Synthetic Transformation of 1,3-

Diarylisobenzofuran-DMAD Adducts: A Facile

Preparation of Tri-substituted *α***-Naphthols**

Jayachandran Karunakaran, Meganathan Nandakumar, Natarajan Senthil Kumar and Arasambattu K Mohanakrishnan*

Department of Organic Chemistry, University of Madras, Chennai, Tamil Nadu India 600 025

E-mail: mohanakrishnan@unom.ac.in, mohan_67@hotmail.com

Supporting Information

Contents:

1. NMR spectra	3-120
2. X–Ray Structure & Crystallographic data of 3e , 9d , 9g , 9h and 10b	.121-160
3. Absorption, emission spectra of 13i, 13k, 13l and 13m	.161

DEPT-135 NMR Spectra of Compound 9c & 9c

¹H-NMR Spectra of Compound **9f & 9f**

¹³C-NMR Spectra of Compound **9f & 9f**

DEPT-135 NMR Spectra of Compound 9f & 9f

Ţ.

 $\langle - \rangle$

Ŋ

¹³C-NMR Spectra of Compound **90**

¹H-NMR Spectra of Compound **9q & 9q**

Crystallograpic data of β -keto-ester **3e**:

CCDC Number is 997379.

Computing details

Program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997). Computer programs: *SHELXS97* (Sheldrick, 1990), *SHELXL97* (Sheldrick, 1997).

Dimethyl-4-(4-methoxyphenyl)-1-oxo-2-*p*-tolyl-1,2-dihydronaphthalene-2,3-dicarboxylate (3e)

Experimental

Crystal data

$C_{28}H_{24}O_{6}$	V = 1170.06 (6) Å ³
$M_r = 456.47$	Z = 2
a = 7.5256 (2) Å	F(000) = 480
b = 10.2095 (3) Å	$D_{\rm x} = 1.296 {\rm ~Mg} {\rm ~m}^{-3}$
c = 15.6299 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 93.990 (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 94.679 (1)^{\circ}$	T = 293 K
$\gamma = 101.089 \ (2)^{\circ}$	

Data collection

Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.027$
Graphite monochromator	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$
22413 measured reflections	$h = -8 \rightarrow 8$
4119 independent reflections	$k = -12 \rightarrow 12$
3346 reflections with $I > 2\sigma(I)$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0547P)^{2} + 0.2906P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4119 reflections	$(\Delta/\sigma)_{\rm max} = 0.004$
311 parameters	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Refinement

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	X	Y	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.04016 (19)	0.52685 (14)	0.34053 (9)	0.0385 (3)
C2	1.0229 (2)	0.63513 (15)	0.39596 (10)	0.0478 (4)
H2	0.9373	0.6863	0.3807	0.057*
C3	1.1303 (2)	0.66814 (17)	0.47312 (11)	0.0550 (4)
H3	1.1160	0.7407	0.5095	0.066*
C4	1.2578 (2)	0.59471 (18)	0.49645 (11)	0.0587 (5)
H4	1.3297	0.6170	0.5486	0.070*
C5	1.2791 (2)	0.48799 (18)	0.44251 (11)	0.0550 (4)
H5	1.3667	0.4387	0.4581	0.066*
C6	1.17134 (19)	0.45323 (14)	0.36521 (10)	0.0417 (3)

C7	1.1958 (2)	0.33854 (15)	0.30791 (10)	0.0446 (4)
C8	1.0303 (2)	0.27105 (14)	0.24589 (9)	0.0397 (3)
C9	0.92937 (19)	0.37508 (14)	0.21154 (9)	0.0385 (3)
C10	0.92853 (19)	0.49101 (14)	0.25739 (9)	0.0371 (3)
C11	0.8042 (2)	0.58099 (14)	0.23090 (9)	0.0401 (3)
C12	0.8649 (2)	0.70937 (15)	0.20884 (10)	0.0479 (4)
H12	0.9892	0.7416	0.2088	0.058*
C13	0.7446 (3)	0.79111 (15)	0.18672 (10)	0.0521 (4)
H13	0.7878	0.8768	0.1710	0.063*
C14	0.5606 (2)	0.74492 (16)	0.18809 (10)	0.0509 (4)
C15	0.4985 (2)	0.61764 (18)	0.21056 (12)	0.0594 (5)
H15	0.3743	0.5861	0.2118	0.071*
C16	0.6190 (2)	0.53671 (16)	0.23124 (11)	0.0522 (4)
H16	0.5749	0.4504	0.2458	0.063*
C17	0.8254 (2)	0.33536 (15)	0.12560 (10)	0.0457 (4)
C18	0.7520 (3)	0.4012 (2)	-0.01137 (12)	0.0833 (7)
H18A	0.7824	0.3208	-0.0363	0.125*
H18B	0.7902	0.4735	-0.0461	0.125*
H18C	0.6228	0.3879	-0.0088	0.125*
C19	1.0997 (2)	0.19417 (17)	0.17186 (11)	0.0523 (4)
C20	1.2394 (4)	0.2216 (3)	0.04350 (16)	0.1075 (10)
H20A	1.3518	0.1943	0.0597	0.161*
H20B	1.2588	0.2863	0.0018	0.161*
H20C	1.1505	0.1449	0.0190	0.161*
C21	0.4758 (4)	0.9350 (2)	0.12847 (14)	0.0822 (7)
H21A	0.5676	0.9976	0.1647	0.123*
H21B	0.3702	0.9736	0.1181	0.123*
H21C	0.5219	0.9148	0.0746	0.123*
C22	0.9152 (2)	0.17131 (13)	0.29922 (9)	0.0383 (3)
C23	0.7324 (2)	0.16747 (15)	0.30518 (9)	0.0435 (4)
H23	0.6760	0.2297	0.2789	0.052*
C24	0.6325 (2)	0.07153 (17)	0.35007 (11)	0.0536 (4)
H24	0.5091	0.0698	0.3528	0.064*
C25	0.7110 (3)	-0.02137 (16)	0.39079 (11)	0.0569 (5)
C26	0.8952 (3)	-0.01318 (16)	0.38729 (11)	0.0575 (5)
H26	0.9528	-0.0724	0.4162	0.069*
C27	0.9956 (2)	0.08046 (15)	0.34213 (10)	0.0494 (4)
H27	1.1194	0.0828	0.3404	0.059*
C28	0.6003 (4)	-0.1312 (2)	0.43490 (16)	0.0927 (8)
H28A	0.4822	-0.1116	0.4415	0.139*
H28B	0.6608	-0.1372	0.4906	0.139*

H28C	0.5874	-0.2150	0.4007	0.139*
01	1.33429 (15)	0.29405 (12)	0.31246 (9)	0.0629 (3)
O2	1.0894 (2)	0.07656 (13)	0.16239 (9)	0.0765 (4)
03	1.17487 (19)	0.28042 (13)	0.11870 (8)	0.0680 (4)
O4	0.7426 (2)	0.22389 (12)	0.10391 (8)	0.0720 (4)
05	0.84266 (17)	0.43348 (11)	0.07425 (7)	0.0588 (3)
O6	0.42858 (19)	0.81619 (13)	0.16963 (9)	0.0736 (4)

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0357 (8)	0.0370 (7)	0.0416 (8)	0.0024 (6)	0.0060 (6)	0.0053 (6)
C2	0.0525 (9)	0.0418 (8)	0.0484 (9)	0.0102 (7)	0.0033 (7)	0.0000 (7)
C3	0.0607 (11)	0.0499 (9)	0.0493 (9)	0.0035 (8)	0.0019 (8)	-0.0061 (7)
C4	0.0537 (10)	0.0613 (11)	0.0525 (10)	-0.0007 (8)	-0.0102 (8)	-0.0034 (8)
C5	0.0391 (9)	0.0574 (10)	0.0646 (11)	0.0051 (7)	-0.0072 (8)	0.0061 (8)
C6	0.0318 (8)	0.0415 (8)	0.0495 (8)	0.0014 (6)	0.0035 (6)	0.0044 (6)
C7	0.0355 (8)	0.0419 (8)	0.0577 (9)	0.0070 (7)	0.0095 (7)	0.0103 (7)
C8	0.0398 (8)	0.0357 (7)	0.0450 (8)	0.0086 (6)	0.0099 (6)	0.0031 (6)
C9	0.0377 (8)	0.0368 (7)	0.0407 (7)	0.0038 (6)	0.0075 (6)	0.0057 (6)
C10	0.0359 (8)	0.0346 (7)	0.0404 (7)	0.0035 (6)	0.0073 (6)	0.0064 (6)
C11	0.0462 (9)	0.0358 (7)	0.0380 (7)	0.0076 (6)	0.0027 (6)	0.0035 (6)
C12	0.0503 (9)	0.0400 (8)	0.0504 (9)	0.0023 (7)	0.0011 (7)	0.0060 (7)
C13	0.0724 (12)	0.0339 (8)	0.0481 (9)	0.0083 (8)	-0.0030 (8)	0.0071 (7)
C14	0.0622 (11)	0.0471 (9)	0.0459 (8)	0.0219 (8)	-0.0059 (7)	0.0024 (7)
C15	0.0471 (10)	0.0586 (11)	0.0754 (12)	0.0143 (8)	0.0035 (8)	0.0188 (9)
C16	0.0472 (10)	0.0434 (9)	0.0674 (10)	0.0084 (7)	0.0058 (8)	0.0178 (8)
C17	0.0515 (9)	0.0404 (8)	0.0432 (8)	0.0041 (7)	0.0068(7)	0.0026 (7)
C18	0.1029 (17)	0.0871 (15)	0.0472 (10)	-0.0074 (13)	-0.0152 (10)	0.0165 (10)
C19	0.0560 (10)	0.0487 (10)	0.0569 (10)	0.0157 (8)	0.0199 (8)	0.0045 (8)
C20	0.153 (3)	0.1032 (18)	0.0904 (17)	0.0530 (18)	0.0810 (18)	0.0205 (14)
C21	0.1208 (19)	0.0549 (11)	0.0772 (14)	0.0400 (12)	-0.0099 (13)	0.0101 (10)
C22	0.0435 (8)	0.0317 (7)	0.0391 (7)	0.0057 (6)	0.0063 (6)	0.0000 (6)
C23	0.0445 (9)	0.0430 (8)	0.0434 (8)	0.0083 (7)	0.0073 (6)	0.0042 (6)
C24	0.0519 (10)	0.0529 (10)	0.0541 (9)	0.0010 (8)	0.0181 (8)	0.0030 (8)
C25	0.0831 (13)	0.0392 (9)	0.0477 (9)	0.0033 (8)	0.0232 (9)	0.0035 (7)
C26	0.0863 (14)	0.0385 (8)	0.0514 (9)	0.0189 (9)	0.0104 (9)	0.0084 (7)
C27	0.0538 (10)	0.0401 (8)	0.0563 (9)	0.0140 (7)	0.0066(7)	0.0046 (7)
C28	0.129 (2)	0.0605 (12)	0.0908 (16)	0.0013 (13)	0.0515 (15)	0.0203 (11)
01	0.0382 (6)	0.0576 (7)	0.0956 (9)	0.0162 (5)	0.0070 (6)	0.0054 (6)
O2	0.1068 (11)	0.0500 (8)	0.0825 (9)	0.0275 (7)	0.0436 (8)	0.0008 (6)

O3	0.0830 (9)	0.0626 (8)	0.0690 (8)	0.0226 (7)	0.0432 (7)	0.0144 (6)
O4	0.0977 (10)	0.0488 (7)	0.0551 (7)	-0.0138 (7)	-0.0069 (7)	0.0012 (6)
05	0.0773 (8)	0.0510(7)	0.0415 (6)	-0.0017 (6)	-0.0036 (5)	0.0095 (5)
06	0.0803 (10)	0.0613 (8)	0.0852 (9)	0.0335 (7)	-0.0090 (7)	0.0141 (7)

Geometric parameters (Å, °)

C1—C2	1.389 (2)	C17—O4	1.1990 (19)
C1—C6	1.397 (2)	C17—O5	1.3204 (19)
C1—C10	1.472 (2)	C18—O5	1.438 (2)
C2—C3	1.379 (2)	C18—H18A	0.9600
C2—H2	0.9300	C18—H18B	0.9600
C3—C4	1.369 (2)	C18—H18C	0.9600
С3—Н3	0.9300	C19—O2	1.186 (2)
C4—C5	1.373 (2)	C19—O3	1.331 (2)
C4—H4	0.9300	C20—O3	1.444 (2)
C5—C6	1.383 (2)	C20—H20A	0.9600
C5—H5	0.9300	C20—H20B	0.9600
C6—C7	1.473 (2)	C20—H20C	0.9600
C7—O1	1.2134 (18)	C21—O6	1.412 (3)
C7—C8	1.531 (2)	C21—H21A	0.9600
C8—C9	1.522 (2)	C21—H21B	0.9600
C8—C19	1.535 (2)	C21—H21C	0.9600
C8—C22	1.542 (2)	C22—C23	1.380 (2)
C9—C10	1.342 (2)	C22—C27	1.383 (2)
C9—C17	1.487 (2)	C23—C24	1.384 (2)
C10—C11	1.487 (2)	C23—H23	0.9300
C11—C12	1.380 (2)	C24—C25	1.375 (3)
C11—C16	1.381 (2)	C24—H24	0.9300
C12—C13	1.384 (2)	C25—C26	1.379 (3)
C12—H12	0.9300	C25—C28	1.506 (3)
C13—C14	1.377 (3)	C26—C27	1.373 (2)
C13—H13	0.9300	C26—H26	0.9300
C14—O6	1.364 (2)	C27—H27	0.9300
C14—C15	1.374 (2)	C28—H28A	0.9600
C15—C16	1.374 (2)	C28—H28B	0.9600
C15—H15	0.9300	C28—H28C	0.9600
C16—H16	0.9300		
C2—C1—C6	117.75 (13)	O4—C17—O5	123.66 (15)
C2-C1-C10	122.02 (13)	O4—C17—C9	123.29 (14)
C6—C1—C10	120.21 (13)	O5—C17—C9	112.94 (13)

