Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Catalytic Stereoselective Cascade Reactions of Quinols with Trifluoromethyl Ketones: Direct Access to CF₃-containing 1,3dioxolanes

Feng Li, Jingjing Wang,* Mengmeng Xu, Xiaobo Zhao, Xiaohong

Zhou, Wen-Xian Zhao, and Lantao Liu*

College of Chemistry and Chemical Engineering, Shangqiu Normal University, 298 Wenhua Road, Shangqiu, Henan 476000, China Email: <u>wangjingjing0918@163.com</u> or <u>liult05@iccas.ac.cn</u>

Table of Contents	
Experimental Section	1–15
Copies of HPLC Spectra	16
Copies of NMR Spectra	17–48
Crystallographic data for 3a	49–55

General information:

¹H, ¹³C, and ¹⁹F were recorded at Bruker 400 MHz (¹H NMR), 100 MHz (¹³C NMR), as well as 376 MHz (¹⁹F NMR). Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm, 77.0 ppm). For ¹⁹F NMR, the (trifluoromethyl)benzene ($\delta = -63.72$) was used as an external standard. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br (broad). Coupling constants were reported in Hertz (Hz). IR spectra were recorded on an AVATAR 360 FT-IR spectrometer. HRMS were recorded on an APEXIII 7.0 TESLA FTMS (ESI resource). X-ray structural analysis was conducted on the XtaLAB mini (600 W, CCD, 75mn, 0.1 electorns / pixel / sec). Chiral HPLC analysis were carried out on a Agilent 1260 infinity instrument with commercial ChiralPak columns and hexane and isopropyl alcohol as eluents.

Materials: All commercially available reagents and solvent were used without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel plates. Silica gel (200-300 mesh) was used for flash chromatography. Trifluoromethyl ketones^[1] and *p*-Quinols^[2] were prepared according to literatures.

General procedure for the ketalization/oxa-Michael cascade of *p*-Quinols with Trifluoromethyl ketones:

To a solution of the *p*-Quinol **1** (0.3 mmol) and trifluoromethyl ketone **2** (0.36 mmol) in CH_2Cl_2 (1.0 mL) was added Et_3N (0.06 mmol, 20 mol%) via a syringe in one portion. Then the mixture was vigorously stirred at room temperature for 3 days. After the reaction was complete, the mixture was directly purified by column

chromatography on silica gel (petroleum ether/EtOAc as the eluent) to furnish the corresponding products **3**.

Screening of the catalyst for the enantioselective ketalization/oxa-Michael cascade^a

	$ \begin{array}{c} 0 \\ + \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Chiral catalyst (1 solvent, rt, 4	10 mol%) d Me *	$ \begin{array}{c} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	
Entry	Chiral catalyst	Solvent	Yield ^b	ee ^c	dr ^d
1	Cinchonine-thiourea	CH_2Cl_2	89	-25	94:6
2	Quinine-thiourea	CH_2Cl_2	84	-3	92:8
3	(DHQD) ₂ AQN	CH_2Cl_2	91	-74	90:10
4	(DHQ) ₂ AQN	CH_2Cl_2	90	60	95:5
5	(DHQ) ₂ PHAL	CH_2Cl_2	92	80	97:3

^{*a*} Reaction conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), chiral catalyst (10 mol %), solvent (1.0 mL), rt, 4 d; ^{*b*} Isolated yields; ^{*c*} Values are for the major diastereomers of **3a**; ^{*d*} Diastereomeric ratios were determined by ¹⁹F NMR.

General procedure for the enantioselective ketalization/oxa-Michael cascade of *p*-Quinol 1a with Trifluoromethyl ketone 2a:

To a solution of the **1a** (0.1 mmol) and **2a** (0.15 mmol) in CH_2Cl_2 (1.0 mL) was added (DHQ)₂PHAL (7.8 mg, 0.01 mmol, 10 mol%). Then the mixture was vigorously

stirred at room temperature for 4 days. After the reaction was complete, the mixture was directly purified by column chromatography on silica gel (petroleum ether/EtOAc as the eluent) to give the desired product **3a** as white solid.

27.4 mg, 92% yield; 80% ee; 97:3 dr; [Determined by HPLC analysis Chiralcel IB column, Hexane/*i*-PrOH = 90/10, Flow rate: 0.8 mL/min, UV detection at 254 nm, Retention time: t_{major} = 9.370 min, t_{minor} = 8.254 min].

7a-methyl-2-phenyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)one:

White solid; 80.6 mg, 90% yield; 82:18 dr; mp 62–65 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s, 3H), 2.61 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.05 (d, J = 20.0 Hz, 1H), 4.67 (d, J = 3.2 Hz, 1H), 5.58 (d, J = 10.4 Hz, 1H), 6.25 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 7.28–7.34 (m, 3H), 7.48 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 147.3, 134.4, 129.4, 127.8, 127.6, 126.5, 122.4 (q, $J_{C-F} = 286.4$ Hz), 103.6 (q, $J_{C-F} = 32.1$ Hz), 81.5, 78.9, 37.7, 20.9; **IR** (KBr) v 2981, 2933, 1694, 1451, 1389, 1262, 1241, 1176, 1096, 1053, 957, 719 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.36 (s, 2.46F), –81.30 (s, 0.54F); **HRMS** (ESI) found: m/z 321.0717 [M+Na]⁺; calcd. for C₁₅H₁₃F₃O₃+Na 321.0714.

