Supporting Information

A Survey of Reagents for Selenocysteine Conjugation and the Stability of Resulting

Selenocysteine Adducts

Lee Pedzisa[§], Xiuling Li[†], Christoph Rader^{†, |||}, William R. Roush^{§,*}

[§]Department of Chemistry, [†]Department of Cancer Biology, and ^{III}Department of Molecular Therapeutics, The

Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States

Table of Contents

1. General Information	
2. Physical Properties and Spectroscopic Measurements	S3
3. Experimental Section	
3.1. Selenocystine Synthesis	S3
3.2. Selenocysteine Conjugation	
3.3. Figures and Schemes	S10
3.4. Antibody Conjugation and Analysis	
4. NMR Spectra	
5. LC-MS Spectra for Selenocysteine Adducts Stability Studies	
5.1. Stability experiments at pH 5.2 NaOAc buffer	
5.2. Stability experiments under basic conditions	
5.3. Stability experiments under oxidizing conditions	
5.4. Stability study in the presence of glutathione	
5.5. Stability study in human blood plasma	
6. References	

1. General Information:

Dimethylformamide and dichloromethane were purified by passing through a solvent column of activated alumina (A-1). Unless otherwise indicated, all starting materials were purchased from different commercial sources and were used without further purification. Triethylamine was distilled before use. Reactions were conducted under an atmosphere of argon using flamed-dried glassware. Standard techniques for handling air-sensitive compounds were employed for all the operations. Removal of solvents was accomplished on a rotary evaporator at reduced pressure.

2. Physical Properties and Spectroscopic Measurements:

¹H NMR spectra were recorded on a Bruker spectrometer at 400 MHz. ¹³C NMR spectra were recorded on a Bruker spectrometer at 100 MHz. The proton signal for non-deuterated solvent (δ 7.26 for CHCl₃) was used as an internal reference for ¹H NMR spectra. For ¹³C NMR spectra, chemical shifts are reported relative to the δ 77.0 resonance of CHCl₃. Infrared (IR) spectra were recorded on neat samples using a Perkin-Elmer Spectrum One FT-IR Spectrometer equipped with a Universal ATR Sampling Accessory. High-resolution mass spectra were recorded at the University of Illinois Mass Spectrometry Laboratory. Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25-mm thickness of silica gel. TLC plates were visualized with UV light and/or by staining with potassium permanganate (1.5g KMnO₄, 10 g K₂CO₃, 1.25 10% NaOH in 200 mL H₂O). Column chromatography was generally performed using a Biotage IsoleraTM purification system with Biotage pre-packed columns. LC-MS was performed on an Agilent Infinity LC with an Agilent Technologies 500 MS.

3. Experimental Section

(2R,2'R)-3,3'-diselanediylbis(2-((tert-butoxycarbonyl)amino)propanoic acid) (3): To a suspension of L-selenocysteine (500 mg, 1.50 mmol, 1 equiv) in water (7.5 mL) was added Et₃N (0.63 mL, 4.49 mmol, 3 equiv) and

the resulting in a brown solution was placed in an ice bath. Di-*tert*-butyl-dicarbonate (980 mg, 4.49 mmol, 3 equiv) was added in small portions with vigorous stirring (over 5 minutes). The suspension was stirred at rt for 11 h, diluted with EtOAc (20 mL), washed with 1N HCl (20 mL), extracted with EtOAc (2 x 20 mL), washed with brine (20 mL), dried (MgSO₄ and Na₂SO₄), filtered, and concentrated under reduced pressure to give title compound (700 mg, 88%) as a yellow foam that was used in the next step without further purification. ¹H NMR (400 MHz, Methanol- d_4): δ 4.40 (dd, J = 8.8, 4.7 Hz, 2H), 3.45 (dd, J = 12.6, 4.9 Hz, 2H), 3.20 (dd, J = 12.7, 9.0 Hz, 2H), 1.45 (s, 18H). ¹³C NMR (101 MHz, MeOD) δ 174.38, 157.82, 80.74, 55.65, 32.51, 28.77; IR (neat) 3380, 2981, 1683, 1512, 1286, 1243, 1162, 1050 cm⁻¹; HRMS (ESI) calcd for C₁₆H₂₈N₂O₈Se₂Na (M+Na)⁺ 559.0074, found 559.0068