C3—C2—C1	121.18 (15)	O5—C18—H18A	109.5
С3—С2—Н2	119.4	O5-C18-H18B	109.5
C1—C2—H2	119.4	H18A—C18—H18B	109.5
C4—C3—C2	120.32 (15)	O5-C18-H18C	109.5
С4—С3—Н3	119.8	H18A—C18—H18C	109.5
С2—С3—Н3	119.8	H18B-C18-H18C	109.5
C3—C4—C5	119.76 (15)	O2—C19—O3	124.44 (15)
C3—C4—H4	120.1	O2—C19—C8	126.23 (15)
C5—C4—H4	120.1	O3—C19—C8	109.33 (13)
C4—C5—C6	120.48 (16)	O3—C20—H20A	109.5
C4—C5—H5	119.8	O3—C20—H20B	109.5
C6—C5—H5	119.8	H20A-C20-H20B	109.5
C5—C6—C1	120.50 (14)	O3—C20—H20C	109.5
C5—C6—C7	119.92 (14)	H20A—C20—H20C	109.5
C1—C6—C7	119.58 (13)	H20B-C20-H20C	109.5
O1—C7—C6	122.60 (15)	O6—C21—H21A	109.5
O1—C7—C8	121.18 (14)	O6—C21—H21B	109.5
С6—С7—С8	116.07 (12)	H21A—C21—H21B	109.5
C9—C8—C7	110.59 (11)	O6—C21—H21C	109.5
C9—C8—C19	110.62 (12)	H21A—C21—H21C	109.5
C7—C8—C19	107.56 (12)	H21B—C21—H21C	109.5
C9—C8—C22	113.30 (12)	C23—C22—C27	118.00 (14)
C7—C8—C22	104.74 (11)	C23—C22—C8	122.47 (13)
C19—C8—C22	109.74 (12)	C27—C22—C8	119.53 (13)
C10—C9—C17	122.91 (13)	C22—C23—C24	120.40 (15)
С10—С9—С8	122.15 (13)	C22—C23—H23	119.8
С17—С9—С8	114.88 (12)	С24—С23—Н23	119.8
C9—C10—C1	120.24 (13)	C25—C24—C23	121.70 (16)
C9-C10-C11	121.87 (13)	C25—C24—H24	119.2
C1-C10-C11	117.65 (12)	C23—C24—H24	119.2
C12—C11—C16	117.89 (14)	C24—C25—C26	117.36 (15)
C12—C11—C10	123.18 (14)	C24—C25—C28	121.8 (2)
C16—C11—C10	118.88 (13)	C26—C25—C28	120.81 (19)
C11—C12—C13	121.32 (15)	C27—C26—C25	121.52 (16)
C11—C12—H12	119.3	C27—C26—H26	119.2
C13—C12—H12	119.3	C25—C26—H26	119.2
C14—C13—C12	119.67 (15)	C26—C27—C22	120.94 (16)
C14—C13—H13	120.2	С26—С27—Н27	119.5
C12—C13—H13	120.2	С22—С27—Н27	119.5
O6—C14—C15	115.00 (16)	C25—C28—H28A	109.5
O6—C14—C13	125.43 (16)	C25—C28—H28B	109.5

C15—C14—C13	119.57 (15)	H28A—C28—H28B	109.5
C16—C15—C14	120.27 (17)	C25—C28—H28C	109.5
C16—C15—H15	119.9	H28A—C28—H28C	109.5
C14—C15—H15	119.9	H28B—C28—H28C	109.5
C15-C16-C11	121.27 (15)	C19—O3—C20	115.56 (15)
C15—C16—H16	119.4	C17—O5—C18	116.25 (13)
C11—C16—H16	119.4	C14—O6—C21	118.23 (17)
C6—C1—C2—C3	-0.6 (2)	C11—C12—C13—C14	1.2 (2)
C10—C1—C2—C3	-179.19 (14)	C12-C13-C14-O6	178.48 (15)
C1—C2—C3—C4	0.4 (3)	C12—C13—C14—C15	-0.7 (2)
C2—C3—C4—C5	0.3 (3)	O6-C14-C15-C16	-179.47 (16)
C3—C4—C5—C6	-0.7 (3)	C13—C14—C15—C16	-0.2 (3)
C4—C5—C6—C1	0.5 (2)	C14—C15—C16—C11	0.7 (3)
C4—C5—C6—C7	179.96 (15)	C12-C11-C16-C15	-0.2 (2)
C2-C1-C6-C5	0.1 (2)	C10-C11-C16-C15	177.47 (15)
C10-C1-C6-C5	178.74 (14)	C10—C9—C17—O4	-138.46 (18)
C2—C1—C6—C7	-179.29 (13)	C8—C9—C17—O4	38.7 (2)
C10—C1—C6—C7	-0.7 (2)	C10—C9—C17—O5	45.2 (2)
C5—C6—C7—O1	-20.2 (2)	C8—C9—C17—O5	-137.56 (14)
C1—C6—C7—O1	159.22 (15)	C9—C8—C19—O2	-135.20 (19)
C5—C6—C7—C8	155.47 (14)	C7—C8—C19—O2	103.9 (2)
C1—C6—C7—C8	-25.1 (2)	C22—C8—C19—O2	-9.5 (2)
01—C7—C8—C9	-146.10 (15)	C9—C8—C19—O3	44.87 (18)
С6—С7—С8—С9	38.16 (17)	C7—C8—C19—O3	-76.01 (17)
O1—C7—C8—C19	-25.2 (2)	C22—C8—C19—O3	170.60 (13)
C6—C7—C8—C19	159.05 (13)	C9—C8—C22—C23	7.84 (19)
O1—C7—C8—C22	91.51 (17)	C7—C8—C22—C23	128.45 (14)
C6—C7—C8—C22	-84.24 (15)	C19—C8—C22—C23	-116.35 (15)
C7—C8—C9—C10	-29.46 (18)	C9—C8—C22—C27	-173.06 (12)
C19—C8—C9—C10	-148.52 (14)	C7—C8—C22—C27	-52.45 (16)
C22—C8—C9—C10	87.78 (16)	C19—C8—C22—C27	62.75 (17)
C7—C8—C9—C17	153.32 (12)	C27—C22—C23—C24	-2.6 (2)
C19—C8—C9—C17	34.26 (17)	C8—C22—C23—C24	176.56 (13)
C22—C8—C9—C17	-89.44 (14)	C22—C23—C24—C25	0.8 (2)
C17—C9—C10—C1	-177.56 (13)	C23—C24—C25—C26	1.7 (2)
C8—C9—C10—C1	5.4 (2)	C23—C24—C25—C28	-176.07 (17)
С17—С9—С10—С11	8.2 (2)	C24—C25—C26—C27	-2.5 (2)
C8—C9—C10—C11	-168.83 (13)	C28—C25—C26—C27	175.31 (17)
C2-C1-C10-C9	-170.09 (14)	C25—C26—C27—C22	0.8 (2)
C6-C1-C10-C9	11.4 (2)	C23—C22—C27—C26	1.8 (2)
C2-C1-C10-C11	4.4 (2)	C8—C22—C27—C26	-177.35 (14)

C6-C1-C10-C11	-174.13 (12)	O2—C19—O3—C20	2.7 (3)
C9—C10—C11—C12	-117.13 (17)	C8—C19—O3—C20	-177.38 (18)
C1-C10-C11-C12	68.45 (18)	O4—C17—O5—C18	1.3 (3)
C9—C10—C11—C16	65.36 (19)	C9—C17—O5—C18	177.56 (16)
C1-C10-C11-C16	-109.06 (16)	C15—C14—O6—C21	-166.54 (17)
C16—C11—C12—C13	-0.7 (2)	C13—C14—O6—C21	14.3 (2)
C10-C11-C12-C13	-178.28 (14)		

Crystallograpic data of β -keto-ester **9d**:

CCDC Number is **1450132**.

Computing details

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Dimethyl-4-oxo-3-phenyl-3,4-dihydro-1,1'-binaphthyl-2,3-dicarboxylate (9d)

Experimental

Crystal data

$C_{30}H_{22}O_5$	F(000) = 968
M = 462.48	$D_{\rm c} = 1.308 { m Mg} { m m}^{-1}$
Monoclinic, $P2/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4122 reflections
a = 16.2811 (9) Å b = 10.0247 (5) Å	$\theta = 2.5 - 25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{\circ}$

c = 15.5040 (9) Å	<i>T</i> = 296 K
$\beta = 111.902 \ (2)^{\circ}$	Block, colourless
V = 2347.8 (2) Å ³	$0.30 \times 0.25 \times 0.25 \text{ mm}$
Z = 4	

Kappa ApexII CCD Diffractometer 4122 independent reflections Radiation source: fine-focus sealed 3262 reflections with $I > 2\sigma(I)$ tube $R_{*} = 0.042$ Graphite monochromator $\omega \& \phi$ scans $\theta_{\rm m} = 25.0^{\circ}, \, \theta_{\rm m} = 2.5^{\circ}$ Absorption correction: multi-scan $h = -19 \rightarrow 19$ SADABS (Bruker, 2008) $T_{\rm m} = 0.974, T_{\rm m} = 0.978$ $k = -11 \rightarrow 11$ 25692 measured reflections $l = -18 \rightarrow 18$ Refinement Primary atom site Refinement on F_{1} location: structure-invariant direct methods Secondary atom site Least-squares matrix: full location: difference Fourier map Hydrogen site location: inferred $R[F_{2} > 2\sigma(F_{2})] = 0.039$ from neighbouring sites $wR(F_{2}) = 0.119$ H-atom parameters constrained $w = 1/[\sigma_{1}(F_{0}) + (0.0706P)^{2} +$ *S* = 1.04 0.317*P*] where $P = (F_{z} + 2F_{z})/3$ 4122 reflections $(\Delta / \sigma)_{--} = 0.002$ $\Delta \rho_{\rm m} = 0.22 \ e \ {\rm \AA}^{-1}$ 318 parameters 0 restraints $\Delta \rho_{m} = -0.15 \text{ e} \text{ Å}^{-3}$ Special details

Refinement

Data collection

Refinement of F_{\cdot} against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F_{\cdot} , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F_{\cdot} . The threshold expression of $F_{\cdot} > \sigma(F_{\cdot})$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F* are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	Y	Z.	$U_{\scriptscriptstyle m in}*/U_{\scriptscriptstyle m eq}$
C1	0.16810 (10)	0.79300 (15)	0.08703 (10)	0.0381 (4)
C2	0.15819 (10)	0.64702 (14)	0.07613 (10)	0.0364 (3)
C3	0.10938 (11)	0.59202 (17)	-0.00964 (11)	0.0481 (4)

H3	0.0855	0.6469	-0.0614	0.058*
C4	0.09604 (13)	0.45625 (18)	-0.01856 (12)	0.0551 (5)
H4	0.0629	0.4193	-0.0761	0.066*
C5	0.13226 (12)	0.37531 (17)	0.05851 (12)	0.0518 (4)
H5	0.1224	0.2838	0.0529	0.062*
C6	0.18295 (11)	0.42900 (15)	0.14373 (11)	0.0409 (4)
H6	0.2079	0.3730	0.1947	0.049*
C7	0.19714 (9)	0.56571 (14)	0.15443 (10)	0.0329 (3)
C8	0.25385 (9)	0.62674 (13)	0.24366 (9)	0.0314 (3)
C9	0.24868 (9)	0.75887 (14)	0.25757 (10)	0.0325 (3)
C10	0.17985 (9)	0.84532 (14)	0.18459 (10)	0.0342 (3)
C11	0.31149 (10)	0.53719 (14)	0.31924 (10)	0.0351 (3)
C12	0.38377 (10)	0.46701 (14)	0.30968 (11)	0.0385 (4)
C13	0.40609 (11)	0.47718 (16)	0.23040 (13)	0.0474 (4)
H13	0.3725	0.5317	0.1814	0.057*
C14	0.47591 (13)	0.40870 (19)	0.22422 (17)	0.0665 (6)
H14	0.4887	0.4152	0.1707	0.080*
C15	0.52846 (14)	0.3286 (2)	0.2979 (2)	0.0784 (7)
H15	0.5764	0.2830	0.2934	0.094*
C16	0.51020 (13)	0.31711 (19)	0.37514 (19)	0.0726 (7)
H16	0.5461	0.2639	0.4237	0.087*
C17	0.43703 (11)	0.38464 (16)	0.38425 (13)	0.0513 (4)
C18	0.41625 (14)	0.37321 (19)	0.46430 (14)	0.0659 (6)
H18	0.4509	0.3193	0.5132	0.079*
C19	0.34646 (15)	0.4397 (2)	0.47101 (13)	0.0636 (5)
H19	0.3333	0.4307	0.5242	0.076*
C20	0.29386 (12)	0.52230 (16)	0.39806 (11)	0.0459 (4)
H20	0.2462	0.5675	0.4036	0.055*
C21	0.08688 (9)	0.83404 (14)	0.18891 (10)	0.0349 (3)
C22	0.01590 (11)	0.89851 (16)	0.12212 (12)	0.0467 (4)
H22	0.0255	0.9502	0.0770	0.056*
C23	-0.06846 (11)	0.88684 (18)	0.12188 (13)	0.0535 (4)
H23	-0.1151	0.9318	0.0773	0.064*
C24	-0.08400 (11)	0.80933 (19)	0.18702 (12)	0.0530 (4)
H24	-0.1411	0.8008	0.1864	0.064*
C25	-0.01457 (11)	0.74406 (18)	0.25348 (12)	0.0505 (4)
H25	-0.0248	0.6914	0.2978	0.061*
C26	0.07010 (10)	0.75662 (16)	0.25435 (10)	0.0412 (4)
H26	0.1166	0.7124	0.2996	0.049*
C27	0.30751 (11)	0.82461 (15)	0.34507 (10)	0.0385 (4)
C28	0.31288 (16)	0.9993 (2)	0.44990 (16)	0.0809 (7)
H28A	0.3620	1.0386	0.4391	0.121*
H28B	0.3345	0.9448	0.5047	0.121*

H28C	0.2758	1.0685	0.4583	0.121*
C29	0.21036 (11)	0.99078 (15)	0.18912 (11)	0.0402 (4)
C30	0.33376 (13)	1.12616 (17)	0.20682 (16)	0.0634 (5)
H30A	0.3000	1.1772	0.1528	0.095*
H30B	0.3938	1.1185	0.2106	0.095*
H30C	0.3328	1.1701	0.2615	0.095*
01	0.16230 (10)	0.86806 (12)	0.02391 (8)	0.0600 (4)
O2	0.38451 (8)	0.80178 (12)	0.38594 (8)	0.0537 (3)
03	0.26227 (8)	0.91803 (12)	0.37103 (8)	0.0529 (3)
O4	0.16556 (8)	1.08759 (11)	0.18169 (10)	0.0598 (4)
O5	0.29551 (7)	0.99458 (10)	0.20016 (8)	0.0473 (3)

Atomic displacement parameters (\AA^2)

	U_{\cdot}	U_{zz}	$U^{_{33}}$	$U_{}$	U_{\cdot}	U_{2}
C 1	0.0417 (9)	0.0377 (8)	0.0356 (8)	0.0073 (7)	0.0153 (7)	0.0078 (7)
C2	0.0399 (8)	0.0359 (8)	0.0343 (8)	0.0049 (6)	0.0150 (7)	0.0018 (6)
C3	0.0555 (10)	0.0518 (10)	0.0328 (8)	0.0083 (8)	0.0118 (8)	0.0031 (7)
C4	0.0598 (11)	0.0539 (10)	0.0411 (10)	-0.0014 (9)	0.0067 (8)	-0.0127 (8)
C5	0.0575 (11)	0.0372 (9)	0.0530 (10)	-0.0052 (8)	0.0115 (9)	-0.0079 (8)
C6	0.0449 (9)	0.0340 (8)	0.0417 (9)	0.0027 (7)	0.0136 (7)	0.0023 (7)
C7	0.0337 (8)	0.0323 (7)	0.0331 (8)	0.0044 (6)	0.0129 (6)	0.0016 (6)
C 8	0.0311 (7)	0.0316 (7)	0.0329 (7)	0.0031 (6)	0.0136 (6)	0.0037 (6)
C9	0.0326 (8)	0.0327 (7)	0.0332 (8)	0.0023 (6)	0.0133 (6)	0.0031 (6)
C10	0.0371 (8)	0.0284 (7)	0.0372 (8)	0.0049 (6)	0.0140 (7)	0.0040 (6)
C11	0.0357 (8)	0.0286 (7)	0.0364 (8)	-0.0007 (6)	0.0082 (6)	0.0024 (6)
C12	0.0327 (8)	0.0261 (7)	0.0479 (9)	-0.0012 (6)	0.0050 (7)	-0.0009 (6)
C13	0.0415 (9)	0.0391 (9)	0.0622 (11)	0.0002 (7)	0.0201 (8)	-0.0015 (8)
C14	0.0533 (11)	0.0512 (11)	0.1047 (17)	-0.0016 (9)	0.0408 (12)	-0.0132 (11)
C15	0.0455 (12)	0.0478 (12)	0.139 (2)	0.0058 (9)	0.0312 (14)	-0.0103 (13)
C16	0.0403 (11)	0.0400 (10)	0.1085 (18)	0.0096 (8)	-0.0057 (11)	0.0046 (11)
C17	0.0406 (9)	0.0313 (8)	0.0611 (11)	-0.0005 (7)	-0.0053 (8)	0.0022 (8)
C18	0.0685 (13)	0.0484 (11)	0.0542 (12)	0.0012 (10)	-0.0077 (10)	0.0175 (9)
C19	0.0792 (14)	0.0620 (12)	0.0410 (10)	-0.0064 (11)	0.0125 (9)	0.0145 (9)
C20	0.0527 (10)	0.0454 (9)	0.0375 (9)	-0.0008 (8)	0.0144 (8)	0.0053 (7)
C21	0.0377 (8)	0.0307 (7)	0.0349 (8)	0.0035 (6)	0.0120 (6)	-0.0024 (6)
C22	0.0470 (10)	0.0438 (9)	0.0464 (9)	0.0113 (7)	0.0142 (8)	0.0118 (7)
C23	0.0401 (9)	0.0548 (10)	0.0578 (11)	0.0141 (8)	0.0093 (8)	0.0059 (9)
C24	0.0371 (9)	0.0634 (11)	0.0585 (11)	0.0023 (8)	0.0179 (8)	-0.0074 (9)
C25	0.0468 (10)	0.0625 (11)	0.0457 (10)	-0.0034 (8)	0.0215 (8)	0.0029 (8)
C26	0.0387 (9)	0.0479 (9)	0.0351 (8)	0.0044 (7)	0.0116 (7)	0.0052 (7)
C27	0.0418 (9)	0.0338 (8)	0.0395 (8)	0.0000 (7)	0.0146 (7)	0.0019 (6)
C28	0.0880 (16)	0.0793 (15)	0.0690 (14)	-0.0087 (12)	0.0218 (12)	-0.0405 (12)
C29	0.0465 (9)	0.0314 (8)	0.0451 (9)	0.0049 (7)	0.0199 (7)	0.0042 (7)