7a-methyl-2-(p-tolyl)-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)one:

White solid; 81.5 mg, 87% yield; 78:22 dr; mp 45–47 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s, 3H), 2.32 (s, 3H), 2.62 (dd, J = 18.4 Hz, 1H), 3.06 (d, J = 18.4 Hz, 1H), 4.66 (s, 1H), 5.61 (d, J = 10.4 Hz, 1H), 6.27 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 147.5, 139.4, 131.5, 128.5, 127.6, 126.4, 122.4 (q, $J_{C-F} = 286.7$ Hz), 103.6 (q, $J_{C-F} = 32.2$ Hz), 81.5, 78.9, 37.7, 21.1, 21.0; **IR** (KBr) v 2979, 2928, 1694, 1616, 1515, 1456, 1387, 1310, 1241, 1178, 1094, 1049, 961, 941, 824, 734 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.44 (s, 2.34F), -81.42 (s, 0.66F); **HRMS** (ESI) found: *m/z* 335.0870 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₃+Na 335.0871.

2-(4-methoxyphenyl)-7a-methyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

Colorless oily liquid; 79.6 mg, 81% yield; 82:18 dr; ¹H NMR (400 MHz, CDCl₃) δ 1.59 (s, 3H), 2.61 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.05 (d, J = 18.0 Hz, 1H), 3.77 (s, 3H), 4.65 (s, 1H), 5.62 (d, J = 10.0 Hz, 1H), 6.26 (dd, J = 10.4 Hz, 1.6 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 160.3, 147.6, 127.9, 127.5, 126.5, 122.4 (q, $J_{C-F} = 286.6$ Hz), 113.1, 103.6 (q, $J_{C-F} = 32.3$ Hz), 81.5, 78.9, 55.0, 37.7, 21.0; **IR** (KBr) v 2982, 2922, 1694, 1611, 1513, 1463, 1388, 1304, 1251, 1173, 1094, 1048, 959, 834, 790 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.58 (s, 2.46F), -81.58 (s, 0.54F); **HRMS** (ESI) found: m/z 351.0822 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₄+Na 351.0820.

2-(3-methoxyphenyl)-7a-methyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 84.6 mg, 86% yield; 80:20 dr; mp 50–52 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.59 (s, 3H), 2.60 (dd, J = 18.0 Hz, 3.6 Hz, 1H), 3.05 (d, J = 17.6 Hz, 1H), 3.75 (s, 3H), 4.65 (d, J = 2.4 Hz, 1H), 5.61 (d, J = 10.4 Hz, 1H), 6.27 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 6.86 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.99 (s, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 159.0, 147.4, 135.8, 128.9, 127.7, 122.4 (q, J_{C-F} = 287.1 Hz), 118.9, 115.1, 112.1, 103.5 (q, J_{C-F} = 32.4 Hz), 81.6, 79.0, 55.2, 37.7, 21.0; **IR** (KBr) v 2935, 2838, 1697, 1603, 1587, 1489, 1456, 1388, 1316, 1270, 1241, 1127, 1046, 977, 898, 795, 730 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.31 (s, 2.40F), -81.23 (s, 0.60F); **HRMS** (ESI) found: *m/z* 351.0821 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₄+Na 351.0820.

2-(2-methoxyphenyl)-7a-methyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 76.8 mg, 78% yield; 90:10 dr; mp 114–116 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.61 (s, 3H), 2.60 (dd, J = 17.6 Hz, 3.2 Hz, 1H), 3.08 (d, J = 17.6 Hz, 1H), 3.78 (s, 3H), 4.63 (s, 1H), 5.62 (d, J = 10.4 Hz, 1H), 6.32 (d, J = 10.0 Hz, 1H), 6.89 (t, J = 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 158.0, 147.5, 131.2, 129.1, 127.6, 122.7 (q, $J_{C-F} = 287.6$ Hz), 122.5, 119.9, 112.8, 104.3 (q, $J_{C-F} = 34.1$ Hz), 81.0, 78.5, 56.2, 37.7, 21.1; IR (KBr) v 2922, 2841, 1693, 1601, 1585, 1489, 1456, 1436, 1388, 1285, 1253, 1173, 1119, 1081,

956, 937, 789, 759, 713 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –81.69 (s, 2.70F), – 80.51 (s, 0.30F); **HRMS** (ESI) found: *m/z* 351.0818 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₄+Na 351.0820.

2-(4-fluorophenyl)-7a-methyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 90.1 mg, 95% yield; 82:18 dr; mp 63–65 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.65 (s, 3H), 2.66 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.03–3.13 (m, 1H), 4.72 (d, J = 2.4 Hz, 1H), 5.65 (dd, J = 10.4 Hz, 0.8 Hz, 1H), 6.30 (dd, J = 10.4 Hz, 2.4 Hz, 1H), 7.10–7.17 (m, 2H), 7.49–7.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 162.6 (d, J_{C-F} = 245.5 Hz), 147.3, 139.9, 128.8 (d, J_{C-F} = 8.0 Hz), 128.3 (d, J_{C-F} = 27.8 Hz), 127.8, 125.3 (d, J_{C-F} = 37.3 Hz), 122.4 (q, J_{C-F} = 286.8 Hz), 115.6 (d, J_{C-F} = 21.4 Hz), 103.6 (q, J_{C-F} = 32.1 Hz), 81.7, 79.1, 37.8, 21.1; **IR** (KBr) v 3043, 2964, 2931, 1697, 1607, 1514, 1496, 1481, 1456, 1313, 1239, 1261, 1126, 1048, 968, 839, 793, 726 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.25 (s, 2.46F), –81.19 (s, 0.54F), – 115.26 (s, 0.82F), –115.00 (s, 0.18F); **HRMS** (ESI) found: *m/z* 339.0622 [M+Na]⁺; calcd. for C₁₅H₁₂F₄O₃+Na 339.0620.

