 7.7, 9.3 Hz, 1H), 5.11 (s, 0.1H), 4.96-4.57 (comp, 9H), 3.83-3.73 (comp, 5H), 2.16-1.94 (comp, 9H); ¹³CNMR (100 MHz, CDCl₃) δ 170.6, 169.9, 169.4, 169.1, 138.5, 138.2, 138.0, 128.4, 128.3 (2), 128.1, 128.0, 127.8 (2), 127.7, 127.6, 127.5, 127.0, 96.1, 96.0, 94.1, 92.0, 86.3, 84.1, 81.7, 79.4, 78.3, 77.9, 76.6, 76.3, 75.8, 74.7, 74.4, 73.6, 73.4, 72.7, 72.0, 71.9, 71.2, 63.4, 63.0, 62.0, 21.0, 20.9, 20.7; TOF HRMS (DART) m/z calcd for C₃₁H₃₅O₈N (M+NH₄)⁺ 552.2597, found 552.2616.

Compound 13. Obtained as colorless oil in 78% yield from 12 after two steps using **general procedure-3**. $R_f 0.4$ (1:1 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 5.88 (d, J = 7.4 Hz, 1H), 5.38-5.21 (comp, 4H), 5.05-5.00 (m, 1.3H), 3.88-3.79 (m, 2H), 2.09-1.98 (comp, 24H); ¹³CNMR (100 MHz, CDCl₃) δ 170.4, 170.1, 170.0, 169.7, 169.5, 169.3, 169.0, 168.7, 96.6, 95.6, 93.8, 90.0, 79.9, 72.7, 72.0, 70.9, 70.5, 70.1, 69.3, 68.9, 68.2, 66.5, 62.7, 62.0, 53.5, 20.9, 20.7, 20.6, 20.5, 20.4, 20.3; TOF HRMS (DART) m/z calcd for $C_{16}H_{26}O_{11}N$ (M+NH₄)⁺ 408.1506, found 408.1517.

Characterization data for new compounds (manno-series)

Compound 17. Obtained as colorless oil in 73% yield from **16** after two steps using the **general procedure-2**. R_f 0.5 (5:1 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 7.45-7.20 (m, 85 H), 6.39 (d, *J* = 3.4 Hz, 0.6 H), 6.31 (d, *J* = 7.4 Hz, 1H), 6.03 (d, *J* = 1 Hz, 0.1H), 5.81 (d, *J* = 3.9 Hz, 0.2H), 5.72-5.70 (m, 1.5H), 5.01-4.95 (m, 2.8H), 4.86-4.38 (comp, 31H), 4.18-3.63 (comp, 25H), 2.43 (s, 0.9H), 2.20-1.90 (comp, 26H); ¹³CNMR (100 MHz, CDCl₃) δ 170.3, 170.2, 170.1, 169.9, 169.6, 169.1, 138.6, 138.5, 138.4, 138.3, 138.2, 128.7, 128.6(2), 128.5, 128.4, 128.2, 128.1, 128.0 (3), 127.8, 93.0, 92.9, 89.5, 86.5, 80.2, 78.7, 77.4, 77.3, 76.9, 76.8, 75.7, 75.5, 75.1, 74.9, 74.5, 74.4, 73.9, 73.7, 73.6, 73.5(2), 73.4, 71.3, 71.2, 70.7, 70.5, 70.4, 70.3, 21.7, 21.4, 21.3, 21.2, 21.1, 21.0; TOF HRMS (DART) m/z calcd for C₃₉H₄₆O₉N (M+NH₄)⁺ 672.3173, found 672.3173.

Compound 18. Obtained in as colorless oil 85% yield from 17 after two steps using the **general procedure-3**. $R_f 0.4 (1:1 \text{ Hex:EtOAc})$; ¹HNMR (400 MHz, CDCl₃) $\delta 6.18 (d, J = 1.5 \text{ Hz}, 0.5\text{H})$, 6.03 (d, J = 3.5Hz, 0.5H), 5.90 (d, J = 7.2 Hz, 1H), 5.50 (d, J = 8.0 Hz, 0.5H), 5.39-4.82 (comp, 13H), 4.24-3.82 (comp, 9H), 2.04-1.81 (comp, 55H); ¹³CNMR (100 MHz, CDCl₃) δ 171.1, 170.3, 170.2, 170.1, 169.7, 169.6 (2), 169.5, 169.4, 169.2, 169.1, 169.0, 168.6 (2), 168.2, 95.7, 95.6, 93.9, 92.3, 88.9, 80.8, 78.5, 72.9, 71.4, 70.9, 70.8, 70.7, 70.5, 70.4, 69.7, 69.3, 69.3, 68.7, 68.2, 67.8, 67.7, 67.6, 67.4, 63.2, 61.5, 60.1, 20.8, 20.5, 20.4, 20.3; TOF HRMS (DART) m/z calcd for $C_{19}H_{30}O_8N$ (M+NH₄)⁺ 480.1717, found 480.1723.