C30	0.0635 (12)	0.0386	(9)	0.0891 (15)	-0.0128 (9)	0.0297 (11)	-0.0049 (9)
01	0.0932 (10)	0.0454	(7)	0.0457 (7)	0.0076 (6)	0.0308 (7)	0.0164 (6)
O 2	0.0407 (7)	0.0526	(7)	0.0544 (7)	0.0012 (5)	0.0025 (6)	-0.0041 (6)
03	0.0536 (7)	0.0518	(7)	0.0510 (7)	0.0005 (5)	0.0168 (6)	-0.0182 (6)
O 4	0.0595 (8)	0.0306	(6)	0.0944 (10)	0.0112 (5)	0.0346 (7)	0.0078 (6)
05	0.0446 (7)	0.0303	(5)	0.0693 (8)	-0.0018 (5)	0.0241 (6)	0.0022 (5)
Geon	ietric param	neters (1	Å, °)				
C1	01		1 21	00(17)	C16 U16		0.0300
	-01		1.21	00(17)			0.9300
C1-	-C2		1.47	5 (2)	C17—C18		1.408 (3)
C1-	-C10		1.54	4 (2)	C18—C19		1.355 (3)
C2—	-C3		1.38	4 (2)	C18—H18		0.9300
C2—	-C7		1.40	2 (2)	C19—C20		1.405 (3)
С3—	-C4		1.37	7 (2)	C19—H19		0.9300
С3—	-H3		0.93	00	C20—H20		0.9300
C4—	-C5		1.38	1 (2)	C21—C26		1.383 (2)
C4—	-H4		0.93	00	C21—C22		1.390 (2)
C5	C6		1 37	0(2)	C^{22} C^{23}		1377(2)

CI = CI0	1.544 (2)	C18—C19	1.355 (3)
C2—C3	1.384 (2)	C18—H18	0.9300
C2—C7	1.402 (2)	C19—C20	1.405 (3)
C3—C4	1.377 (2)	C19—H19	0.9300
С3—Н3	0.9300	C20—H20	0.9300
C4—C5	1.381 (2)	C21—C26	1.383 (2)
C4—H4	0.9300	C21—C22	1.390 (2)
C5—C6	1.379 (2)	C22—C23	1.377 (2)
С5—Н5	0.9300	C22—H22	0.9300
C6—C7	1.389 (2)	C23—C24	1.370 (3)
С6—Н6	0.9300	C23—H23	0.9300
C7—C8	1.479 (2)	C24—C25	1.378 (2)
C8—C9	1.3496 (19)	C24—H24	0.9300
C8—C11	1.4964 (19)	C25—C26	1.379 (2)
C9—C27	1.491 (2)	C25—H25	0.9300
C9—C10	1.5301 (19)	C26—H26	0.9300
C10—C29	1.534 (2)	C27—O2	1.1970 (18)
C10-C21	1.544 (2)	C27—O3	1.3427 (19)
C11—C20	1.364 (2)	C28—O3	1.444 (2)
C11—C12	1.425 (2)	C28—H28A	0.9600
C12—C13	1.409 (2)	C28—H28B	0.9600
C12—C17	1.422 (2)	C28—H28C	0.9600
C13—C14	1.362 (2)	C29—O4	1.1934 (18)
C13—H13	0.9300	C29—O5	1.3325 (19)
C14—C15	1.397 (3)	C30—O5	1.4458 (19)
C14—H14	0.9300	C30—H30A	0.9600
C15—C16	1.342 (3)	C30—H30B	0.9600
C15—H15	0.9300	C30—H30C	0.9600
C16—C17	1.422 (3)		
01—C1—C2	123.51 (14)	C18—C17—C12	119.33 (16)
O1—C1—C10	121.66 (14)	C18—C17—C16	122.32 (18)
C2-C1-C10	114.68 (12)	C12—C17—C16	118.35 (19)
C3—C2—C7	120.83 (14)	C19—C18—C17	120.80 (17)

C3—C2—C1	120.29 (14)	C19—C18—H18	119.6
C7—C2—C1	118.87 (13)	C17—C18—H18	119.6
C4—C3—C2	120.18 (15)	C18—C19—C20	120.33 (18)
С4—С3—Н3	119.9	C18—C19—H19	119.8
С2—С3—Н3	119.9	C20-C19-H19	119.8
C3—C4—C5	119.56 (16)	C11—C20—C19	121.12 (17)
C3—C4—H4	120.2	C11-C20-H20	119.4
C5—C4—H4	120.2	С19—С20—Н20	119.4
C6—C5—C4	120.60 (15)	C26—C21—C22	118.07 (14)
С6—С5—Н5	119.7	C26—C21—C10	122.55 (13)
C4—C5—H5	119.7	C22—C21—C10	119.31 (13)
C5—C6—C7	120.85 (14)	C23—C22—C21	120.91 (15)
С5—С6—Н6	119.6	C23—C22—H22	119.5
С7—С6—Н6	119.6	C21—C22—H22	119.5
C6—C7—C2	117.95 (13)	C24—C23—C22	120.28 (16)
С6—С7—С8	122.53 (13)	С24—С23—Н23	119.9
С2—С7—С8	119.49 (13)	С22—С23—Н23	119.9
C9—C8—C7	120.07 (13)	C23—C24—C25	119.66 (16)
C9—C8—C11	121.46 (13)	C23—C24—H24	120.2
C7—C8—C11	118.33 (12)	C25—C24—H24	120.2
C8—C9—C27	121.47 (13)	C24—C25—C26	120.14 (16)
C8—C9—C10	120.65 (13)	С24—С25—Н25	119.9
C27—C9—C10	117.85 (12)	С26—С25—Н25	119.9
C9—C10—C29	111.68 (12)	C25—C26—C21	120.94 (15)
C9-C10-C1	108.73 (11)	С25—С26—Н26	119.5
C29—C10—C1	106.71 (11)	C21—C26—H26	119.5
C9-C10-C21	112.69 (11)	O2—C27—O3	123.92 (14)
C29—C10—C21	111.94 (11)	O2—C27—C9	125.99 (14)
C1-C10-C21	104.62 (11)	O3—C27—C9	110.06 (13)
C20-C11-C12	119.80 (14)	O3—C28—H28A	109.5
C20—C11—C8	119.15 (13)	O3—C28—H28B	109.5
C12—C11—C8	121.04 (13)	H28A—C28—H28B	109.5
C13—C12—C17	118.27 (15)	O3—C28—H28C	109.5
C13—C12—C11	123.11 (14)	H28A—C28—H28C	109.5
C17—C12—C11	118.60 (15)	H28B—C28—H28C	109.5
C14—C13—C12	121.23 (18)	O4—C29—O5	123.93 (14)
C14—C13—H13	119.4	O4—C29—C10	126.37 (14)
C12—C13—H13	119.4	O5—C29—C10	109.68 (12)
C13—C14—C15	120.3 (2)	O5—C30—H30A	109.5
C13—C14—H14	119.8	O5-C30-H30B	109.5
C15—C14—H14	119.8	H30A-C30-H30B	109.5
C16—C15—C14	120.47 (19)	O5—C30—H30C	109.5
C16—C15—H15	119.8	H30A-C30-H30C	109.5

C14—C15—H15	119.8	H30B-C30-H30C	109.5
C15—C16—C17	121.34 (19)	C27—O3—C28	116.34 (14)
C15-C16-H16	119.3	C29—O5—C30	115.79 (13)
C17—C16—H16	119.3		
O1—C1—C2—C3	-25.2 (2)	C11—C12—C13—C14	179.78 (15)
C10-C1-C2-C3	150.51 (14)	C12—C13—C14—C15	-1.5 (3)
01—C1—C2—C7	156.37 (15)	C13-C14-C15-C16	0.7 (3)
C10-C1-C2-C7	-27.94 (19)	C14—C15—C16—C17	0.4 (3)
C7—C2—C3—C4	2.1 (2)	C13—C12—C17—C18	179.80 (15)
C1—C2—C3—C4	-176.34 (15)	C11—C12—C17—C18	0.9 (2)
C2—C3—C4—C5	-0.5 (3)	C13—C12—C17—C16	0.2 (2)
C3—C4—C5—C6	-1.2 (3)	C11—C12—C17—C16	-178.67 (15)
C4—C5—C6—C7	1.4 (3)	C15—C16—C17—C18	179.51 (19)
C5—C6—C7—C2	0.2 (2)	C15—C16—C17—C12	-0.9 (3)
С5—С6—С7—С8	-177.57 (14)	C12—C17—C18—C19	-0.1 (3)
C3—C2—C7—C6	-1.9 (2)	C16—C17—C18—C19	179.48 (18)
C1—C2—C7—C6	176.53 (13)	C17—C18—C19—C20	-0.4 (3)
C3—C2—C7—C8	175.92 (13)	C12—C11—C20—C19	0.7 (2)
C1—C2—C7—C8	-5.6 (2)	C8-C11-C20-C19	-179.70 (15)
C6—C7—C8—C9	-163.65 (14)	C18—C19—C20—C11	0.1 (3)
C2—C7—C8—C9	18.63 (19)	C9—C10—C21—C26	1.91 (19)
C6—C7—C8—C11	12.1 (2)	C29—C10—C21—C26	-124.97 (15)
C2-C7-C8-C11	-165.60 (13)	C1-C10-C21-C26	119.85 (14)
C7—C8—C9—C27	-177.39 (12)	C9—C10—C21—C22	-174.90 (13)
С11—С8—С9—С27	7.0 (2)	C29—C10—C21—C22	58.23 (18)
C7—C8—C9—C10	4.44 (19)	C1-C10-C21-C22	-56.95 (16)
C11—C8—C9—C10	-171.20 (12)	C26—C21—C22—C23	0.8 (2)
C8—C9—C10—C29	-153.22 (13)	C10—C21—C22—C23	177.71 (15)
C27—C9—C10—C29	28.54 (17)	C21—C22—C23—C24	-1.0 (3)
C8—C9—C10—C1	-35.74 (17)	C22—C23—C24—C25	0.7 (3)
C27—C9—C10—C1	146.02 (12)	C23—C24—C25—C26	-0.1 (3)
C8—C9—C10—C21	79.77 (16)	C24—C25—C26—C21	-0.2 (3)
C27—C9—C10—C21	-98.47 (14)	C22—C21—C26—C25	-0.2 (2)
O1—C1—C10—C9	-137.75 (15)	C10-C21-C26-C25	-177.01 (14)
C2-C1-C10-C9	46.48 (16)	C8—C9—C27—O2	40.4 (2)
O1—C1—C10—C29	-17.15 (19)	C10—C9—C27—O2	-141.34 (15)
C2-C1-C10-C29	167.07 (12)	C8—C9—C27—O3	-141.53 (14)
O1-C1-C10-C21	101.63 (17)	C10—C9—C27—O3	36.70 (17)
C2-C1-C10-C21	-74.14 (15)	C9—C10—C29—O4	-139.09 (17)
C9—C8—C11—C20	63.14 (19)	C1-C10-C29-O4	102.22 (18)
C7—C8—C11—C20	-112.57 (15)	C21—C10—C29—O4	-11.7 (2)
C9—C8—C11—C12	-117.28 (15)	C9—C10—C29—O5	42.71 (16)
C7—C8—C11—C12	67.01 (18)	C1—C10—C29—O5	-75.98 (15)

C20-C11-C12-C13	179.95 (15)	C21—C10—C29—O5	170.12 (12)
C8-C11-C12-C13	0.4 (2)	O2—C27—O3—C28	3.9 (2)
C20-C11-C12-C17	-1.2 (2)	C9—C27—O3—C28	-174.18 (15)
C8-C11-C12-C17	179.19 (13)	O4—C29—O5—C30	2.5 (2)
C17—C12—C13—C14	1.0 (2)	C10—C29—O5—C30	-179.22 (14)

Crystallograpic data of β -keto-ester **9g**:

CCDC Number is **1438503**.

Computing details

Program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997). Computer programs: *SHELXS97* (Sheldrick, 1990), *SHELXL97* (Sheldrick, 1997).