2-(4-chlorophenyl)-7a-methyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

Colorless oily liquid; 92.8 mg, 93% yield; 82:18 dr; ¹H NMR (400 MHz, CDCl₃) δ 1.59 (s, 3H), 2.63 (dd, J = 17.6 Hz, 2.0 Hz, 1H), 3.03 (d, J = 17.6 Hz, 1H), 4.66 (s, 1H), 5.61 (d, J = 10.4 Hz, 1H), 6.24 (dd, J = 10.0 Hz, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 147.0, 135.6, 133.0, 128.1, 128.0, 127.7, 122.1 (q, $J_{C-F} = 286.7$ Hz), 113.1, 103.2 (q, $J_{C-F} = 32.7$ Hz), 81.7, 79.2, 37.6, 20.9; **IR** (KBr) v 2988, 2937, 1694, 1599, 1491, 1402, 1307, 1247, 1179, 1099, 1045, 1018, 959, 831, 736 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.51 (s, 2.46F), -81.39 (s, 0.54F); **HRMS** (ESI) found: m/z 355.0327 [M+Na]⁺; calcd. for C₁₅H₁₂ClF₃O₃+Na 355.0325.

2-(4-bromophenyl)-7a-methyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

Colorless oily liquid; 102.9 mg, 91% yield; 80:20 dr; ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s, 3H), 2.62 (dd, J = 18.0 Hz, 3.6 Hz, 1H), 3.04 (dd, J = 18.0 Hz, 1.6 Hz, 1H), 4.66 (d, J = 2.4 Hz, 1H), 5.62 (d, J = 10.4 Hz, 1H), 6.24 (dd, J = 10.4 Hz, 1.6 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 147.1, 133.5, 131.1, 128.3, 127.8, 124.1, 122.1 (q, $J_{C-F} = 286.6$ Hz), 103.2 (q, $J_{C-F} = 32.6$ Hz), 81.7, 79.2, 37.7, 21.0; IR (KBr) v 2964, 2930, 1703, 1697, 1592, 1488, 1456, 1397, 1313, 1260, 1176, 1093, 1013, 961, 941, 826, 790, 736 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.47 (s, 2.40F), -81.35 (s, 0.60F); HRMS (ESI) found: m/z 398.9820 [M+Na]⁺; calcd. for C₁₅H₁₂BrF₃O₃+Na 398.9820.

7a-methyl-2-(trifluoromethyl)-2-(3,4,5-trifluorophenyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 96.1 mg, 91% yield; 84:16 dr; mp 88–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.67 (s, 3H), 2.69 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.10 (dd, J = 18.0 Hz, 1.6 Hz, 1H), 4.73 (d, J = 2.0 Hz, 1H), 5.74 (d, J = 10.4 Hz, 1H), 6.33 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 7.17 (t, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 150.7 (dddd, J_{C-F} = 250.0 Hz, 3.5 Hz), 146.6, 140.6 (dt, J_{C-F} = 253.4 Hz, 15.1 Hz), 130.9 (q, J_{C-F} = 4.5 Hz), 128.1, 121.9 (m), 111.5 (dd, J_{C-F} = 23.1 Hz, 6.5 Hz), 102.4 (q, J_{C-F} = 33.1 Hz), 82.1, 79.7, 37.6, 21.0; IR (KBr) v 3088, 2983, 2935, 1697, 1626, 1601, 1532, 1443, 1358, 1316, 1241, 1177, 1128, 1088, 1041, 1012, 851, 805, 742 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.50 (s, 2.52F), –81.29 (s, 0.48F), –133.00 (d, J = 20.3 Hz, 1.68F), –132.70 (d, J = 20.3 Hz, 0.32F), –157.93 (t, J = 20.3 Hz, 0.84F), –157.48 (t, J = 20.3 Hz, 0.16F); HRMS (ESI) found: m/z 375.0431 [M+Na]⁺; calcd. for C₁₅H₁₀F₆O₃+Na 375.0432.

7a-methyl-2-(naphthalen-1-yl)-2-(trifluoromethyl)-3a,4-

dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 83.6 mg, 80% yield; 78:22 dr; mp 45–47 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.62 (s, 3H), 2.62 (d, J = 18.0 Hz, 1H), 3.11 (d, J = 18.0 Hz, 1H), 4.75 (s, 1H), 5.47 (d, J = 10.4 Hz, 1H), 6.21 (d, J = 9.6 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.46–7.52 (m, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 8.62 (d, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 147.0, 133.8, 130.8, 130.4, 130.2,

128.3, 127.5, 126.9, 126.5, 126.0, 125.4, 124.1, 122.8 (q, $J_{C-F} = 287.9$ Hz), 105.3 (q, $J_{C-F} = 33.1$ Hz), 81.2, 78.9, 37.5, 20.7; **IR** (KBr) v 3052, 2980, 2932, 1694, 1510, 1388, 1307, 1240, 1176, 1121, 1082, 1050, 1016, 941, 803, 776 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.01 (s, 2.34F), -79.93 (s, 0.66F); **HRMS** (ESI) found: m/z 371.0868 [M+Na]⁺; calcd. for C₁₉H₁₅F₃O₃+Na 371.0871.