Di*tert***-butyl** ((*2R*,*2'R*)-diselanediylbis(1-(benzylamino)-1-oxopropane-3,2-diyl))dicarbamate (4): To (2*R*,2'*R*)-3,3'-diselanediylbis(2-((*tert*-butoxycarbonyl)amino)propanoic acid) (**3**, 980 mg, 1.83 mmol, 1 equiv) in anhydrous DMF (9.2 mL) was added benzyl amine (0.44 mL, 4.04 mmol, 2.2 equiv), ethyl (hydroxyimino)cyanoacetate (782 mg, 5.50 mmol, 3 equiv), and Et₃N (0.77 mL, 5.5 mmol, 3 equiv). The reaction mixture was stirred in an ice bath for 30 min before EDCI (1.06 g, 5.5 mmol, 3 equiv) was added. The reaction mixture was stirred at rt overnight (16 h) and quenched with half-saturated NH₄Cl(60 mL). The aqueous layer was extracted with EtOAc (3 x 30 mL), and the combined organics were dried (MgSO₄ and Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a BiotageTM purification system with increasing concentration of EtOAc in hexanes to give title compound (1.10 g, 84% yield) as a yellow solid. Rf: 0.19/7:3/H:E ¹H NMR (400 MHz, CDCl₃): δ 8.18 (t, *J* = 6 Hz, 2H), 7.32-7.22 (m, 11H), 5.57 (d, *J* = 9.7 Hz, 2H), 4.90 (td, *J* = 4.6, 10.1 Hz, 2H), 4.60 (dd, *J* = 6.6, 15.0, 2H), 4.32 (dd, *J* = 5.4, 15.0, 2H), 3.28-3.17 (m, 4H), 1.23 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 170.70, 155.72, 138.16, 128.58, 127.70, 127.37, 79.99, 55.22, 43.44, 37.74, 28.17; IR (neat) 3252, 3029, 2909, 1685, 1549, 1505, 1469, 1456, 1256, 1121, 753, 699 cm⁻¹; HRMS (ESI) calcd for C₃₀H₄₃N₄O₆Se₂ (M+H)⁺ 715.1513, found 715.1513

(2*R*,2'*R*)-3,3'-diselanediylbis(2-amino-*N*-benzylpropanamide) dihydrochloride (5): To di-*N*-boc-selenocystinebis-benzyl amide (1.10 g, 1.54 mmol, 1 equiv) was added dioxane (2 mL) and the suspension was placed in an ice bath. 4 M HCl in dioxane (3.9 mL, 15.4 mmol, 10 equiv) was added dropwise and the resulting brown solution was stirred at rt overnight (12 h). The reaction mixture was concentrated under reduced pressure to give title compound (731 mg, 81%) as a beige solid that was used in the next step without further purification. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.48 (t, *J* = 6 Hz, 2H), 8.66 (s, 6H), 7.36-7.29 (m, 8H), 7.29-7.22 (m, 2H), 4.40-4.29 (m, 4H), 4.19 (t, *J* = 6.4 Hz, 2H), 3.57 (dd, *J* = 6, 12.8 Hz, 2H), 3.45 (dd, *J* = 7.0, 12.9, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 167.01, 138.35, 128.24, 127.35, 126.91, 52.58, 42.37, 29.46; IR (neat) 3252, 2919, 1687, 1550, 1471, 1304, 1257, 1058, 751, 699 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₇N₄O₂Se₂ (M+H)⁺ 515.0464, found 515.0464

N,*V*'-((*2R*,*2'R*)-diselanediyl*bis*(1-(benzylamino)-1-oxopropane-3,2-diyl)) dibenzamide (1): To Selenocystine-*bis*benzyl amide dihydrochloride (717 mg, 1.23 mmol, 1 equiv) suspended in CH₂Cl₂ (4.7 mL) was added DMF (1 mL) forming a brown solution. Et₃N (0.79 mL, 5.64 mmol, 4.6 equiv) was then added and the solution was placed in an ice bath. Benzoyl chloride (0.34 mL, 2.94 mmol, 2.4 equiv) dissolved in CH₂Cl₂ (0.52 mL) was added dropwise and the resulting brown suspension was stirred at rt overnight. After 14 h, the reaction mixture had formed a thick suspension and was not stirring. DMF (*ca* 2 mL) was added resulting in a brown suspension. The suspension was stirred for a further 2.5 h, diluted with CH₂Cl₂ (30 mL), washed successively with HCl (30 mL, 10 %), water, NaHCO₃, and brine, and purified by flash chromatography using a BiotageTM purification system with increasing concentration of EtOAc in CH₂Cl₂ (up to 50 %) to give title compound (883 mg, 70%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (t, *J* = 5.4 Hz, 2H), 7.50-7.30 (m, 24H), 5.76 (td, *J* = 5.0, 9.6 Hz, 2H), 4.58 (dd, *J* = 5.7, 14.7 Hz, 2H), 4.47 (dd, *J* = 5.0, 14.7 Hz, 2H), 3.49-3.34 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 170.59, 167.43, 137.64, 133.28, 131.89, 128.72, 128.54, 128.24, 127.52, 127.14, 54.56, 44.03, 36.69; IR (neat) 3269, 1668, 1634, 1578, 1533, 1490, 1454, 1288, 1241, 665 cm⁻¹; HRMS (ESI) calcd for C₃₄H₃₅N₄O₄Se₂ (M+H)⁺ 723.0989, found 723.0986