Characterization data for new compounds (galacto-series)

Compound 22. Obtained as colorless oil in 73% yield from **21** over two steps using **general procedure-2**. $R_f 0.5 (5:1 \text{ Hex:EtOAc})$; ¹HNMR (400 MHz, CDCl₃) δ 7.39-7.30(m, 106H), 6.52 (d, J = 1.7 Hz, 0.2H), 6.45 (d, J = 3.6 Hz, 1 H), 6.35 (d, J = 2 Hz, 0.1H), 6.25 (d, J = 2.0 Hz, 0.4H), 6.18 (d, J = 8.1 Hz, 0.75H), 5.76 (comp, 0.8H), 5.70 (dd, J = 2.4 Hz, 0.5H), 5.66-5.64 (m, 1.1H), 5.50-5.46 (m, 0.7H), 5.33 (dd, J = 4.6, 1.9 Hz, 0.5H), 5.28 (m, 1.3H), 5.11-4.34 (comp, 46H), 4.32-3.91 (comp, 18H), 3.85-3.54 (comp, 15H), 2.29-1.92 (comp, 28H); ¹³CNMR (100 MHz, CDCl₃) δ 170.8, 170.6, 170.4, 169.8, 169.7, 169.6, 169.4, 169.2, 139.9, 138.8, 138.7, 138.6, 138.5, 138.4, 138.3, 138.1, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9 (2), 127.7, 95.9, 95.8, 95.4, 94.6, 93.9, 91.1, 90.5, 90.0, 83.7, 83.3, 82.7, 81.5, 80.0, 79.5 (2), 79.1, 78.9, 78.7, 78.5, 78.4, 78.0, 77.6, 76.9, 76.2, 75.7, 75.6, 75.2, 75.1, 75.0, 74.9, 74.8, 74.7, 74.6, 74.5, 74.4, 74.2, 74.1, 74.0, 73.8(2), 73.7, 73.6, 73.4, 73.3, 73.1, 73.0, 72.1, 71.0, 69.1, 68.7, 68.5, 68.3, 21.5, 21.3 (2), 21.1; TOF HRMS (DART) m/z calcd for C₃₉H₄₆O₉N (M+NH₄)⁺ 672.3173, found 672.3172.

Compounds 23 and **24.** Obtained as colorless oil, 1:1 mixture in 85% from **21** after two steps using the **general procedure-3.** $R_f 0.35$ (1:1 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 6.33 (d, J = 4.1 Hz, 0.1H), 6.28 (comp, 0.1H), 6.23 (d, J = 3.6 Hz, 0.2H), 6.20 (dd, J = 8.0, 1.3 Hz, 1H), 6.14 (d, J = 4.4 Hz, 0.3H), 5.96 (m, 2H), 5.76 (d, J = 2.9 Hz, 0.8H), 5.66 (comp, 0.6H), 5.60-4.89 (comp, 28H), 4.29-3.71 (comp, 21H), 2.15-1.88 (comp, 120H) ; ¹³CNMR (100 MHz, CDCl₃) δ 170.9, 170.4, 170.3, 170.2, 170.1, 170.0, 169.9, 169.8, 169.7, 169.6, 169.4, 169.3, 169.2, 169.1, 169.0, 168.9, 168.8, 168.7, 168.1, 93.3, 96.2, 95.4, 94.9, 94.7, 93.6, 91.8, 88.9, 88.7, 80.5, 80.4, 77.7, 75.0, 72.9, 72.3, 71.9, 71.3, 70.5, 69.9, 69.8, 69.7, 69.4, 69.2, 69.1, 69.0, 68.9, 68.4, 68.3, 67.8, 67.7, 67.5, 67.4, 67.4, 67.3, 66.6, 66.3, 62.5, 62.1, 62.0, 61.6, 61.3, 60.2, 20.9, 20.8, 20.7 (2), 20.6, 20.5, 20.4, 20.3 (3); TOF HRMS (DART) m/z calcd for C₁₉H₃₀O₈N (M+NH₄)⁺ 480.1717, found 480.1721.

Characterization data for new compounds (manno-series with alternative protecting groups)