7a-methyl-2-(naphthalen-2-yl)-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 86.7 mg, 83% yield; 76:24 dr; mp 105–107 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.64 (s, 3H), 2.64 (dd, J = 18.0 Hz, 2.8 Hz, 1H), 3.13 (d, J = 18.8 Hz, 1H), 4.73 (s, 1H), 5.55 (d, J = 10.4 Hz, 1H), 6.28 (d, J = 10.0 Hz, 1H), 7.52 (t, J = 4.0 Hz, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.81–7.89 (m, 3H), 8.04 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 147.3, 133.5, 132.2, 131.8, 128.5, 127.7, 127.6, 127.5, 126.9, 126.5, 126.3, 123.6, 122.5 (q, $J_{C-F} = 286.7$ Hz), 103.7 (q, $J_{C-F} = 32.6$ Hz), 81.6, 79.1, 37.6, 20.9; **IR** (KBr) v 3060, 2963, 2928, 1694, 1508, 1455, 1388, 1313, 1275, 1240, 1179, 1127, 1089, 1048, 935, 819, 750 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.01 (s, 2.28F), –80.92 (s, 0.72F); **HRMS** (ESI) found: m/z 371.0873 [M+Na]⁺; calcd. for C₁₉H₁₅F₃O₃+Na 371.0871.

7a-methyl-2-(thiophen-2-yl)-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 65.7 mg, 72% yield; 75:25 dr; mp 71–73 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.62 (s, 3H), 2.66 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.07 (d, J = 18.0 Hz, 1H), 4.66 (s, 1H), 5.76 (d, J = 10.4 Hz, 1H), 6.41 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 6.97 (t, J = 4.0 Hz, 1H), 7.19 (d, J = 2.8 Hz, 1H), 7.32 (d, J = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 147.1, 136.8, 127.8, 127.5, 127.2, 126.9, 122.0 (q, J_{C-F} = 286.4 Hz), 102.7 (q, J_{C-F} = 33.5 Hz), 81.9, 79.6, 37.6, 21.1; IR (KBr) v 2985, 2931, 1694, 1589, 1490, 1328, 1241, 1179, 1088, 1075, 923, 798, 721 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.63 (s, 2.25F), -81.59 (s, 0.75F); HRMS (ESI) found: *m/z* 327.0279 [M+Na]⁺; calcd. for C₁₃H₁₁F₃O₃S+Na 327.0279.

2,7a-diphenyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 91.9 mg, 85% yield; 94:6 dr; mp 133–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.67 (dd, J = 18.0 Hz, 2.8 Hz, 1H), 3.06 (d, J = 18.0 Hz, 1H), 4.80 (s, 1H), 5.89 (d, J = 10.4 Hz, 1H), 6.41 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 7.36–7.40 (m, 3H), 7.44–7.50 (m, 3H), 7.57–7.60 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 145.1, 135.1, 134.3, 129.6, 129.3, 129.2, 129.1, 127.9, 126.6, 125.4, 122.6 (q, J_{C-F} = 287.1 Hz), 104.2 (q, J_{C-F} = 32.3 Hz), 83.3, 82.6, 37.0; **IR** (KBr) v 3062, 2931, 1694, 1494, 1450, 1385, 1313, 1273, 1176, 1095, 1063, 1031, 955, 762, 725, 697 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –81.40 (s, 2.82F), –81.08 (s, 0.18F); **HRMS** (ESI) found: *m/z* 383.0874 [M+Na]⁺; calcd. for C₂₀H₁₅F₃O₃+Na 383.0871.

2-(4-methoxyphenyl)-7a-phenyl-2-(trifluoromethyl)-3a,4-

dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 92.5 mg, 79% yield; 86:14 dr; mp 131–133 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.65 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.05 (dd, J = 18.0 Hz, 2.0 Hz, 1H), 3.81 (s, 3H), 4.77 (d, J = 2.4 Hz, 1H), 5.91 (d, J = 10.4 Hz, 1H), 6.40 (dd, J = 10.4 Hz, 2.4 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 7.41–7.48 (m, 5H), 7.53–7.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 160.5, 145.3, 135.2, 129.3, 129.2, 129.1, 128.0, 126.5, 125.4, 122.7 (q, J_{C-F} = 286.7 Hz), 113.3, 104.3 (q, J_{C-F} = 32.7 Hz), 83.3, 82.6, 55.1, 37.1; **IR** (KBr) v 3062, 2963, 2936, 2840, 1697, 1611, 1514, 1449, 1385, 1304, 1252, 1173, 1098, 1014, 956, 834, 760, 699 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –81.60 (s, 2.58F), –81.35 (s, 0.42F); **HRMS** (ESI) found: *m/z* 413.0975 [M+Na]⁺; calcd. for C₂₁H₁₇F₃O₄+Na 413.0977.

2-(4-chlorophenyl)-7a-phenyl-2-(trifluoromethyl)-3a,4dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 105.3 mg, 89% yield; 97:3 dr; mp 140–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.66 (dd, J = 18.0 Hz, 3.2 Hz, 1H), 3.05 (dd, J = 18.0 Hz, 2.0 Hz, 1H), 4.79 (d, J = 2.4 Hz, 1H), 5.92 (d, J = 10.4 Hz, 1H), 6.39 (dd, J = 10.4 Hz, 2.4 Hz, 1H), 7.34 (d, J = 8.8 Hz, 2H), 7.43–7.55 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 144.8, 135.9, 134.9, 133.0, 129.5, 129.4, 129.1, 128.3, 128.1, 125.4, 122.4 (q, J_{C-F} = 286.8

Hz), 103.9 (q, $J_{C-F} = 32.8$ Hz), 83.5, 82.8, 37.0; **IR** (KBr) v 3063, 2933, 1694, 1600, 1493, 1449, 1403, 1385, 1313, 1272, 1219, 1177, 1016, 1001, 958, 941, 830, 792, 739, 698 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –81.51 (s, 2.91F), –81.12 (s, 0.09F); **HRMS** (ESI) found: *m/z* 417.0484 [M+Na]⁺; calcd. for C₂₀H₁₄ClF₃O₃+Na 417.0481.