Dimethyl-1-oxo-4-(pyren-4-yl)-2-(thiophen-2-yl)-1,2-dihydronaphthalene-2,3-dicarboxylate (9g)

Experimental

Crystal data

$C_{34}H_{22}O_5S$	$V = 2537.9 (4) \text{ Å}^3$
$M_r = 542.58$	Z = 4
a = 10.9268 (10) Å	F(000) = 1128
b = 18.9670 (14) Å	$D_{\rm x} = 1.420 {\rm ~Mg} {\rm ~m}^{-3}$
c = 12.2628 (9) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 90^{\circ}$	$\mu=0.17~mm^{-1}$
$\beta = 93.030 \ (2)^{\circ}$	T = 296 K
$\gamma = 90^{\circ}$	$0.25\times0.25\times0.20~mm$

Data collection

Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.031$
Graphite monochromator	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$
21576 measured reflections	$h = -12 \rightarrow 12$
4457 independent reflections	$k = -22 \rightarrow 22$
3341 reflections with $I > 2\sigma(I)$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0388P)^{2} + 1.1902P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4457 reflections	$(\Delta/\sigma)_{\rm max} = 0.035$
409 parameters	$\Delta \rho_{max} = 0.22 \ e \ \text{\AA}^{-3}$
147 restraints	$\Delta \rho_{min} = -0.22 \ e \ \text{\AA}^{-3}$

Special details

Refinement

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	X	Y	Z	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
C1	0.96828 (18)	0.11067 (10)	0.90164 (15)	0.0320 (4)	
C2	1.0708 (2)	0.11714 (11)	0.97370 (16)	0.0415 (5)	
H2	1.1396	0.0895	0.9636	0.050*	
C3	1.0716 (2)	0.16390 (12)	1.05966 (17)	0.0477 (6)	
H3	1.1399	0.1664	1.1080	0.057*	

C4	0.9731 (2)	0.20672 (12)	1.07487 (17)	0.0498 (6)
H4	0.9738	0.2374	1.1340	0.060*
C5	0.8731 (2)	0.20401 (11)	1.00231 (17)	0.0451 (5)
H5	0.8077	0.2345	1.0107	0.054*
C6	0.86883 (19)	0.15603 (10)	0.91630 (15)	0.0351 (5)
C7	0.76264 (19)	0.15550 (11)	0.83793 (16)	0.0376 (5)
C8	0.73844 (17)	0.08695 (10)	0.77212 (15)	0.0321 (4)
C9	0.85584 (18)	0.04510 (9)	0.75499 (14)	0.0296 (4)
C10	0.96161 (18)	0.05805 (9)	0.81266 (14)	0.0297 (4)
C15	0.65896 (19)	0.04476 (11)	0.84991 (16)	0.0392 (5)
C16	0.6091 (2)	-0.06628 (13)	0.9181 (2)	0.0595 (7)
H16A	0.6237	-0.0497	0.9916	0.089*
H16B	0.6349	-0.1145	0.9135	0.089*
H16C	0.5232	-0.0629	0.8979	0.089*
C17	0.84616 (18)	-0.01356 (10)	0.67263 (16)	0.0354 (5)
C18	0.9087 (3)	-0.12959 (12)	0.6360 (2)	0.0641 (7)
H18A	0.8318	-0.1402	0.5981	0.096*
H18B	0.9387	-0.1708	0.6743	0.096*
H18C	0.9669	-0.1152	0.5843	0.096*
C19	0.66477 (17)	0.10326 (10)	0.66500 (15)	0.0320 (4)
C20	0.55002 (18)	0.07443 (11)	0.64239 (17)	0.0400 (5)
H20	0.5160	0.0457	0.6942	0.048*
C21	0.48472 (19)	0.08712 (11)	0.54525 (18)	0.0416 (5)
H21	0.4085	0.0660	0.5322	0.050*
C22	0.53065 (18)	0.13070 (10)	0.46670 (16)	0.0350 (5)
C23	0.4643 (2)	0.14590 (12)	0.36525 (18)	0.0458 (5)
H23	0.3898	0.1236	0.3492	0.055*
C24	0.5072 (2)	0.19114 (12)	0.29377 (18)	0.0471 (6)
H24	0.4606	0.2006	0.2298	0.057*
C25	0.62262 (19)	0.22575 (10)	0.31202 (16)	0.0383 (5)
C26	0.6688 (2)	0.27433 (12)	0.23984 (17)	0.0494 (6)
H26	0.6229	0.2855	0.1762	0.059*
C27	0.7806 (2)	0.30624 (12)	0.26021 (18)	0.0507 (6)
H27	0.8085	0.3390	0.2108	0.061*
C28	0.8517 (2)	0.29025 (11)	0.35287 (17)	0.0425 (5)
H28	0.9279	0.3115	0.3651	0.051*
C29	0.80935 (18)	0.24205 (10)	0.42891 (15)	0.0332 (4)
C30	0.87809 (18)	0.22445 (10)	0.52708 (16)	0.0366 (5)
H30	0.9557	0.2438	0.5398	0.044*
C31	0.83406 (18)	0.18065 (10)	0.60193 (16)	0.0346 (5)
H31	0.8818	0.1712	0.6653	0.041*

C32	0.71588 (17)	0.14808 (9)	0.58717 (15)	0.0301 (4)	
C33	0.64720 (17)	0.16243 (9)	0.48784 (15)	0.0305 (4)	
C34	0.69379 (17)	0.20966 (10)	0.40935 (15)	0.0314 (4)	
01	0.69195 (15)	0.20459 (8)	0.82754 (13)	0.0577 (5)	
O2	0.58943 (18)	0.07161 (9)	0.90895 (16)	0.0782 (6)	
O3	0.67768 (14)	-0.02357 (7)	0.84489 (12)	0.0491 (4)	
O4	0.80019 (18)	-0.00824 (9)	0.58233 (13)	0.0650 (5)	
O5	0.89193 (14)	-0.07340 (7)	0.71283 (11)	0.0444 (4)	
S 1	1.12323 (15)	0.02883 (10)	0.65482 (12)	0.0435 (4)	0.691 (3)
C11	1.0763 (11)	0.0203 (8)	0.7846 (7)	0.033 (2)	0.691 (3)
C12	1.1467 (13)	-0.0255 (7)	0.8443 (10)	0.063 (3)	0.691 (3)
H12	1.1326	-0.0365	0.9164	0.076*	0.691 (3)
C13	1.2445 (14)	-0.0553 (8)	0.7873 (9)	0.0561 (18)	0.691 (3)
H13	1.3016	-0.0877	0.8158	0.067*	0.691 (3)
C14	1.2407 (10)	-0.0290 (6)	0.6863 (9)	0.054 (2)	0.691 (3)
H14	1.2979	-0.0413	0.6361	0.064*	0.691 (3)
S1'	1.1578 (8)	-0.0323 (4)	0.8685 (6)	0.0512 (11)	0.309 (3)
C11'	1.071 (2)	0.0236 (17)	0.7853 (15)	0.035 (5)	0.309 (3)
C12'	1.1315 (17)	0.0266 (11)	0.6919 (11)	0.065 (4)	0.309 (3)
H12'	1.1068	0.0607	0.6407	0.077*	0.309 (3)
C13'	1.230 (2)	-0.0186 (15)	0.666 (2)	0.053 (3)	0.309 (3)
H13'	1.2676	-0.0253	0.6010	0.063*	0.309 (3)
C14'	1.252 (3)	-0.049 (2)	0.7639 (19)	0.055 (4)	0.309 (3)
H14'	1.3186	-0.0786	0.7751	0.065*	0.309 (3)

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0379 (11)	0.0318 (10)	0.0268 (10)	0.0002 (9)	0.0069 (8)	0.0045 (8)
C2	0.0401 (12)	0.0479 (13)	0.0367 (11)	0.0005 (10)	0.0028 (10)	0.0000 (10)
C3	0.0517 (14)	0.0550 (14)	0.0360 (12)	-0.0084 (12)	-0.0026 (10)	-0.0017 (11)
C4	0.0672 (17)	0.0460 (13)	0.0363 (12)	-0.0052 (12)	0.0043 (12)	-0.0081 (10)
C5	0.0576 (15)	0.0386 (12)	0.0396 (12)	0.0069 (11)	0.0080 (11)	-0.0051 (10)
C6	0.0436 (12)	0.0311 (10)	0.0310 (10)	0.0020 (9)	0.0056 (9)	0.0009 (8)
C7	0.0419 (12)	0.0363 (11)	0.0353 (11)	0.0093 (10)	0.0085 (9)	0.0010 (9)
C8	0.0318 (11)	0.0346 (11)	0.0302 (10)	0.0047 (8)	0.0059 (8)	0.0018 (8)
C9	0.0352 (11)	0.0287 (10)	0.0256 (9)	0.0042 (8)	0.0070 (8)	0.0049 (8)
C10	0.0331 (11)	0.0300 (10)	0.0264 (10)	0.0029 (9)	0.0064 (8)	0.0045 (8)
C15	0.0370 (12)	0.0459 (13)	0.0353 (11)	0.0059 (10)	0.0080 (9)	0.0036 (9)
C16	0.0592 (16)	0.0565 (15)	0.0646 (16)	-0.0105 (13)	0.0200 (13)	0.0145 (12)
C17	0.0346 (11)	0.0371 (11)	0.0348 (11)	0.0043 (9)	0.0056 (9)	-0.0014 (9)

C18	0.0784 (19)	0.0402 (13)	0.0747 (17)	0.0104 (13)	0.0118 (15)	-0.0183 (12)
C19	0.0315 (11)	0.0303 (10)	0.0345 (10)	0.0046 (8)	0.0024 (9)	0.0009 (8)
C20	0.0346 (12)	0.0369 (11)	0.0488 (13)	-0.0015 (9)	0.0049 (10)	0.0053 (10)
C21	0.0279 (11)	0.0397 (12)	0.0566 (14)	-0.0031 (9)	-0.0038 (10)	-0.0009 (10)
C22	0.0298 (11)	0.0310 (10)	0.0435 (12)	0.0027 (9)	-0.0037 (9)	-0.0029 (9)
C23	0.0346 (12)	0.0480 (13)	0.0531 (13)	0.0006 (10)	-0.0138 (10)	-0.0051 (11)
C24	0.0488 (14)	0.0501 (13)	0.0406 (12)	0.0082 (11)	-0.0159 (10)	-0.0002 (10)
C25	0.0411 (12)	0.0385 (11)	0.0346 (11)	0.0090 (10)	-0.0049 (9)	-0.0014 (9)
C26	0.0578 (15)	0.0553 (14)	0.0344 (12)	0.0111 (12)	-0.0027 (11)	0.0091 (10)
C27	0.0558 (16)	0.0533 (14)	0.0437 (13)	0.0039 (12)	0.0098 (11)	0.0148 (11)
C28	0.0393 (12)	0.0454 (12)	0.0432 (12)	-0.0003 (10)	0.0064 (10)	0.0028 (10)
C29	0.0344 (11)	0.0323 (10)	0.0332 (10)	0.0048 (9)	0.0032 (9)	0.0003 (8)
C30	0.0283 (11)	0.0394 (11)	0.0417 (12)	-0.0036 (9)	-0.0007 (9)	-0.0020 (9)
C31	0.0330 (11)	0.0365 (11)	0.0334 (10)	0.0000 (9)	-0.0053 (9)	0.0014 (9)
C32	0.0297 (10)	0.0270 (10)	0.0333 (10)	0.0035 (8)	0.0002 (8)	-0.0011 (8)
C33	0.0298 (10)	0.0271 (9)	0.0341 (10)	0.0056 (8)	-0.0027 (8)	-0.0036 (8)
C34	0.0334 (11)	0.0290 (10)	0.0316 (10)	0.0065 (8)	0.0002 (8)	-0.0033 (8)
01	0.0629 (11)	0.0457 (9)	0.0633 (10)	0.0259 (8)	-0.0083 (9)	-0.0094 (8)
02	0.0910 (14)	0.0621 (11)	0.0876 (13)	0.0152 (10)	0.0616 (12)	0.0072 (10)
O3	0.0543 (10)	0.0387 (8)	0.0566 (9)	0.0007 (7)	0.0249 (8)	0.0074 (7)
O4	0.0868 (13)	0.0656 (11)	0.0406 (9)	0.0292 (10)	-0.0160 (9)	-0.0160 (8)
05	0.0591 (10)	0.0298 (7)	0.0449 (8)	0.0050 (7)	0.0069 (7)	-0.0016 (6)
S 1	0.0468 (6)	0.0439 (6)	0.0418 (8)	0.0002 (5)	0.0211 (6)	-0.0049 (6)
C11	0.027 (3)	0.035 (4)	0.037 (4)	0.007 (3)	0.010 (3)	-0.002 (3)
C12	0.054 (5)	0.069 (5)	0.068 (6)	0.004 (4)	0.010 (4)	-0.003 (4)
C13	0.041 (3)	0.049 (3)	0.079 (5)	0.012 (3)	0.003 (3)	0.003 (4)
C14	0.045 (3)	0.050 (4)	0.068 (6)	0.010 (2)	0.026 (4)	-0.009 (4)
S1'	0.0454 (18)	0.0493 (17)	0.058 (2)	0.0157 (14)	-0.0010 (16)	0.0060 (15)
C11'	0.046 (9)	0.029 (8)	0.031 (8)	-0.008 (7)	-0.007 (7)	0.008 (7)
C12'	0.085 (7)	0.057 (6)	0.052 (7)	0.008 (5)	0.002 (6)	0.005 (6)
C13'	0.051 (6)	0.056 (7)	0.051 (6)	-0.010 (5)	0.007 (5)	0.008 (5)
C14'	0.043 (7)	0.059 (8)	0.062 (8)	0.016 (6)	0.003 (6)	0.002 (7)

Geometric parameters (Å, °)

C1-C2 1.395 (3) $C22-C33$	1.420 (3)
C1—C6 1.405 (3) C22—C23	1.435 (3)
C1—C10 1.478 (3) C23—C24	1.330 (3)
C2—C3 1.377 (3) C23—H23	0.9300
C2—H2 0.9300 C24—C25	1.429 (3)
C3—C4 1.369 (3) C24—H24	0.9300

С3—Н3	0.9300	C25—C26	1.391 (3)
C4—C5	1.373 (3)	C25—C34	1.423 (3)
C4—H4	0.9300	C26—C27	1.374 (3)
C5—C6	1.392 (3)	C26—H26	0.9300
С5—Н5	0.9300	C27—C28	1.376 (3)
С6—С7	1.467 (3)	С27—Н27	0.9300
C7—O1	1.212 (2)	C28—C29	1.402 (3)
С7—С8	1.546 (3)	C28—H28	0.9300
C8—C9	1.532 (3)	C29—C34	1.413 (3)
C8—C19	1.535 (3)	C29—C30	1.425 (3)
C8—C15	1.547 (3)	C30—C31	1.346 (3)
C9—C10	1.345 (3)	С30—Н30	0.9300
C9—C17	1.503 (3)	C31—C32	1.434 (3)
C10—C11'	1.421 (16)	C31—H31	0.9300
C10-C11	1.500 (6)	C32—C33	1.423 (3)
C15—O2	1.191 (2)	C33—C34	1.428 (3)
C15—O3	1.314 (2)	S1—C11	1.705 (6)
C16—O3	1.448 (2)	S1—C14	1.717 (6)
C16—H16A	0.9600	C11—C12	1.349 (10)
C16—H16B	0.9600	C12—C13	1.425 (12)
C16—H16C	0.9600	С12—Н12	0.9300
C17—O4	1.196 (2)	C13—C14	1.334 (6)
C17—O5	1.325 (2)	C13—H13	0.9300
C18—O5	1.441 (2)	C14—H14	0.9300
C18—H18A	0.9600	S1'—C14'	1.714 (10)
C18—H18B	0.9600	S1'—C11'	1.719 (10)
C18—H18C	0.9600	C11'—C12'	1.351 (13)
C19—C20	1.383 (3)	C12'—C13'	1.422 (14)
C19—C32	1.415 (3)	C12'—H12'	0.9300
C20—C21	1.377 (3)	C13'—C14'	1.335 (9)
С20—Н20	0.9300	C13'—H13'	0.9300
C21—C22	1.383 (3)	C14'—H14'	0.9300
C21—H21	0.9300		
C2—C1—C6	117.75 (18)	C33—C22—C23	118.67 (18)
C2-C1-C10	122.26 (18)	C24—C23—C22	121.4 (2)
C6—C1—C10	119.98 (18)	С24—С23—Н23	119.3
C3—C2—C1	120.9 (2)	С22—С23—Н23	119.3
C3—C2—H2	119.5	C23—C24—C25	122.2 (2)
C1—C2—H2	119.5	C23—C24—H24	118.9
C4—C3—C2	120.9 (2)	C25—C24—H24	118.9