Compound 32. To the di-*O*-acetyl-tetra-*O*-benzyl septanoses **17** (0.20 g, 0.3 mmol, 1 eq.), dissolved in THF (4 mL), was added 25% wt of 10% Pd/C (0.05 g) and the mixture was stirred for 12 h at rt under positive pressure of hydrogen gas. The resulting solution was filtered through celite and washed with additional MeOH (~20 mL) then concentrated under reduced pressure. The crude material (**31**) was dissolved in DCM (4 mL) and pyridine (3.2 mL), and benzoyl chloride (3 mL) was added at 0 °C. The mixture was stirred it for 12 h at rt then concentrated under reduced pressure and purified by column chromatography using 1:1 hexane:ethyl acetate as solvent system to give tetra-*O*-benzoyl-di-*O*-acetyl septanose **32** as a white solid in 85% yield. R_f0.3 (10:3 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 8.20-7.80 (comp, 27H), 7.65-7.19 (comp, 50H), 6.43 (d, *J* = 4.2 Hz, 0.5H), 6.32 (d, *J* = 7.2 Hz,1H), 6.12-5.87 (comp, 9.5H), 5.81 (dd, *J* = 7.3, 4.2 Hz, 0.9H), 5.70 (d, *J* = 7.2 Hz, 1.3H), 5.61 (dd, *J* = 7.4, 5.1 Hz, 1.2H), 4.91 (m, 0.7H), 4.77-4.46 (comp, 8.3H), 2.38-1.72 (comp, 24H); ¹³CNMR (100 MHz, CDCl₃) δ 171.2, 169.8, 169.6, 169.5, 169.0, 168.6, 166.3, 166.1, 165.5 (2), 165.4, 165.3, 165.1, 133.8, 133.7, 133.6, 133.5, 133.4, 133.1, 130.3, 130.2 (2), 130.1, 130.0, 129.9 (2), 129.7, 129.1, 129.0, 128.8, 128.7, 128.6 (2), 128.5, 128.4, 128.3, 96.5, 92.9, 89.6, 79.5, 74.1, 72.4, 72.0, 71.5, 71.4 (2), 71.2, 70.7, 70.5 (2), 69.8, 69.0, 68.2, 64.5, 64.3, 64.2, 21.6, 20.8, 20.7, 20.6, 20.5; TOF HRMS (DART) m/z calcd for C₃₉H₃₈O₁₃N (M+NH₄)⁺ 728.2343, found 728.2329. *(for benzoylation ref: Carbohydr. Res.*, 2011, **346**, 1250–1256)

Compound 34. To the di-*O*-acetyl-tetra-*O*-benzyl septanoses **17** (0.20 g, 0.3 mmol, 1 eq.) dissolved in THF (4 mL), was added 25% wt of 10% Pd/C (0.05 g) and the mixture was stirred for 12 h at rt under an atmosphere of hydrogen gas. The resulting solution was filtered through celite, and was washed with additional MeOH (~20 mL). The combined filtrates were concentrated under reduced pressure. The crude product (**31**) was dissolved in acetone (12 mL), and dimethoxypropane (12 mL). To this mixture, CSA (0.007 g, 0.003 mmol, 0.01 eq.) was added and it was allowed to stir for 24 h at rt. After, NaHCO₃ (1 mL) was added to neutralize the reaction mixture. The mixture was diluted with H₂O (5 mL) and the resulting mixture was extracted with EtOAc (3x20 mL); the combined organic extracts were dried with Na₂SO₄ and concentrated under reduced pressure and purified by column chromatography using 1:1 hexane:ethyl acetate as solvent system to give di-*O*-acetonide-di-*O*-acetyl septanose **34** as colorless oil in 64% yield. R_f 0.5 (1:1 Hex:EtOAc); ¹HNMR (400 MHz, CDCl₃) δ 6.05 (d, *J* = 4.0 Hz, 1H), 6.01 (d, *J* = 1.6 Hz, 0.5H), 5.75 (d, *J* = 8.7 Hz, 0.4H), 5.55 (d, *J* = 8.1 Hz, 1H), 5.16-5.11 (m, 2.8H), 4.90 (dd, *J* = 8.7, 1.2 Hz, 0.5H), 4.69 (dd, *J* = 7.7, 2.3 Hz, 1H), 4.56 (dd, *J* = 9.8, 7.3 Hz, 0.8H), 4.41 (dd, *J* = 7.7, 7.7

Hz, 1.3H), 4.37-4.27 (comp, 4H), 4.19-4.08 (comp, 2.4H), 4.00-3.47 (comp, 14H), 2.16-2.04 (comp, 23H), 1.52-1.24 (comp, 50H); ¹³CNMR (100 MHz, CDCl₃) δ 169.9, 169.7, 169.3, 168.0, 168.8, 168.2, 110.7, 110.3, 110.2, 109.6, 100.3, 99.6, 99.4, 95.5, 93.2, 91.1, 89.8, 81.0, 79.6, 79.5, 79.1, 78.8, 76.0, 73.4, 73.3, 72.8, 72.7, 72.2, 72.0, 71.9, 71.2, 69.3, 65.9, 65.5, 62.2, 62.1, 61.1, 29.8, 27.6, 27.5, 27.1, 27.0, 26.8, 26.7, 26.4, 25.2, 25.2, 24.7, 24.4, 21.3, 21.2, 21.0, 20.9, 20.7, 20.0; TOF HRMS (DART) m/z calcd for C₁₇H₂₇O₉ (M+H)⁺ 375.1655, found. 375.1677 (*for acetonide protection ref* : *J. Am. Chem. Soc.*, **2006**, *128*, 11764–11765)

S10

DEPT 135 CDCl₃ 400 MHZ

DEPT 135 CDCl₃ 400 MHZ

S20

26

AcO-AcO AcÓ

S33

DEPT135 CDCl₃ 400 MHZ

S57

OBz

ംഗAc

BzO-

BzO⁻