7a-ethyl-2-phenyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)one:

White solid; 82.5 mg, 88% yield; 80:20 dr; mp 44–46 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (t, J = 7.6 Hz, 3H), 1.88–2.02 (m, 2H), 2.60 (dd, J = 18.0 Hz, 3.6 Hz, 1H), 3.06 (dd, J = 18.0 Hz, 2.4 Hz, 1H), 4.72 (d, J = 2.4 Hz, 1H), 5.65 (d, J = 10.4 Hz, 1H), 6.26 (dd, J = 10.4 Hz, 2.4 Hz, 1H), 7.28–7.36 (m, 3H), 7.48 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 146.7, 134.6, 129.4, 128.5, 127.7, 126.5, 122.4 (q, J_{C-F} = 286.9 Hz), 103.4 (q, J_{C-F} = 32.5 Hz), 81.3, 79.9, 38.2, 28.0, 7.6; IR (KBr) v 2976, 2943, 1693, 1451, 1463, 1386, 1266, 1176, 1095, 1053, 1031, 954, 919, 763, 722, 697, 664 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.15 (s, 2.40F), –81.40 (s, 0.60F); HRMS (ESI) found: m/z 335.0869 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₃+Na 335.0871.

7a-isopropyl-2-phenyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 85.2 mg, 87% yield; 75:25 dr; mp 43–45 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (d, J = 6.8 Hz, 3H), 1.11 (d, J = 6.8 Hz, 3H), 2.17–2.28 (m, 1H), 2.61 (dd, J = 18.4 Hz, 3.6 Hz, 1H), 3.04 (d, J = 17.6 Hz, 1H), 4.75 (dd, J = 2.0 Hz, 1H), 5.70 (d, J = 10.4 Hz, 1H), 6.27 (dd, J = 10.4 Hz, 2.0 Hz, 1H), 7.26–7.34 (m, 3H), 7.47 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 145.4, 134.8, 129.6, 129.3, 127.7, 126.4, 122.3 (q, $J_{C-F} = 286.9$ Hz), 103.1 (q, $J_{C-F} = 32.3$ Hz), 83.3, 79.0, 39.0, 33.6, 17.4, 16.5; **IR** (KBr) v 2970, 2876, 1693, 1472, 1451, 1390, 1311, 1272, 1245, 1104, 1063, 1030, 955, 763, 723, 697, 664 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ – 82.04 (s, 2.25F), -81.49 (s, 0.75F); **HRMS** (ESI) found: *m*/*z* 349.1028 [M+Na]⁺; calcd. for C₁₇H₁₇F₃O₃+Na 349.1027.

6,7a-dimethyl-2-phenyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 83.4 mg, 89% yield; 80:20 dr; mp 76–78 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 3H), 1.58 (s, 3H), 2.59 (dd, J = 17.6 Hz, 3.2 Hz, 1H), 3.08 (d, J = 17.6 Hz, 1H), 4.61 (s, 1H), 5.96 (s, 1H), 7.30–7.34 (m, 3H), 7.44–7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 142.6, 134.9, 134.7, 129.3, 127.7, 126.5, 122.4 (q, $J_{C-F} = 286.0$ Hz), 103.5 (q, $J_{C-F} = 32.1$ Hz), 81.8, 79.7, 38.0, 21.2, 14.9; IR (KBr) v 2980, 2926, 1688, 1450, 1377, 1363, 1319, 1259, 1177, 1096, 1059, 957, 919, 721, 697, 664 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.46 (s, 2.40F), –81.42 (s, 0.60F); HRMS (ESI) found: *m/z* 335.0873 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₃+Na 335.0871.

4,6,7a-trimethyl-2-phenyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)-one:

White solid; 79.3 mg, 81% yield; >99:1 dr (recrystallization); mp 81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (s, 3H), 1.43 (d, *J* = 6.8 Hz, 3H), 1.60 (s, 3H), 2.61 (dq, *J* = 6.8 Hz, 2.4 Hz, 1H), 4.49 (s, 1H), 5.88 (s, 1H), 7.28–7.31 (m, 3H), 7.41–7.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 141.2, 135.1, 134.7, 129.2, 127.7, 126.5, 122.4 (q, *J*_{C-F} = 286.2 Hz), 103.6 (q, *J*_{C-F} = 32.3 Hz), 86.8, 80.0, 41.8, 21.1, 15.0, 11.9; **IR** (KBr) v 2990, 2906, 1685, 1452, 1385, 1312, 1175, 1161, 1100, 1043, 965, 719, 698, 663 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.50 (s, 3F); **HRMS** (ESI) found: *m/z* 349.1029 [M+Na]⁺; calcd. for C₁₇H₁₇F₃O₃+Na 349.1027.