С4—С3—Н3	119.6	C26—C25—C34	118.4 (2)
С2—С3—Н3	119.6	C26—C25—C24	123.47 (19)
C3—C4—C5	119.6 (2)	C34—C25—C24	118.14 (19)
C3—C4—H4	120.2	C27—C26—C25	121.7 (2)
C5—C4—H4	120.2	С27—С26—Н26	119.2
C4—C5—C6	120.6 (2)	С25—С26—Н26	119.2
C4—C5—H5	119.7	C26—C27—C28	120.7 (2)
С6—С5—Н5	119.7	С26—С27—Н27	119.7
C5—C6—C1	120.13 (19)	С28—С27—Н27	119.7
C5—C6—C7	119.65 (18)	C27—C28—C29	120.1 (2)
C1—C6—C7	120.15 (17)	С27—С28—Н28	120.0
O1—C7—C6	122.76 (19)	C29—C28—H28	120.0
O1—C7—C8	120.05 (19)	C28—C29—C34	119.60 (18)
С6—С7—С8	117.09 (16)	C28—C29—C30	122.49 (19)
C9—C8—C19	113.07 (15)	C34—C29—C30	117.91 (17)
C9—C8—C7	112.70 (16)	C31—C30—C29	121.98 (18)
C19—C8—C7	110.16 (15)	С31—С30—Н30	119.0
C9—C8—C15	108.54 (15)	С29—С30—Н30	119.0
C19—C8—C15	110.24 (16)	C30—C31—C32	122.13 (18)
C7—C8—C15	101.50 (15)	C30—C31—H31	118.9
C10—C9—C17	121.10 (17)	C32—C31—H31	118.9
С10—С9—С8	122.38 (17)	C19—C32—C33	118.90 (17)
С17—С9—С8	116.49 (17)	C19—C32—C31	123.95 (17)
C9—C10—C11'	120.3 (15)	C33—C32—C31	117.15 (17)
C9—C10—C1	121.27 (17)	C22—C33—C32	120.17 (17)
C11'—C10—C1	118.4 (15)	C22—C33—C34	119.40 (17)
C9—C10—C11	119.8 (7)	C32—C33—C34	120.41 (17)
C11'—C10—C11	1.2 (19)	C29—C34—C25	119.54 (18)
C1—C10—C11	118.9 (7)	C29—C34—C33	120.35 (17)
O2—C15—O3	123.79 (19)	C25—C34—C33	120.09 (18)
O2—C15—C8	123.40 (19)	C15—O3—C16	115.84 (16)
O3—C15—C8	112.80 (16)	C17—O5—C18	116.67 (17)
O3—C16—H16A	109.5	C11—S1—C14	89.3 (4)
O3—C16—H16B	109.5	C12-C11-C10	129.9 (8)
H16A—C16—H16B	109.5	C12—C11—S1	112.2 (7)
O3—C16—H16C	109.5	C10-C11-S1	117.7 (4)
H16A—C16—H16C	109.5	C11—C12—C13	114.2 (11)
H16B—C16—H16C	109.5	C11—C12—H12	122.9
O4—C17—O5	123.28 (19)	C13—C12—H12	122.9
O4—C17—C9	124.83 (18)	C14—C13—C12	108.6 (12)
O5—C17—C9	111.87 (17)	C14—C13—H13	125.7

O5-C18-H18A	109.5	C12—C13—H13	125.7
O5-C18-H18B	109.5	C13—C14—S1	115.7 (9)
H18A—C18—H18B	109.5	C13—C14—H14	122.1
O5-C18-H18C	109.5	S1-C14-H14	122.1
H18A—C18—H18C	109.5	C14'—S1'—C11'	90.0 (13)
H18B—C18—H18C	109.5	C12'—C11'—C10	129.4 (12)
C20—C19—C32	119.24 (18)	C12'—C11'—S1'	104.6 (12)
C20—C19—C8	121.38 (17)	C10-C11'-S1'	126.0 (10)
С32—С19—С8	119.37 (17)	C11'—C12'—C13'	124.6 (19)
C21—C20—C19	121.83 (19)	C11'—C12'—H12'	117.7
С21—С20—Н20	119.1	C13'—C12'—H12'	117.7
С19—С20—Н20	119.1	C14'—C13'—C12'	99 (3)
C20—C21—C22	121.08 (19)	C14'—C13'—H13'	130.3
C20—C21—H21	119.5	C12'—C13'—H13'	130.3
C22—C21—H21	119.5	C13'—C14'—S1'	120 (2)
C21—C22—C33	118.75 (18)	C13'—C14'—H14'	119.8
C21—C22—C23	122.57 (19)	S1'—C14'—H14'	119.8
C6—C1—C2—C3	3.4 (3)	C34—C25—C26—C27	0.4 (3)
C10-C1-C2-C3	-176.23 (18)	C24—C25—C26—C27	-179.7 (2)
C1—C2—C3—C4	-1.9 (3)	C25—C26—C27—C28	0.9 (3)
C2—C3—C4—C5	-1.3 (3)	C26—C27—C28—C29	-1.3 (3)
C3—C4—C5—C6	2.8 (3)	C27—C28—C29—C34	0.5 (3)
C4—C5—C6—C1	-1.3 (3)	C27—C28—C29—C30	-178.90 (19)
C4—C5—C6—C7	-178.23 (19)	C28—C29—C30—C31	176.80 (19)
C2—C1—C6—C5	-1.8 (3)	C34—C29—C30—C31	-2.6 (3)
C10—C1—C6—C5	177.80 (17)	C29—C30—C31—C32	0.9 (3)
C2—C1—C6—C7	175.15 (18)	C20—C19—C32—C33	0.3 (3)
C10—C1—C6—C7	-5.3 (3)	C8—C19—C32—C33	179.54 (16)
C5—C6—C7—O1	18.2 (3)	C20-C19-C32-C31	-179.84 (18)
C1—C6—C7—O1	-158.8 (2)	C8—C19—C32—C31	-0.6 (3)
C5—C6—C7—C8	-158.18 (18)	C30—C31—C32—C19	-178.23 (18)
C1—C6—C7—C8	24.9 (3)	C30—C31—C32—C33	1.7 (3)
01—C7—C8—C9	154.97 (18)	C21—C22—C33—C32	1.4 (3)
C6—C7—C8—C9	-28.6 (2)	C23—C22—C33—C32	-179.49 (17)
O1—C7—C8—C19	27.7 (2)	C21—C22—C33—C34	-177.63 (17)
C6—C7—C8—C19	-155.90 (16)	C23—C22—C33—C34	1.5 (3)
O1—C7—C8—C15	-89.1 (2)	C19—C32—C33—C22	-1.5 (3)
C6—C7—C8—C15	87.31 (19)	C31—C32—C33—C22	178.59 (17)
C19—C8—C9—C10	140.56 (18)	C19—C32—C33—C34	177.47 (17)
C7—C8—C9—C10	14.8 (2)	C31—C32—C33—C34	-2.4 (3)

C15—C8—C9—C10	-96.8 (2)	C28—C29—C34—C25	0.8 (3)
C19—C8—C9—C17	-41.6 (2)	C30—C29—C34—C25	-179.81 (17)
C7—C8—C9—C17	-167.36 (15)	C28—C29—C34—C33	-177.67 (17)
C15—C8—C9—C17	81.03 (19)	C30—C29—C34—C33	1.7 (3)
C17—C9—C10—C11'	9.6 (11)	C26—C25—C34—C29	-1.2 (3)
C8—C9—C10—C11'	-172.7 (11)	C24—C25—C34—C29	178.87 (18)
C17—C9—C10—C1	-173.57 (16)	C26—C25—C34—C33	177.24 (18)
C8—C9—C10—C1	4.2 (3)	C24—C25—C34—C33	-2.7 (3)
C17—C9—C10—C11	8.3 (5)	C22—C33—C34—C29	179.74 (17)
C8—C9—C10—C11	-174.0 (5)	C32—C33—C34—C29	0.8 (3)
C2-C1-C10-C9	169.54 (18)	C22—C33—C34—C25	1.3 (3)
C6-C1-C10-C9	-10.0 (3)	C32—C33—C34—C25	-177.70 (17)
C2-C1-C10-C11'	-13.6 (10)	O2-C15-O3-C16	-1.0 (3)
C6-C1-C10-C11'	166.8 (10)	C8—C15—O3—C16	178.12 (18)
C2-C1-C10-C11	-12.3 (5)	O4—C17—O5—C18	13.0 (3)
C6-C1-C10-C11	168.1 (5)	C9—C17—O5—C18	-168.71 (18)
C9—C8—C15—O2	151.4 (2)	C9-C10-C11-C12	-116.6 (17)
C19—C8—C15—O2	-84.2 (3)	C11'-C10-C11-C12	131 (81)
C7—C8—C15—O2	32.5 (3)	C1-C10-C11-C12	65 (2)
C9—C8—C15—O3	-27.7 (2)	C9-C10-C11-S1	57.6 (13)
C19—C8—C15—O3	96.7 (2)	C11'-C10-C11-S1	-54 (78)
C7—C8—C15—O3	-146.59 (18)	C1-C10-C11-S1	-120.6 (9)
C10—C9—C17—O4	-133.5 (2)	C14—S1—C11—C12	-1.3 (14)
C8—C9—C17—O4	48.7 (3)	C14—S1—C11—C10	-176.5 (13)
C10—C9—C17—O5	48.3 (2)	C10-C11-C12-C13	175.3 (16)
C8—C9—C17—O5	-129.54 (17)	\$1-C11-C12-C13	1 (2)
C9—C8—C19—C20	114.1 (2)	C11—C12—C13—C14	0 (2)
C7—C8—C19—C20	-118.8 (2)	C12—C13—C14—S1	-1.2 (18)
C15—C8—C19—C20	-7.6 (2)	C11—S1—C14—C13	1.5 (13)
C9—C8—C19—C32	-65.2 (2)	C9—C10—C11'—C12'	62 (4)
C7—C8—C19—C32	61.9 (2)	C1—C10—C11'—C12'	-115 (3)
C15—C8—C19—C32	173.14 (16)	C11—C10—C11'—C12'	131 (82)
C32—C19—C20—C21	1.1 (3)	C9—C10—C11'—S1'	-119 (2)
C8—C19—C20—C21	-178.11 (18)	C1-C10-C11'-S1'	65 (3)
C19—C20—C21—C22	-1.3 (3)	C11—C10—C11'—S1'	-50 (76)
C20—C21—C22—C33	0.0 (3)	C14'—S1'—C11'—C12'	-5 (3)
C20—C21—C22—C23	-179.07 (19)	C14'—S1'—C11'—C10	176(3)
C21—C22—C23—C24	176.0 (2)	C10—C11'—C12'—C13'	-169 (3)
C33—C22—C23—C24	-3.1 (3)	S1'—C11'—C12'—C13'	11 (4)
C22—C23—C24—C25	1.7 (3)	C11'—C12'—C13'—C14'	-11 (4)
C23—C24—C25—C26	-178.7 (2)	C12'—C13'—C14'—S1'	6 (4)

$$C23 - C24 - C25 - C34 \quad 1.2 (3) \qquad C11' - S1' - C14' - C13' \quad -1 (4)$$

Crystallograpic data of β -keto-ester **9h**:

CCDC Number is 1450133

Computing details

Program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997).

Dimethyl-4-(5-hexylthiophen-2-yl)-1-oxo-2-phenyl-1,2-dihydronaphthalene-

2,3-dicarboxylate (9h)

Experimental

Crystal data

tube

	$C_{30}H_{30}O_5S$	Z = 2
	$M_r = 502.60$	F(000) = 532
	Triclinic, P1	$D_{x} = 1.287 \text{ Mg m}^{-3}$
	Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
	a = 7.4725 (4) Å	Cell parameters from 5097 reflections
	b = 12.9073 (7) Å	$\theta = 2.6 - 26.0^{\circ}$
	c = 14.9503 (8) Å	$\mu=0.16\ mm^{-1}$
	$\alpha = 105.607 \ (2)^{\circ}$	T = 296 K
	$\beta = 103.985 \ (4)^{\circ}$	Block, colourless
	$\gamma = 100.951 \ (5)^{\circ}$	$0.35\times0.30\times0.25~mm$
	$V = 1296.49 (12) \text{ Å}^{3}$	
Data collection		
	Kappa ApexII CCD Diffractometer	5097 independent reflections
	Radiation source: tine-tocus sealed	

4006 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\scriptscriptstyle \mathrm{int}}=0.034$
ω & φ scans	$ heta_{\scriptscriptstyle \mathrm{max}}=26.0^\circ, heta_{\scriptscriptstyle \mathrm{min}}=2.6^\circ$
Absorption correction: multi-scan <i>SADABS</i> (Bruker, 2008)	$h = -9 \rightarrow 9$
$T_{\min} = 0.945, T_{\max} = 0.960$	$k = -15 \rightarrow 15$
26878 measured reflections	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.141$	H-atom parameters constrained
<i>S</i> = 0.99	$w = 1/[\sigma^{2}(F_{\circ}^{2}) + (0.0918P)^{2} + 0.2678P]$ where $P = (F_{\circ}^{2} + 2F_{\circ}^{2})/3$
5097 reflections	$(\Delta/\sigma)_{max} < 0.001$
328 parameters	$\Delta ho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta ho_{min} = -0.26 \ e \ { m \AA}^{-3}$
Special details	

Refinement

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	Fractional atomic coordinates and	isotropic or equivalent	isotropic displacement para	meters (Ų)
--	-----------------------------------	-------------------------	-----------------------------	------------

	x	Y	Z.	$U_{\scriptscriptstyle m iso}$ */ $U_{\scriptscriptstyle m eq}$
C1	0.5780 (2)	0.72824 (15)	0.36737 (12)	0.0379 (4)
C2	0.6857 (2)	0.84143 (14)	0.37843 (13)	0.0376 (4)
C3	0.6631 (3)	0.93389 (16)	0.44287 (15)	0.0494 (5)
H3	0.5780	0.9243	0.4781	0.059*
C4	0.7660 (3)	1.03996 (17)	0.45504 (16)	0.0560 (5)
H4	0.7517	1.1018	0.4990	0.067*
C5	0.8899 (3)	1.05410 (16)	0.40195 (15)	0.0525 (5)
H5	0.9600	1.1257	0.4104	0.063*
C6	0.9110 (3)	0.96248 (15)	0.33594 (14)	0.0446 (4)
H6	0.9935	0.9732	0.2995	0.054*
C7	0.8103 (2)	0.85453 (14)	0.32345 (12)	0.0362 (4)
C8	0.8286 (2)	0.75488 (13)	0.25340 (12)	0.0337 (3)
C9	0.7558 (2)	0.65176 (13)	0.25477 (11)	0.0330 (3)