2-benzyl-7a-methyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)one:

White solid; 74.9 mg, 80% yield; 85:15 dr; mp 58–60 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 3H), 2.42 (dd, J = 14.8 Hz, 3.2 Hz, 1H), 2.88 (d, J = 18.0 Hz, 1H), 3.03 (dd, J = 28.0 Hz, 13.6 Hz, 2H), 4.54 (s, 1H), 4.99 (d, J = 10.0 Hz, 1H), 5.78 (d, J = 10.0 Hz, 1H), 7.04–7.17 (m, 2H), 7.18–7.27 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 146.0, 131.9, 131.8, 128.0, 127.3, 124.9, 123.3 (q, $J_{C-F} = 290.0$ Hz), 104.5 (q, $J_{C-F} = 30.3$ Hz), 81.0, 78.4, 37.5, 37.0, 22.2; IR (KBr) v 3035, 2978, 2935, 1693, 1498, 1456, 1389, 1243, 1158, 1044, 997, 785, 726, 699 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ –81.68 (s, 2.55F), –81.08 (s, 0.45F); HRMS (ESI) found: m/z 335.0873 [M+Na]⁺; calcd. for C₁₆H₁₅F₃O₃+Na 335.0871.

2-ethyl-7a-methyl-2-(trifluoromethyl)-3a,4-dihydrobenzo[d][1,3]dioxol-5(7aH)one:

Colorless liquid; 51.1 mg, 68% yield; 80:20 dr; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (t, J = 6.4 Hz, 3H), 1.55 (s, 3H), 1.78 (d, J = 6.8 Hz, 2H), 2.61 (dd, J = 16.0 Hz, 1.6 Hz, 1H), 2.97 (d, J = 18.0 Hz, 1H), 4.60 (s, 1H), 5.98 (d, J = 10.0 Hz, 1H), 6.55 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 148.6, 127.2, 123.3 (q, $J_{C-F} = 289.3$ Hz), 105.7 (q, $J_{C-F} = 30.4$ Hz), 80.8, 78.3, 37.8, 25.7, 21.9, 6.7; IR (KBr) v 2984, 2944, 1695, 1466, 1389, 1320, 1256, 1169, 1122, 1088, 1057, 1027, 962, 794, 727 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.19 (s, 2.40F), -80.49 (s, 0.60F); HRMS (ESI) found: *m/z* 273.0717 [M+Na]⁺; calcd. for C₁₁H₁₁F₃O₃+Na 273.0714.

References:

- [1] a) Creary, X. J. Org. Chem. 1987, 52, 5026. b) Chong, J. M.; Mar, E. K. J. Org. Chem. 1991, 56, 893. c) Prakash, G. K. S.; Panja, C.; Vaghoo, H.; Surampudi, V.; Kultyshev, R.; Mandal, M.; Rasul, G.; Mathew, T.; Olah, G. A. J. Org. Chem. 2006, 71, 6806. d) Cheng, H.; Pei, Y.; Leng, F.; Li, J.; Liang, A.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2013, 54, 4483.
- [2] a) Novak, M.; Glover, S. A. J. Am. Chem. Soc. 2004, 126, 7748. b) Carreño, M. C.;
 González-López, M.; Urbano, A. Angew. Chem., Int. Ed. 2006, 45, 2737. c) TelloAburto, R.; Kalstabakken, K. A.; Volp, K. A.; Harned, A. M. Org. Biomol. Chem.
 2011, 9, 7849.

Copies of HPLC spectra of racemic /chiral product 3a:

Copies of NMR spectra of the products:

X-Ray Analysis for the product 3a:

CCDC 1061550 contains the supplementary crystallographic data for the product **3a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Table 1. Crystal data and structure refinement for 130703A.

Empirical formula	C15 H13 F3 O3
Formula weight	298.25
Temperature	294(2) K
Wavelength	0.71073 Å
Crystal system, space group	MONOCLINIC, C2/c
Unit cell dimensions	a = 28.78(3) A alpha = 90 deg.
	b = 6.621(7) A beta = 106.775(15)
	deg.
	c = 15.245(18) A gamma = 90 deg.
Volume	2782(5) Å ³
Z, Calculated density	8, 1.424 Mg/m ³
Absorption coefficient	0.124 mm ⁻¹
F(000)	1232
Crystal size	0.17 x 0.14 x 0.05 mm
Theta range for data collection	3.16 to 25.03 deg.
Limiting indices	-34<=h<=34, -7<=k<=7, -18<=l<=18
Reflections collected / unique	11489 / 2448 [R(int) = 0.0959]
Completeness to theta = 25.03	99.6 %

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9938 and 0.9792
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2448 / 0 / 192
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0545, WR2 = 0.1312
R indices (all data)	R1 = 0.0833, WR2 = 0.1499
Extinction coefficient	0.0005(5)
Largest diff. peak and hole	0.161 and -0.166 e.A ⁻³

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for 130703A. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
C(1)	2042(1)	2269(5)	8616(2)	65(1)
C(2)	1577(1)	2492(3)	7820(2)	48(1)
C(3)	1137(1)	1870(3)	8099(2)	48(1)
C(4)	1014(1)	-139(4)	8128(2)	63(1)
C(5)	609(1)	-660(5)	8397(2)	74(1)
C(6)	330(1)	777(5)	8632(2)	73(1)
C(7)	449(1)	2758(5)	8601(2)	72(1)
C(8)	851(1)	3316(4)	8345(2)	62(1)
C(9)	1650(1)	4654(4)	6683(2)	53(1)
C(10)	1351(1)	6342(4)	6137(2)	59(1)
C(11)	816(1)	5891(4)	5876(2)	58(1)
C(12)	678(1)	3796(4)	5636(2)	58(1)
C(13)	994(1)	2305(4)	5820(2)	54(1)
C(14)	1525(1)	2555(3)	6283(2)	47(1)
C(15)	1828(1)	1870(4)	5678(2)	72(1)
F(1)	2429(1)	2921(3)	8396(1)	87(1)
F(2)	2132(1)	356(3)	8878(1)	89(1)
F(3)	2013(1)	3313(3)	9338(1)	95(1)
O(1)	1653(1)	1312(2)	7101(1)	53(1)
O(2)	1541(1)	4519(2)	7542(1)	54(1)
O(3)	520(1)	7210(3)	5853(2)	85(1)

Table 3. Bond lengths [A] and angles [deg] for 130703A.

C(1)-F(3)	1.323(3)
C(1)-F(1)	1.325(3)
C(1)-F(2)	1.331(4)
C(1)-C(2)	1.532(4)
C(2)-O(2)	1.402(3)
C(2)-O(1)	1.413(3)

C(2)-C(3)	1.505(4)
C(3)-C(4)	1.381(4)
C(3)-C(8)	1.384(4)
C(4)-C(5)	1.384(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.360(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.361(4)
C(6)-H(6)	0.9300
C(7)-C(8)	1.373(4)
C(7)-H(7)	0.9300
C(8)-H(8)	0.9300
C(9)-O(2)	1.435(3)
C(9)-C(10)	1.506(4)
C(9)-C(14)	1.518(3)
C(9)-H(9)	0.9800
C(10)-C(11)	1.507(4)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-O(3)	1.213(3)
C(11)-C(12)	1.460(4)
C(12)-C(13)	1.317(4)
C(12)-H(12)	0.9300
C(13)-C(14)	1.495(4)
C(13)-H(13)	0.9300
C(14)-O(1)	1.451(3)
C(14)-C(15)	1.510(4)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
F(3)-C(1)-F(1)	107.5(2)
F(3)-C(1)-F(2)	107.6(3)
F(1)-C(1)-F(2)	106.3(2)
F(3)-C(1)-C(2)	111.0(2)
F(1)-C(1)-C(2)	112.0(2)
F(2)-C(1)-C(2)	112.3(2)
O(2)-C(2)-O(1)	107.99(19)
O(2)-C(2)-C(3)	110.61(18)
O(1)-C(2)-C(3)	113.4(2)
O(2)-C(2)-C(1)	107.7(2)
O(1)-C(2)-C(1)	105.4(2)
C(3)-C(2)-C(1)	111.4(2)
C(4)-C(3)-C(8)	118.5(3)
C(4)-C(3)-C(2)	121.3(2)

C(8)-C(3)-C(2)	120.2(2)
C(3)-C(4)-C(5)	119.8(2)
C(3)-C(4)-H(4)	120.1
C(5)-C(4)-H(4)	120.1
C(6)-C(5)-C(4)	121.1(3)
C(6)-C(5)-H(5)	119.5
C(4)-C(5)-H(5)	119.5
C(7)-C(6)-C(5)	119.4(3)
C(7)-C(6)-H(6)	120.3
C(5)-C(6)-H(6)	120.3
C(6)-C(7)-C(8)	120.7(3)
C(6)-C(7)-H(7)	119.6
C(8)-C(7)-H(7)	119.6
C(7)-C(8)-C(3)	120.5(3)
C(7)-C(8)-H(8)	119.7
C(3)-C(8)-H(8)	119.7
O(2)-C(9)-C(10)	108.0(2)
O(2)-C(9)-C(14)	102.73(18)
C(10)-C(9)-C(14)	115.2(2)
O(2)-C(9)-H(9)	110.2
C(10)-C(9)-H(9)	110.2
C(14)-C(9)-H(9)	110.2
C(11)-C(10)-C(9)	112.1(2)
C(11)-C(10)-H(10A)	109.2
C(9)-C(10)-H(10A)	109.2
C(11)-C(10)-H(10B)	109.2
C(9)-C(10)-H(10B)	109.2
H(10A)-C(10)-H(10B)	107.9
O(3)-C(11)-C(12)	122.6(3)
O(3)-C(11)-C(10)	121.4(3)
C(12)-C(11)-C(10)	116.0(2)
C(13)-C(12)-C(11)	122.5(3)
C(13)-C(12)-H(12)	118.7
C(11)-C(12)-H(12)	118.7
C(12)-C(13)-C(14)	124.5(2)
C(12)-C(13)-H(13)	117.7
C(14)-C(13)-H(13)	117.7
O(1)-C(14)-C(13)	108.32(18)
O(1)-C(14)-C(15)	107.9(2)
C(13)-C(14)-C(15)	111.6(2)
O(1)-C(14)-C(9)	101.65(19)
C(13)-C(14)-C(9)	112.5(2)
C(15)-C(14)-C(9)	114.1(2)
C(14)-C(15)-H(15A)	109.5