C10	0.6708 (2)	0.63412 (13)	0.33416 (12)	0.0331 (3)
C11	0.8220 (2)	0.63934 (13)	0.42672 (11)	0.0322 (3)
C12	1.0123 (2)	0.64787 (14)	0.43176 (12)	0.0365 (4)
H12	1.0524	0.6532	0.3785	0.044*
C13	1.1428 (3)	0.64849 (15)	0.51516 (14)	0.0433 (4)
H13	1.2699	0.6541	0.5176	0.052*
C14	1.0859 (3)	0.64085 (15)	0.59430 (13)	0.0469 (4)
H14	1.1734	0.6397	0.6498	0.056*
C15	0.8985 (3)	0.63495 (17)	0.59094 (14)	0.0489 (5)
H15	0.8602	0.6315	0.6451	0.059*
C16	0.7670 (3)	0.63409 (15)	0.50811 (13)	0.0417 (4)
H16	0.6407	0.6300	0.5067	0.050*
C17	0.7642 (2)	0.54771 (14)	0.18483 (12)	0.0372 (4)
C18	0.7152 (4)	0.44620 (19)	0.02138 (15)	0.0641 (6)
H18A	0.8420	0.4365	0.0328	0.096*
H18B	0.6709	0.4512	-0.0428	0.096*
H18C	0.6303	0.3835	0.0263	0.096*
C19	0.5116 (2)	0.52348 (15)	0.29554 (13)	0.0405 (4)
C20	0.2373 (3)	0.4132 (2)	0.16447 (19)	0.0767 (8)
H20A	0.2817	0.3506	0.1739	0.115*
H20B	0.1864	0.4004	0.0958	0.115*
H20C	0.1389	0.4219	0.1947	0.115*
C21	0.9427 (2)	0.77292 (14)	0.18819 (12)	0.0377 (4)
C22	1.1179 (3)	0.75668 (17)	0.19409 (14)	0.0466 (4)
H22	1.1823	0.7290	0.2398	0.056*
C23	1.1931 (3)	0.78627 (18)	0.12325 (15)	0.0507 (5)
H23	1.3127	0.7802	0.1184	0.061*
C24	1.0764 (3)	0.82387 (15)	0.06361 (13)	0.0427 (4)
C25	1.1068 (3)	0.86537 (18)	-0.01800 (16)	0.0536 (5)
H25A	0.9893	0.8352	-0.0726	0.064*
H25B	1.1327	0.9462	0.0041	0.064*
C26	1.2680 (3)	0.83450 (18)	-0.05301 (16)	0.0558 (5)
H26A	1.2400	0.7536	-0.0769	0.067*
H26B	1.3845	0.8625	0.0021	0.067*
C27	1.3039 (3)	0.87873 (18)	-0.13271 (16)	0.0551 (5)
H27A	1.3286	0.9594	-0.1099	0.066*
H27B	1.1895	0.8486	-0.1890	0.066*
C28	1.4713 (3)	0.84909 (19)	-0.16360 (16)	0.0553 (5)
H28A	1.5852	0.8790	-0.1070	0.066*
H28B	1.4462	0.7684	-0.1861	0.066*
C29	1.5111 (3)	0.8920 (2)	-0.24299 (17)	0.0610 (6)
H29A	1.3960	0.8638	-0.2989	0.073*
H29B	1.5397	0.9729	-0.2198	0.073*

C30	1.6739 (4)	0.8599 (3)	-0.2755 (2)	0.0926 (9)
H30A	1.7908	0.8928	-0.2221	0.139*
H30B	1.6858	0.8863	-0.3286	0.139*
H30C	1.6490	0.7799	-0.2968	0.139*
01	0.43014 (18)	0.70978 (12)	0.38749 (11)	0.0547 (4)
O2	0.7987 (2)	0.46977 (11)	0.20797 (10)	0.0574 (4)
03	0.7186 (2)	0.54740 (10)	0.09311 (9)	0.0492 (3)
O4	0.4904 (2)	0.45687 (12)	0.33575 (11)	0.0566 (4)
05	0.39542 (18)	0.51356 (12)	0.20815 (10)	0.0530 (4)
S 1	0.86882 (7)	0.82415 (4)	0.09458 (4)	0.04751 (16)

Atomic displacement parameters (Ų)

	$U^{\scriptscriptstyle 11}$	$U^{\scriptscriptstyle 22}$	$U^{\scriptscriptstyle 33}$	$U^{_{12}}$	$U^{_{13}}$	$U^{\scriptscriptstyle 23}$
C 1	0.0349 (8)	0.0472 (10)	0.0408 (9)	0.0170 (7)	0.0159 (7)	0.0212 (8)
C2	0.0381 (9)	0.0394 (9)	0.0429 (9)	0.0178 (7)	0.0164 (7)	0.0172 (7)
C3	0.0545 (11)	0.0491 (11)	0.0571 (12)	0.0272 (9)	0.0279 (9)	0.0186 (9)
C4	0.0699 (13)	0.0430 (11)	0.0587 (12)	0.0272 (10)	0.0230 (11)	0.0115 (9)
C5	0.0606 (12)	0.0352 (10)	0.0589 (12)	0.0126 (9)	0.0150 (10)	0.0149 (9)
C6	0.0484 (10)	0.0387 (10)	0.0495 (10)	0.0104 (8)	0.0186 (8)	0.0170 (8)
C 7	0.0381 (9)	0.0352 (9)	0.0381 (8)	0.0124 (7)	0.0115 (7)	0.0150 (7)
C 8	0.0336 (8)	0.0358 (8)	0.0355 (8)	0.0111 (7)	0.0121 (7)	0.0150 (7)
C9	0.0336 (8)	0.0366 (9)	0.0336 (8)	0.0127 (6)	0.0121 (6)	0.0151 (7)
C10	0.0314 (8)	0.0348 (8)	0.0380 (8)	0.0098 (6)	0.0139 (7)	0.0163 (7)
C11	0.0343 (8)	0.0293 (8)	0.0361 (8)	0.0091 (6)	0.0128 (7)	0.0135 (7)
C12	0.0364 (8)	0.0375 (9)	0.0392 (9)	0.0113 (7)	0.0154 (7)	0.0146 (7)
C13	0.0352 (9)	0.0442 (10)	0.0493 (10)	0.0122 (7)	0.0094 (8)	0.0158 (8)
C14	0.0517 (11)	0.0432 (10)	0.0404 (10)	0.0106 (8)	0.0040 (8)	0.0161 (8)
C15	0.0592 (12)	0.0539 (11)	0.0390 (10)	0.0142 (9)	0.0196 (9)	0.0209 (9)
C16	0.0415 (9)	0.0486 (10)	0.0431 (9)	0.0149 (8)	0.0199 (8)	0.0197 (8)
C17	0.0412 (9)	0.0360 (9)	0.0385 (9)	0.0126 (7)	0.0145 (7)	0.0155 (7)
C18	0.0969 (18)	0.0569 (13)	0.0391 (11)	0.0328 (12)	0.0200 (11)	0.0097 (9)
C19	0.0347 (9)	0.0444 (10)	0.0436 (9)	0.0075 (7)	0.0134 (7)	0.0175 (8)
C20	0.0569 (14)	0.0750 (16)	0.0681 (15)	-0.0176 (12)	-0.0063 (11)	0.0239 (13)
C21	0.0418 (9)	0.0360 (9)	0.0387 (9)	0.0101 (7)	0.0160 (7)	0.0150 (7)
C22	0.0460 (10)	0.0589 (12)	0.0478 (10)	0.0213 (9)	0.0211 (8)	0.0273 (9)
C23	0.0482 (11)	0.0621 (12)	0.0550 (11)	0.0203 (9)	0.0292 (9)	0.0250 (10)
C24	0.0501 (10)	0.0399 (9)	0.0446 (10)	0.0124 (8)	0.0240 (8)	0.0158 (8)
C25	0.0675 (13)	0.0540 (12)	0.0554 (12)	0.0197 (10)	0.0336 (10)	0.0286 (10)
C26	0.0707 (13)	0.0589 (12)	0.0582 (12)	0.0254 (10)	0.0377 (11)	0.0302 (10)
C27	0.0681 (13)	0.0556 (12)	0.0558 (12)	0.0184 (10)	0.0332 (11)	0.0271 (10)
C28	0.0588 (12)	0.0629 (13)	0.0520 (11)	0.0161 (10)	0.0243 (10)	0.0252 (10)
C29	0.0646 (13)	0.0654 (14)	0.0583 (13)	0.0095 (11)	0.0280 (11)	0.0266 (11)
C30	0.0860 (19)	0.125 (3)	0.096 (2)	0.0299 (18)	0.0607 (17)	0.0537 (19)

01	0.0428(7)	0.0646	(0)	0.0781(10)	0.0244(6)	0.0364.(7)	0.0340(8)
0^{1}	0.0428(7)	0.0040	(9)	0.0731(10) 0.0473(8)	0.0244(0)	0.0304(7)	0.0349(8)
02	0.0749(9)	0.0443	(0) (7)	0.0473 (6)	0.0320(7)	0.0234 (7)	0.0212(0)
04	0.0525 (8)	0.0520	(8)	0.0623 (9)	-0.0024(6)	0.0120 (7	0.012 (3)
05	0.0323(0) 0.0421(7)	0.0520	(8)	0.0491 (8)	-0.0028(6)	0.0029 (6	0.0211(6)
S1	0.0421(7) 0.0513(3)	0.0581	(3)	0.0491(0) 0.0509(3)	0.0020(0)	0.0027(0)	0.0211(0)
51	0.0515 (5)	0.0501	(3)	0.0507 (5)	0.0232 (2)	0.0252 (2) 0.0517 (2)
Geome	etric parameters	s (Å, °)					
C1-	-01		1 211	(2)	C18—H18B		0 9600
C1-	-C2		1 473	$\frac{1}{3}(2)$	C18—H18C		0.9600
C1-	-C10		1 538	$\frac{3}{2}$	C19-04		1 182 (2)
C2-	-C3		1 384	5(2)	C19		1 341 (2)
C2-	-C7		1 398	(3) (2)	$C_{20} - 05$		1.3 (1 (2))
C3-	-C4		1.377	7 (3)	C20—H20A		0.9600
C3-	-H3		0.930)()	C20—H20B		0.9600
C4-	-C5		1.375	5 (3)	C20—H20C		0.9600
C4-	-H4		0.930)0	C21—C22		1.350 (3)
C5-	-C6		1.384	1(3)	C21—S1		1.7216 (17)
C5-	-H5		0.930	00	C22—C23		1.417 (3)
С6—	-C7		1.392	2(2)	С22—Н22		0.9300
С6—	-H6		0.930	00	C23—C24		1.345 (3)
C7—	-C8		1.477	7 (2)	C23—H23		0.9300
C8-	-C9		1.346	5(2)	C24—C25		1.506 (2)
C8-	-C21		1.477	7 (2)	C24—S1		1.7227 (18)
С9—	-C17		1.486	5(2)	C25—C26		1.503 (3)
С9—	-C10		1.523	3 (2)	C25—H25A		0.9700
C10-	C11		1.537	7 (2)	C25—H25B		0.9700
C10-	C19		1.538	3 (2)	C26—C27		1.510 (3)
C11-	C12		1.387	7 (2)	C26—H26A		0.9700
C11-	—C16		1.389	9(2)	C26—H26B		0.9700
C12-	C13		1.382	2 (2)	C27—C28		1.513 (3)
C12-	—H12		0.930	00	C27—H27A		0.9700
C13-	—C14		1.371	(3)	C27—H27B		0.9700
C13-	—H13		0.930	00	C28—C29		1.505 (3)
C14-	—C15		1.376	5(3)	C28—H28A		0.9700
C14-	—H14		0.930	00	C28—H28B		0.9700
C15-	—C16		1.378	3 (3)	C29—C30		1.503 (3)
C15-	—H15		0.930	00	C29—H29A		0.9700
C16-	—H16		0.930	00	C29—H29B		0.9700
C17-	02		1.200) (2)	C30—H30A		0.9600
C17-	03		1.329	9(2)	C30—H30B		0.9600
C18-	03		1.441	(2)	C30—H30C		0.9600
C18-	-H18A		0.960	00			

O1—C1—C2	122.82 (16)	O4—C19—O5	124.12 (16)
O1—C1—C10	121.24 (16)	O4—C19—C10	126.43 (16)
C2-C1-C10	115.85 (13)	O5—C19—C10	109.45 (14)
C3—C2—C7	120.52 (16)	O5—C20—H20A	109.5
C3—C2—C1	119.96 (16)	O5-C20-H20B	109.5
C7—C2—C1	119.52 (15)	H20A-C20-H20B	109.5
C4—C3—C2	120.36 (18)	O5-C20-H20C	109.5
C4—C3—H3	119.8	H20A-C20-H20C	109.5
С2—С3—Н3	119.8	H20B-C20-H20C	109.5
C5—C4—C3	119.76 (18)	С22—С21—С8	126.54 (16)
C5—C4—H4	120.1	C22—C21—S1	110.42 (13)
C3—C4—H4	120.1	C8—C21—S1	123.00 (13)
C4—C5—C6	120.42 (18)	C21—C22—C23	112.88 (17)
C4—C5—H5	119.8	C21—C22—H22	123.6
C6—C5—H5	119.8	С23—С22—Н22	123.6
C5—C6—C7	120.73 (17)	C24—C23—C22	114.13 (17)
С5—С6—Н6	119.6	С24—С23—Н23	122.9
С7—С6—Н6	119.6	С22—С23—Н23	122.9
С6—С7—С2	118.19 (16)	C23—C24—C25	129.83 (17)
С6—С7—С8	122.23 (15)	C23—C24—S1	109.91 (13)
C2—C7—C8	119.58 (15)	C25—C24—S1	120.24 (15)
C9—C8—C21	121.43 (14)	C26—C25—C24	114.06 (17)
C9—C8—C7	120.59 (14)	С26—С25—Н25А	108.7
C21—C8—C7	117.78 (14)	C24—C25—H25A	108.7
C8—C9—C17	123.49 (14)	C26—C25—H25B	108.7
C8—C9—C10	121.59 (14)	C24—C25—H25B	108.7
C17—C9—C10	114.77 (13)	H25A—C25—H25B	107.6
C9—C10—C11	113.10 (12)	C25—C26—C27	114.55 (18)
C9—C10—C1	109.64 (13)	C25—C26—H26A	108.6
C11—C10—C1	105.49 (13)	C27—C26—H26A	108.6
C9—C10—C19	111.14 (13)	C25—C26—H26B	108.6
C11—C10—C19	110.29 (13)	С27—С26—Н26В	108.6
C1-C10-C19	106.84 (13)	H26A—C26—H26B	107.6
C12-C11-C16	118.48 (15)	C26—C27—C28	112.92 (18)
C12-C11-C10	122.27 (14)	С26—С27—Н27А	109.0
C16-C11-C10	119.24 (14)	С28—С27—Н27А	109.0
C13—C12—C11	120.59 (16)	С26—С27—Н27В	109.0
C13—C12—H12	119.7	С28—С27—Н27В	109.0
C11—C12—H12	119.7	H27A—C27—H27B	107.8
C14—C13—C12	120.41 (17)	C29—C28—C27	114.27 (19)
C14—C13—H13	119.8	C29—C28—H28A	108.7
C12—C13—H13	119.8	C27—C28—H28A	108.7
C13—C14—C15	119.50 (17)	C29—C28—H28B	108.7

C13-C14-H14	120.3	C27—C28—H28B	108.7
C15—C14—H14	120.3	H28A—C28—H28B	107.6
C14—C15—C16	120.62 (17)	C30—C29—C28	114.2 (2)
C14—C15—H15	119.7	С30—С29—Н29А	108.7
C16-C15-H15	119.7	С28—С29—Н29А	108.7
C15-C16-C11	120.38 (16)	С30—С29—Н29В	108.7
C15-C16-H16	119.8	С28—С29—Н29В	108.7
C11-C16-H16	119.8	H29A—C29—H29B	107.6
O2—C17—O3	123.48 (16)	С29—С30—Н30А	109.5
O2—C17—C9	123.51 (15)	C29—C30—H30B	109.5
O3—C17—C9	112.89 (14)	H30A-C30-H30B	109.5
O3—C18—H18A	109.5	С29—С30—Н30С	109.5
O3—C18—H18B	109.5	H30A-C30-H30C	109.5
H18A—C18—H18B	109.5	H30B-C30-H30C	109.5
O3—C18—H18C	109.5	C17—O3—C18	115.33 (14)
H18A—C18—H18C	109.5	C19—O5—C20	114.84 (16)
H18B-C18-H18C	109.5	C21—S1—C24	92.67 (9)
O1—C1—C2—C3	23.0 (3)	C16-C11-C12-C13	1.5 (2)
C10-C1-C2-C3	-153.45 (16)	C10-C11-C12-C13	-177.77 (15)
O1—C1—C2—C7	-156.92 (18)	C11—C12—C13—C14	-0.1 (3)
C10-C1-C2-C7	26.6 (2)	C12-C13-C14-C15	-1.4 (3)
C7—C2—C3—C4	-1.3 (3)	C13-C14-C15-C16	1.5 (3)
C1—C2—C3—C4	178.77 (18)	C14-C15-C16-C11	-0.1 (3)
C2—C3—C4—C5	0.9 (3)	C12-C11-C16-C15	-1.4 (3)
C3—C4—C5—C6	0.4 (3)	C10-C11-C16-C15	177.89 (16)
C4—C5—C6—C7	-1.2 (3)	C8—C9—C17—O2	139.04 (19)
C5—C6—C7—C2	0.8 (3)	С10—С9—С17—О2	-36.6 (2)
C5—C6—C7—C8	179.70 (17)	C8—C9—C17—O3	-44.7 (2)
C3—C2—C7—C6	0.4 (3)	C10—C9—C17—O3	139.66 (15)
C1—C2—C7—C6	-179.61 (16)	C9—C10—C19—O4	135.44 (19)
C3—C2—C7—C8	-178.49 (16)	C11—C10—C19—O4	9.2 (2)
C1—C2—C7—C8	1.5 (2)	C1-C10-C19-O4	-105.0 (2)
C6—C7—C8—C9	168.58 (16)	C9—C10—C19—O5	-45.47 (18)
C2—C7—C8—C9	-12.5 (2)	C11—C10—C19—O5	-171.72 (13)
C6—C7—C8—C21	-6.3 (2)	C1—C10—C19—O5	74.11 (17)
C2—C7—C8—C21	172.56 (15)	C9—C8—C21—C22	-67.3 (3)
C21—C8—C9—C17	-7.0 (2)	C7—C8—C21—C22	107.6 (2)
C7—C8—C9—C17	178.29 (15)	C9—C8—C21—S1	115.25 (17)
C21—C8—C9—C10	168.39 (15)	C7—C8—C21—S1	-69.88 (19)
C7—C8—C9—C10	-6.3 (2)	C8—C21—C22—C23	-177.36 (17)
C8—C9—C10—C11	-85.16 (18)	S1—C21—C22—C23	0.3 (2)
C17—C9—C10—C11	90.60 (17)	C21—C22—C23—C24	-0.4 (3)
C8—C9—C10—C1	32.3 (2)	C22—C23—C24—C25	178.37 (19)

C17—C9—C10—C1	-151.98 (14)	C22—C23—C24—S1	0.3 (2)
C8—C9—C10—C19	150.16 (16)	C23—C24—C25—C26	16.4 (3)
C17—C9—C10—C19	-34.09 (18)	S1-C24-C25-C26	-165.73 (16)
O1—C1—C10—C9	142.13 (17)	C24—C25—C26—C27	-178.19 (18)
C2-C1-C10-C9	-41.33 (19)	C25—C26—C27—C28	178.12 (19)
01-C1-C10-C11	-95.79 (19)	C26—C27—C28—C29	-179.97 (19)
C2-C1-C10-C11	80.76 (16)	C27—C28—C29—C30	-178.4 (2)
O1-C1-C10-C19	21.6 (2)	O2-C17-O3-C18	-0.8 (3)
C2-C1-C10-C19	-161.87 (14)	C9—C17—O3—C18	-177.08 (17)
C9-C10-C11-C12	-6.2 (2)	O4—C19—O5—C20	0.0 (3)
C1-C10-C11-C12	-125.99 (16)	C10-C19-O5-C20	-179.14 (18)
C19—C10—C11—C12	118.99 (16)	C22—C21—S1—C24	-0.15 (15)
C9-C10-C11-C16	174.60 (14)	C8—C21—S1—C24	177.65 (15)
C1-C10-C11-C16	54.77 (18)	C23—C24—S1—C21	-0.09 (16)
C19—C10—C11—C16	-60.25 (19)	C25—C24—S1—C21	-178.37 (16)

Hydrogen-bond geometry (Å, º)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C18—H18 B ····O5 ⁱ	0.96	2.58	3.533 (3)	171
C22—H22…O1 ^{II}	0.93	2.62	3.520 (2)	163

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*+1, *y*, *z*.

Crystallograpic data of β -keto-ester **10b**:

CCDC Number is **1438209**.

151

Computing details

Program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997). Computer programs: *SHELXS97* (Sheldrick, 1990), *SHELXL97* (Sheldrick, 1997).

Ethyl-4-oxo-3-phenyl-1,3-di(thiophen-2-yl)-3,4-dihydronaphthalene-2-

carboxylate (10b)

Experimental

Crystal data

$C_{27}H_{20}O_3S_2$	V = 2262.8 (3) Å ³
$M_r = 456.55$	Z = 4
<i>a</i> = 12.1263 (11) Å	F(000) = 952
<i>b</i> = 11.8009 (11) Å	$D_{\rm x} = 1.340 {\rm ~Mg} {\rm ~m}^{-3}$
<i>c</i> = 16.0657 (13) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 90^{\circ}$	$\mu=0.26~mm^{-1}$
$\beta = 100.181 \ (2)^{\circ}$	T = 296 K
$\gamma = 90^{\circ}$	$0.25 \times 0.25 \times 0.15 \text{ mm}$

Data collection

Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.044$
Graphite monochromator	$\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.2^{\circ}$
29905 measured reflections	$h = -14 \rightarrow 14$
4111 independent reflections	$k = -14 \rightarrow 14$
2686 reflections with $I > 2\sigma(I)$	$l = -19 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.148$	H atoms treated by a mixture of independent and constrained

$$S = 1.09$$

$$k = 1/[\sigma^{2}(F_{o}^{2}) + (0.0338P)^{2} + 2.9594P]$$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

$$(\Delta/\sigma)_{max} = 0.004$$

$$\Delta\rho_{max} = 0.24 \text{ e}^{A^{-3}}$$

$$100 \text{ restraints}$$

$$\Delta\rho_{min} = -0.23 \text{ e}^{A^{-3}}$$

Special details

Refinement

Refinement Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C7	0.6147 (3)	0.7554 (3)	0.11948 (19)	0.0430 (7)	
C6	0.5745 (2)	0.7440 (3)	0.02783 (18)	0.0394 (7)	
C5	0.4953 (3)	0.6614 (3)	-0.0013 (2)	0.0519 (8)	
H5	0.4686	0.6142	0.0371	0.062*	
C4	0.4560 (3)	0.6490 (3)	-0.0866 (2)	0.0600 (10)	
H4	0.4034	0.5934	-0.1059	0.072*	
C3	0.4950 (3)	0.7196 (3)	-0.1430 (2)	0.0575 (9)	
H3	0.4687	0.7111	-0.2006	0.069*	
C2	0.5725 (3)	0.8026 (3)	-0.11538 (19)	0.0480 (8)	
H2	0.5976	0.8498	-0.1544	0.058*	
C1	0.6138 (2)	0.8163 (3)	-0.02929 (18)	0.0369 (7)	
C10	0.6948 (2)	0.9062 (2)	0.00282 (17)	0.0352 (7)	
C9	0.7444 (2)	0.9089 (3)	0.08433 (18)	0.0368 (7)	
C8	0.7274 (2)	0.8171 (3)	0.14761 (17)	0.0385 (7)	
C22	0.7307 (3)	0.8700 (3)	0.23535 (18)	0.0424 (7)	
C23	0.8062 (3)	0.8363 (3)	0.30967 (19)	0.0465 (8)	
H23	0.8569	0.7774	0.3082	0.056*	
C24	0.8016 (4)	0.8933 (4)	0.3831 (2)	0.0773 (13)	
H24	0.8507	0.8724	0.4319	0.093*	
C25	0.7296 (4)	0.9778 (4)	0.3875 (3)	0.0817 (14)	
H25	0.7297	1.0143	0.4388	0.098*	

C26	0.6570 (4)	1.0107 (4)	0.3185 (3)	0.0729 (12)	
H26	0.6065	1.0689	0.3225	0.087*	
C27	0.6573 (3)	0.9589 (3)	0.2429 (2)	0.0555 (9)	
H27	0.6076	0.9831	0.1953	0.067*	
C15	0.8246 (3)	1.0013 (3)	0.11779 (19)	0.0450 (8)	
C16	0.8442 (4)	1.2005 (4)	0.1385 (3)	0.0862 (14)	
H16A	0.8015	1.2542	0.1657	0.103*	
H16B	0.9088	1.1771	0.1796	0.103*	
C17	0.8812 (6)	1.2540 (5)	0.0680 (4)	0.123 (2)	
H17A	0.9295	1.2032	0.0445	0.185*	
H17B	0.9214	1.3221	0.0866	0.185*	
H17C	0.8174	1.2724	0.0256	0.185*	
C11	0.7228 (2)	0.9919 (3)	-0.05704 (19)	0.0408 (7)	
S1'	0.8517 (4)	0.9931 (5)	-0.0827 (3)	0.0550 (9)	0.471 (4)
C12'	0.6541 (15)	1.0805 (16)	-0.0905 (16)	0.073 (5)	0.471 (4)
H12'	0.5824	1.0924	-0.0794	0.088*	0.471 (4)
C13'	0.7086 (15)	1.154 (2)	-0.1465 (17)	0.069 (4)	0.471 (4)
H13'	0.6782	1.2174	-0.1769	0.083*	0.471 (4)
C14'	0.8128 (17)	1.1090 (17)	-0.1434 (15)	0.054 (3)	0.471 (4)
H14'	0.8623	1.1416	-0.1744	0.065*	0.471 (4)
S 1	0.6308 (4)	1.0925 (5)	-0.1018 (4)	0.0707 (12)	0.529 (4)
C12	0.8222 (10)	1.0026 (18)	-0.0858 (12)	0.072 (5)	0.529 (4)
H12	0.8807	0.9517	-0.0699	0.086*	0.529 (4)
C13	0.8325 (16)	1.0987 (17)	-0.1432 (16)	0.062 (3)	0.529 (4)
H13	0.8942	1.1207	-0.1664	0.074*	0.529 (4)
C14	0.7296 (12)	1.1464 (19)	-0.1533 (15)	0.060 (3)	0.529 (4)
H14	0.7129	1.2089	-0.1886	0.072*	0.529 (4)
C18	0.8130 (3)	0.7231 (3)	0.14620 (19)	0.0448 (8)	
S2	0.8058 (3)	0.5957 (2)	0.1929 (2)	0.0788 (10)	0.633 (5)
C19	0.9074 (11)	0.7381 (13)	0.1097 (12)	0.065 (4)	0.633 (5)
H19	0.9267	0.8030	0.0827	0.078*	0.633 (5)
C20	0.9724 (10)	0.6298 (8)	0.1220 (8)	0.067 (2)	0.633 (5)
H20	1.0377	0.6190	0.1001	0.081*	0.633 (5)
C21	0.9295 (7)	0.5468 (11)	0.1679 (8)	0.077 (2)	0.633 (5)
H21	0.9619	0.4765	0.1826	0.093*	0.633 (5)
S2'	0.9240 (7)	0.7245 (7)	0.0999 (7)	0.084 (2)	0.367 (5)
C19'	0.795 (2)	0.6208 (14)	0.1853 (19)	0.110 (7)	0.367 (5)
H19'	0.7358	0.6016	0.2126	0.132*	0.367 (5)
C20'	0.8927 (18)	0.549 (3)	0.1726 (18)	0.099 (5)	0.367 (5)
H20'	0.9004	0.4766	0.1950	0.119*	0.367 (5)
C21'	0.973 (2)	0.5911 (13)	0.1276 (19)	0.099 (6)	0.367 (5)

H21'	1.0365	0.5553	0.1157	0.119*	0.367 (5)
01	0.5657 (2)	0.7135 (2)	0.17142 (14)	0.0627 (7)	
O2	0.9203 (2)	0.9858 (2)	0.14861 (17)	0.0692 (8)	
O3	0.7748 (2)	1.1019 (2)	0.11081 (16)	0.0622 (7)	

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C7	0.0478 (18)	0.0444 (18)	0.0371 (17)	-0.0016 (15)	0.0082 (14)	-0.0012 (14)
C6	0.0350 (16)	0.0465 (18)	0.0376 (17)	0.0002 (14)	0.0087 (13)	-0.0070 (14)
C5	0.0490 (19)	0.057 (2)	0.051 (2)	-0.0094 (17)	0.0123 (15)	-0.0075 (17)
C4	0.051 (2)	0.068 (2)	0.057 (2)	-0.0145 (18)	0.0020 (17)	-0.017 (2)
C3	0.055 (2)	0.073 (3)	0.042 (2)	-0.0038 (19)	-0.0012 (16)	-0.0138 (18)
C2	0.0465 (19)	0.059 (2)	0.0381 (18)	0.0013 (16)	0.0059 (14)	-0.0005 (16)
C1	0.0296 (14)	0.0449 (18)	0.0357 (16)	0.0059 (13)	0.0041 (12)	-0.0034 (14)
C10	0.0297 (14)	0.0425 (17)	0.0339 (16)	0.0048 (13)	0.0068 (12)	-0.0004 (13)
C9	0.0312 (15)	0.0415 (17)	0.0378 (17)	0.0010 (13)	0.0064 (12)	-0.0004 (13)
C8	0.0385 (16)	0.0446 (18)	0.0314 (16)	-0.0007 (14)	0.0039 (13)	-0.0026 (13)
C22	0.0428 (17)	0.0499 (19)	0.0357 (17)	-0.0068 (15)	0.0100 (13)	-0.0038 (14)
C23	0.0435 (18)	0.060 (2)	0.0357 (18)	-0.0077 (16)	0.0056 (14)	-0.0080 (15)
C24	0.075 (3)	0.107 (4)	0.046 (2)	-0.022 (3)	0.002 (2)	-0.005 (2)
C25	0.083 (3)	0.100 (4)	0.067 (3)	-0.024 (3)	0.027 (3)	-0.033 (3)
C26	0.081 (3)	0.065 (3)	0.081 (3)	-0.008 (2)	0.038 (3)	-0.019 (2)
C27	0.058 (2)	0.062 (2)	0.049 (2)	0.0018 (18)	0.0173 (17)	-0.0053 (18)
C15	0.0444 (19)	0.053 (2)	0.0371 (17)	-0.0041 (16)	0.0067 (14)	0.0016 (15)
C16	0.103 (3)	0.060 (3)	0.089 (3)	-0.021 (2)	-0.003 (3)	-0.018 (2)
C17	0.172 (6)	0.097 (4)	0.107 (4)	-0.066 (4)	0.041 (4)	-0.014 (3)
C11	0.0369 (16)	0.0462 (18)	0.0383 (17)	0.0006 (14)	0.0041 (13)	0.0021 (14)
S1'	0.0550 (18)	0.070 (2)	0.0428 (15)	-0.0058 (15)	0.0164 (13)	0.0081 (13)
C12'	0.078 (10)	0.074 (9)	0.065 (8)	-0.008 (7)	0.003 (7)	0.024 (6)
C13'	0.079 (8)	0.066 (7)	0.056 (6)	-0.008 (6)	-0.004 (6)	0.013 (6)
C14'	0.064 (7)	0.068 (6)	0.033 (5)	-0.017 (5)	0.010 (5)	0.013 (5)
S 1	0.0577 (16)	0.0709 (19)	0.080 (3)	0.0160 (13)	0.0030 (15)	0.0266 (15)
C12	0.068 (8)	0.065 (6)	0.079 (8)	-0.004 (6)	0.003 (6)	0.011 (5)
C13	0.053 (5)	0.065 (6)	0.065 (6)	-0.002 (4)	0.006 (5)	0.004 (5)
C14	0.050 (5)	0.064 (5)	0.063 (6)	0.005 (4)	0.002 (4)	0.016 (5)
C18	0.050 (2)	0.048 (2)	0.0340 (17)	0.0095 (16)	0.0014 (14)	-0.0020 (15)
S 2	0.103 (2)	0.0537 (14)	0.0784 (15)	0.0134 (14)	0.0120 (14)	0.0163 (12)
C19	0.067 (6)	0.057 (5)	0.068 (6)	0.048 (4)	0.005 (5)	-0.010 (4)
C20	0.059 (4)	0.065 (5)	0.074 (5)	0.042 (4)	0.001 (3)	-0.019 (4)
C21	0.090 (6)	0.059 (5)	0.070 (5)	0.039 (5)	-0.022 (5)	-0.009 (4)