C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(2)-O(1)-C(14)	107.19(18)
C(2)-O(2)-C(9)	108.61(16)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for 130703A. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12
C(1)	48(2)	80(2)	65(2)	-4(2)	13(1)	7(1)
C(2)	53(1)	46(1)	46(1)	-5(1)	15(1)	4(1)
C(3)	49(1)	54(1)	39(1)	-1(1)	10(1)	2(1)
C(4)	71(2)	56(2)	68(2)	6(1)	28(2)	7(1)
C(5)	82(2)	65(2)	83(2)	7(2)	35(2)	-7(2)
C(6)	63(2)	95(2)	66(2)	1(2)	28(2)	-6(2)
C(7)	66(2)	84(2)	74(2)	-10(2)	34(2)	4(2)
C(8)	65(2)	59(2)	67(2)	-8(1)	26(1)	3(1)
C(9)	50(1)	51(1)	62(2)	-5(1)	26(1)	-5(1)
C(10)	76(2)	41(1)	67(2)	3(1)	31(1)	-4(1)
C(11)	67(2)	56(2)	52(1)	7(1)	18(1)	9(1)
C(12)	58(2)	56(2)	58(1)	2(1)	15(1)	-3(1)
C(13)	62(2)	46(1)	53(1)	-5(1)	18(1)	-7(1)
C(14)	55(1)	41(1)	53(1)	3(1)	25(1)	1(1)
C(15)	88(2)	65(2)	78(2)	3(2)	48(2)	9(2)
F(1)	49(1)	107(1)	100(1)	-4(1)	16(1)	-3(1)
F(2)	73(1)	95(1)	88(1)	27(1)	6(1)	22(1)
F(3)	71(1)	141(2)	62(1)	-27(1)	-1(1)	14(1)
O(1)	63(1)	47(1)	53(1)	1(1)	22(1)	9(1)
O(2)	62(1)	48(1)	55(1)	-5(1)	21(1)	0(1)
O(3)	85(2)	68(1)	95(2)	-2(1)	17(1)	26(1)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for 130703A.

·	,				
	Х	У	Z	U(eq)	
H(4)	1201	-1138	7968	76	
H(5)	527	-2015	8416	89	
H(6)	59	409	8813	87	

H(7)	257	3746	8756	86
H(8)	930	4675	8336	75
H(9)	1997	4925	6786	63
H(10A)	1415	7575	6496	71
H(10B)	1448	6562	5586	71
H(12)	354	3503	5343	69
H(13)	880	1007	5649	64
H(15A)	2165	1918	6017	108
H(15B)	1770	2744	5155	108
H(15C)	1740	511	5477	108

Table 6.	Torsion angles	[deg] for	130703A.

F(3)-C(1)-C(2)-O(2)	65.1(3)
F(1)-C(1)-C(2)-O(2)	-54.9(3)
F(2)-C(1)-C(2)-O(2)	-174.47(19)
F(3)-C(1)-C(2)-O(1)	-179.7(2)
F(1)-C(1)-C(2)-O(1)	60.2(3)
F(2)-C(1)-C(2)-O(1)	-59.3(3)
F(3)-C(1)-C(2)-C(3)	-56.3(3)
F(1)-C(1)-C(2)-C(3)	-176.4(2)
F(2)-C(1)-C(2)-C(3)	64.1(3)
O(2)-C(2)-C(3)-C(4)	159.9(2)
O(1)-C(2)-C(3)-C(4)	38.4(3)
C(1)-C(2)-C(3)-C(4)	-80.4(3)
O(2)-C(2)-C(3)-C(8)	-21.0(3)
O(1)-C(2)-C(3)-C(8)	-142.5(2)
C(1)-C(2)-C(3)-C(8)	98.7(3)
C(8)-C(3)-C(4)-C(5)	0.2(4)
C(2)-C(3)-C(4)-C(5)	179.3(2)
C(3)-C(4)-C(5)-C(6)	0.1(5)
C(4)-C(5)-C(6)-C(7)	0.1(5)
C(5)-C(6)-C(7)-C(8)	-0.7(5)
C(6)-C(7)-C(8)-C(3)	1.0(4)
C(4)-C(3)-C(8)-C(7)	-0.7(4)
C(2)-C(3)-C(8)-C(7)	-179.9(2)
O(2)-C(9)-C(10)-C(11)	-65.5(3)
C(14)-C(9)-C(10)-C(11)	48.6(3)
C(9)-C(10)-C(11)-O(3)	143.8(3)
C(9)-C(10)-C(11)-C(12)	-37.5(3)
O(3)-C(11)-C(12)-C(13)	-167.1(3)
C(10)-C(11)-C(12)-C(13)	14.2(4)
C(11)-C(12)-C(13)-C(14)	-0.3(4)
C(12)-C(13)-C(14)-O(1)	122.3(3)

C(12)-C(13)-C(14)-C(15)	-119.1(3)
C(12)-C(13)-C(14)-C(9)	10.7(3)
O(2)-C(9)-C(14)-O(1)	-33.5(2)
C(10)-C(9)-C(14)-O(1)	-150.7(2)
O(2)-C(9)-C(14)-C(13)	82.1(2)
C(10)-C(9)-C(14)-C(13)	-35.0(3)
O(2)-C(9)-C(14)-C(15)	-149.3(2)
C(10)-C(9)-C(14)-C(15)	93.5(3)
O(2)-C(2)-O(1)-C(14)	-16.0(2)
C(3)-C(2)-O(1)-C(14)	106.9(2)
C(1)-C(2)-O(1)-C(14)	-131.0(2)
C(13)-C(14)-O(1)-C(2)	-88.1(2)
C(15)-C(14)-O(1)-C(2)	150.9(2)
C(9)-C(14)-O(1)-C(2)	30.6(2)
O(1)-C(2)-O(2)-C(9)	-6.7(2)
C(3)-C(2)-O(2)-C(9)	-131.35(19)
C(1)-C(2)-O(2)-C(9)	106.7(2)
C(10)-C(9)-O(2)-C(2)	147.5(2)
C(14)-C(9)-O(2)-C(2)	25.3(2)

Symmetry transformations used to generate equivalent atoms: Table 7. Hydrogen bonds for 130703A [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)