S2'	0.064 (3)	0.084 (4)	0.108 (4)	0.010 (3)	0.029 (3)	-0.027 (3)
C19'	0.113 (11)	0.090 (11)	0.126 (13)	0.074 (9)	0.018 (9)	-0.014 (9)
C20'	0.105 (10)	0.074 (7)	0.113 (10)	0.073 (8)	0.006 (8)	-0.008 (7)
C21'	0.101 (10)	0.084 (10)	0.107 (11)	0.061 (10)	0.005 (8)	-0.020 (9)
01	0.0706 (16)	0.0788 (18)	0.0416 (14)	-0.0247 (14)	0.0177 (12)	0.0002 (12)
O2	0.0443 (14)	0.0747 (18)	0.0811 (18)	-0.0079 (13)	-0.0092 (13)	-0.0116 (14)
O3	0.0656 (16)	0.0458 (14)	0.0709 (17)	-0.0045 (12)	0.0003 (13)	-0.0055 (12)

Geometric parameters (Å, °)

C7—O1	1.212 (4)	C16—H16B	0.9700
C7—C6	1.473 (4)	C17—H17A	0.9600
С7—С8	1.544 (4)	C17—H17B	0.9600
C6—C5	1.390 (4)	C17—H17C	0.9600
C6—C1	1.397 (4)	C11—C12	1.371 (9)
C5—C4	1.377 (5)	C11—C12'	1.385 (9)
С5—Н5	0.9300	C11—S1'	1.686 (4)
C4—C3	1.375 (5)	C11—S1	1.700 (4)
C4—H4	0.9300	S1'—C14'	1.698 (9)
C3—C2	1.375 (5)	C12'—C13'	1.487 (10)
С3—Н3	0.9300	C12'—H12'	0.9300
C2—C1	1.395 (4)	C13'—C14'	1.365 (9)
C2—H2	0.9300	C13'—H13'	0.9300
C1-C10	1.476 (4)	C14'—H14'	0.9300
С10—С9	1.341 (4)	S1—C14	1.696 (8)
C10-C11	1.476 (4)	C12—C13	1.481 (9)
C9—C15	1.497 (4)	C12—H12	0.9300
С9—С8	1.524 (4)	C13—C14	1.353 (8)
C8—C18	1.523 (4)	C13—H13	0.9300
C8—C22	1.536 (4)	C14—H14	0.9300
C22—C27	1.395 (5)	C18—C19	1.387 (9)
C22—C23	1.427 (4)	C18—C19'	1.397 (10)
C23—C24	1.368 (5)	C18—S2'	1.648 (6)
С23—Н23	0.9300	C18—S2	1.690 (4)
C24—C25	1.335 (6)	S2—C21	1.720 (7)
C24—H24	0.9300	C19—C20	1.496 (9)
C25—C26	1.346 (6)	C19—H19	0.9300
С25—Н25	0.9300	C20—C21	1.382 (8)
C26—C27	1.361 (5)	C20—H20	0.9300
C26—H26	0.9300	C21—H21	0.9300
C27—H27	0.9300	S2'—C21'	1.713 (9)

C15—O2	1.192 (4)	C19'—C20'	1.500 (10)
C15—O3	1.328 (4)	C19'—H19'	0.9300
C16—C17	1.437 (6)	C20'—C21'	1.397 (10)
C16—O3	1.459 (4)	C20'—H20'	0.9300
C16—H16A	0.9700	C21'—H21'	0.9300
O1—C7—C6	122.3 (3)	H17A—C17—H17C	109.5
O1—C7—C8	120.5 (3)	H17B—C17—H17C	109.5
С6—С7—С8	117.1 (3)	C12—C11—C12'	107.7 (12)
C5—C6—C1	120.2 (3)	C12—C11—C10	126.8 (8)
C5—C6—C7	119.2 (3)	C12'—C11—C10	125.4 (9)
C1—C6—C7	120.6 (3)	C12—C11—S1'	7.3 (8)
C4—C5—C6	120.4 (3)	C12'—C11—S1'	114.7 (8)
C4—C5—H5	119.8	C10—C11—S1'	119.7 (3)
С6—С5—Н5	119.8	C12—C11—S1	110.1 (7)
C3—C4—C5	119.5 (3)	C12'—C11—S1	4.7 (13)
C3—C4—H4	120.2	C10-C11-S1	123.1 (3)
C5—C4—H4	120.2	S1'-C11-S1	117.3 (3)
C2—C3—C4	120.9 (3)	C11—S1'—C14'	88.4 (8)
С2—С3—Н3	119.5	C11—C12'—C13'	112.1 (17)
С4—С3—Н3	119.5	C11—C12'—H12'	123.9
C3—C2—C1	120.5 (3)	C13'—C12'—H12'	123.9
С3—С2—Н2	119.7	C14'—C13'—C12'	105 (2)
C1—C2—H2	119.7	C14'—C13'—H13'	127.6
C2—C1—C6	118.4 (3)	C12'—C13'—H13'	127.6
C2-C1-C10	122.0 (3)	C13'—C14'—S1'	119.9 (16)
C6-C1-C10	119.5 (3)	C13'—C14'—H14'	120.1
C9-C10-C11	120.3 (3)	S1'-C14'-H14'	120.1
C9-C10-C1	120.9 (3)	C14—S1—C11	90.1 (8)
C11—C10—C1	118.7 (2)	C11—C12—C13	117.2 (15)
C10—C9—C15	121.2 (3)	C11-C12-H12	121.4
С10—С9—С8	123.0 (3)	C13—C12—H12	121.4
С15—С9—С8	115.7 (2)	C14—C13—C12	102.5 (18)
C18—C8—C9	109.6 (2)	C14—C13—H13	128.8
C18—C8—C22	113.7 (2)	C12-C13-H13	128.8
C9—C8—C22	109.8 (2)	C13—C14—S1	120.1 (16)
C18—C8—C7	102.9 (2)	C13—C14—H14	119.9
C9—C8—C7	110.9 (2)	S1—C14—H14	120.0
C22—C8—C7	109.8 (2)	C19—C18—C19'	120.6 (10)
C27—C22—C23	117.6 (3)	C19—C18—C8	122.0 (6)
C27—C22—C8	118.1 (3)	C19'—C18—C8	117.3 (9)

C23—C22—C8	124.3 (3)	C19—C18—S2'	6.9 (10)
C24—C23—C22	117.8 (4)	C19'—C18—S2'	114.8 (9)
С24—С23—Н23	121.1	C8—C18—S2'	127.8 (4)
С22—С23—Н23	121.1	C19—C18—S2	114.4 (6)
C25—C24—C23	122.7 (4)	C19'—C18—S2	6.4 (10)
C25—C24—H24	118.6	C8—C18—S2	123.5 (3)
C23—C24—H24	118.6	S2'—C18—S2	108.6 (4)
C24—C25—C26	120.7 (4)	C18—S2—C21	94.5 (5)
С24—С25—Н25	119.7	C18—C19—C20	106.9 (10)
С26—С25—Н25	119.7	С18—С19—Н19	126.6
C25—C26—C27	120.1 (4)	C20-C19-H19	126.6
С25—С26—Н26	120.0	C21—C20—C19	115.9 (11)
С27—С26—Н26	120.0	C21—C20—H20	122.0
C26—C27—C22	121.2 (4)	С19—С20—Н20	122.0
С26—С27—Н27	119.4	C20—C21—S2	108.2 (10)
С22—С27—Н27	119.4	C20-C21-H21	125.9
O2—C15—O3	124.6 (3)	S2—C21—H21	125.9
O2—C15—C9	124.1 (3)	C18—S2'—C21'	98.3 (11)
O3—C15—C9	111.3 (3)	C18—C19'—C20'	103.3 (18)
C17—C16—O3	110.7 (4)	C18—C19'—H19'	128.3
C17—C16—H16A	109.5	C20'—C19'—H19'	128.3
O3—C16—H16A	109.5	C21'—C20'—C19'	121 (2)
C17—C16—H16B	109.5	C21'—C20'—H20'	119.6
O3—C16—H16B	109.5	C19'—C20'—H20'	119.6
H16A—C16—H16B	108.1	C20'—C21'—S2'	103 (2)
С16—С17—Н17А	109.5	C20'—C21'—H21'	128.7
C16—C17—H17B	109.5	S2'—C21'—H21'	128.7
H17A—C17—H17B	109.5	C15—O3—C16	117.2 (3)
С16—С17—Н17С	109.5		
01—C7—C6—C5	-16.1 (5)	C1-C10-C11-S1	69.7 (5)
C8—C7—C6—C5	160.0 (3)	C12—C11—S1'—C14'	13 (9)
01—C7—C6—C1	162.8 (3)	C12'—C11—S1'—C14'	-2.9 (18)
C8—C7—C6—C1	-21.1 (4)	C10—C11—S1'—C14'	-177.9 (10)
C1—C6—C5—C4	0.9 (5)	S1—C11—S1'—C14'	1.5 (11)
C7—C6—C5—C4	179.8 (3)	C12—C11—C12'—C13'	1 (3)
C6—C5—C4—C3	-0.5 (5)	C10—C11—C12'—C13'	177.9 (17)
C5—C4—C3—C2	-0.2 (6)	S1'—C11—C12'—C13'	3 (3)
C4—C3—C2—C1	0.4 (5)	S1—C11—C12'—C13'	-121 (16)
C3—C2—C1—C6	0.0 (5)	C11—C12'—C13'—C14'	-2 (3)
C3—C2—C1—C10	-178.5 (3)	C12'—C13'—C14'—S1'	0 (3)

C5—C6—C1—C2	-0.7 (4)	C11—S1'—C14'—C13'	2 (2)
C7—C6—C1—C2	-179.6 (3)	C12—C11—S1—C14	-1.9 (16)
C5—C6—C1—C10	177.8 (3)	C12'—C11—S1—C14	58 (14)
C7—C6—C1—C10	-1.0 (4)	C10-C11-S1-C14	178.9 (10)
C2—C1—C10—C9	-171.3 (3)	S1'-C11-S1-C14	-0.4 (12)
C6—C1—C10—C9	10.3 (4)	C12'—C11—C12—C13	-1 (3)
C2-C1-C10-C11	7.2 (4)	C10-C11-C12-C13	-177.5 (17)
C6-C1-C10-C11	-171.2 (3)	S1'-C11-C12-C13	-166 (11)
C11—C10—C9—C15	3.0 (4)	S1-C11-C12-C13	3 (3)
C1—C10—C9—C15	-178.6 (3)	C11—C12—C13—C14	-3 (3)
С11—С10—С9—С8	-174.3 (3)	C12—C13—C14—S1	2 (3)
C1—C10—C9—C8	4.2 (4)	C11—S1—C14—C13	0 (2)
C10-C9-C8-C18	88.2 (3)	C9—C8—C18—C19	15.8 (11)
C15—C9—C8—C18	-89.2 (3)	C22—C8—C18—C19	-107.5 (11)
C10—C9—C8—C22	-146.3 (3)	C7—C8—C18—C19	133.8 (11)
C15—C9—C8—C22	36.3 (3)	C9—C8—C18—C19'	-165.8 (16)
С10—С9—С8—С7	-24.7 (4)	C22—C8—C18—C19'	70.9 (16)
С15—С9—С8—С7	157.9 (3)	C7—C8—C18—C19'	-47.8 (16)
O1—C7—C8—C18	91.3 (3)	C9—C8—C18—S2'	11.2 (6)
C6—C7—C8—C18	-84.9 (3)	C22—C8—C18—S2'	-112.1 (6)
O1—C7—C8—C9	-151.7 (3)	C7—C8—C18—S2'	129.2 (6)
С6—С7—С8—С9	32.1 (4)	C9—C8—C18—S2	-167.7 (3)
O1—C7—C8—C22	-30.1 (4)	C22—C8—C18—S2	69.1 (4)
C6—C7—C8—C22	153.7 (3)	C7—C8—C18—S2	-49.7 (3)
C18—C8—C22—C27	178.5 (3)	C19—C18—S2—C21	-0.4 (11)
C9—C8—C22—C27	55.3 (4)	C19'—C18—S2—C21	168 (14)
C7—C8—C22—C27	-66.9 (4)	C8—C18—S2—C21	-177.2 (5)
C18—C8—C22—C23	0.1 (4)	S2'—C18—S2—C21	3.8 (6)
C9—C8—C22—C23	-123.0 (3)	C19'—C18—C19—C20	0 (2)
C7—C8—C22—C23	114.8 (3)	C8—C18—C19—C20	178.7 (8)
C27—C22—C23—C24	-0.1 (5)	S2'-C18-C19-C20	-33 (9)
C8—C22—C23—C24	178.2 (3)	S2-C18-C19-C20	1.9 (16)
C22—C23—C24—C25	0.3 (6)	C18—C19—C20—C21	-3.1 (19)
C23—C24—C25—C26	0.2 (7)	C19—C20—C21—S2	2.8 (15)
C24—C25—C26—C27	-0.9 (7)	C18—S2—C21—C20	-1.4 (9)
C25—C26—C27—C22	1.1 (6)	C19—C18—S2'—C21'	146 (10)
C23—C22—C27—C26	-0.6 (5)	C19'—C18—S2'—C21'	-3 (2)
C8—C22—C27—C26	-179.0 (3)	C8—C18—S2'—C21'	-179.9 (11)
C10—C9—C15—O2	-119.3 (4)	S2—C18—S2'—C21'	-0.9 (12)
C8—C9—C15—O2	58.2 (4)	C19—C18—C19'—C20'	-1 (3)
C10—C9—C15—O3	62.5 (4)	C8—C18—C19'—C20'	-179.8 (15)

C8—C9—C15—O3	-120.1 (3)	S2'—C18—C19'—C20'	3 (3)
C9—C10—C11—C12	69.2 (13)	S2—C18—C19'—C20'	-14 (12)
C1—C10—C11—C12	-109.3 (12)	C18—C19'—C20'—C21'	-2 (4)
C9—C10—C11—C12'	-106.8 (15)	C19'—C20'—C21'—S2'	0 (4)
C1—C10—C11—C12'	74.7 (15)	C18—S2'—C21'—C20'	1 (2)
C9—C10—C11—S1'	67.6 (4)	O2—C15—O3—C16	3.7 (5)
C1—C10—C11—S1'	-111.0 (4)	C9—C15—O3—C16	-178.1 (3)
C9—C10—C11—S1	-111.7 (4)	C17—C16—O3—C15	96.7 (5)

Absorption spectra of tri-substituted *a*-naphthols 13i, 13k, 13l and 13m

Emission spectra of tri-substituted α -naphthols 13i, 13k, 13l and 13m