3.2. Selenocysteine Conjugation

General Procedure for Conjugation Conditions

Bis-(BzHN-Sec-benzamide) (1, 67.8 mg, 0.094 mmol, 1.0 equiv) was suspended in EtOH (2.6 mL, degassed by bubbling argon through for about 20 minutes). The suspension was placed in an ice bath before $NaBH_4$ (10.7 mg, 0.282 mmol, 3.0 equiv) was added in one portion. The reaction mixture bubbled and formed a yellow solution and

then a white precipitate. The reaction was stirred in the ice bath for 30 min. NaOAc buffer (pH 5.2, 2.6 mL, degassed by bubbling argon through for about 20 min) was added to the reaction followed by substrate (2.5 equiv). The resulting suspension was stirred in the ice bath for 2 h, partitioned between half-saturated brine (25 mL) and EtOAc (30 mL), extracted with EtOAc (2 x 30 mL), washed with brine, dried (MgSO₄ and Na₂SO₄), and filtered. The crude product was purified by flash chromatography with increasing concentration of EtOAc in hexanes (up to 60%).

 $\begin{array}{l} \text{BnHN} \underbrace{\mathsf{NHBz}}_{O} & (R) \cdot N \cdot (1 - (benzylamino) - 1 - oxo - 3 - ((5 - phenyl - 1, 3, 4 - oxadiazol - 2 - yl)selanyl) propan-2 - yl) benzamide (Sec-ODA, 11): Bis - (BzHN-Sec-benzamide (1, 62.2 mg, 0.093 mmol, 0.83) \\ \end{array}$

equiv) was suspended in MeOH (3.1 mL, degassed by bubbling argon through, 1 min/mL) in a 10 mL 2-neck round bottom flask. The suspension was placed in an ice bath before NaBH₄ (10.5 mg, 0.279 mmol, 2.5 equiv) was added in one portion. The reaction was stirred for 3 min after which NaOAc buffer (pH 5.2, 3.1 mL, degassed by bubbling argon through, 1 min/mL) was added followed by phenyl methyl sulfone¹ (**6**, 25 mg, 0.111 mmol, 1 equiv). The reaction mixture was stirred for an overall 4 h, quenched by the addition of water, extracted with EtOAc, dried, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography with a BiotageTM purification system with increasing concentration of EtOAc in hexanes to give 26.9 mg of Sec-ODA as a brown solid (44%): ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 6.5 Hz, 1H), 8.04-7.99 (m, 2H), 7.95-7.90 (m, 2H), 7.58-7.42 (m, 8H), 7.41-7.20 (m, 7H), 5.23 (td, *J* = 6.5, 3.6 Hz, 1H), 4.49 (d, *J* = 5.9 Hz, 2H), 3.88 (dd, *J* = 13.5, 6.6 Hz, 1H), 3.76 (dd, *J* = 13.6, 3.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.08, 168.40, 167.34, 158.69, 137.65, 132.76, 132.17, 131.94, 129.09, 128.66, 127.50, 127.47, 127.44, 126.79, 123.27, 54.34, 43.65, 29.74; IR (neat) 3311, 1623, 1524, 1467, 1167, 663 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₃N4O₃Se (M+H)⁺ 507.0935, found 507.0929

(*R*)-*N*-(3-(benzo[*d*]thiazol-2-ylselanyl)-1-(benzylamino)-1-oxopropan-2-yl)benzamide
(Sec-BTA, 12): Substrate 2-(methylsulfonyl)benzo[*d*]thiazole¹ (8, 50.2 mg, 0.235 mmol,
2.5 equiv) was used to give 79.4 mg of product (85%) as a yellow solid: ¹H NMR (400

MHz, CDCl₃): δ 8.82 (d, J = 5.6 Hz, 1H), 7.85-7.80 (m, 3H), 7.71-7.64 (m, 1H), 7.53 (bt, J = 5.2 Hz, 1H), 7.50-7.44 (m, 1H), 7.41 (ddd, J = 8.2, 7.2, 1.4 Hz, 1H), 7.38-7.35 (m, 1H), 7.34-7.27 (m, 6H), 7.25-7.21 (m, 1H), 5.17 (td, J = 6.3, 3.4 Hz, 1H), 4.50 (d, J = 5.7 Hz, 2H), 3.99 (dd, J = 13.7, 6.8 Hz, 1H), 3.74 (dd, J = 13.7, 3.4 Hz, 1H); ¹³C NMR

(101 MHz, CDCl₃) δ 170.47, 168.97, 161.36, 153.02, 137.89, 136.82, 133.23, 131.97, 128.67, 128.54, 127.52, 127.38, 126.24, 124.90, 121.31, 121.27, 55.13, 43.60, 29.95; IR (neat) 3287, 1634, 1523, 1454, 1423, 967, 753, 664 cm^{-1} ; HRMS (ESI) calcd for $C_{24}H_{22}N_3O_2Se (M+H)^+ 496.0598$, found 496.0598.

NHBzN-((2R)-3-((1-benzyl-2,5-dioxopyrrolidin-3-yl)selanyl)-1-(benzylamino)-1-oxopropan-BnHNSeNBn2-yl)benzamide (Sec-MAL, 13): Substrate N-benzyl maleimide (108.08 mg, 0.376 mmol, 4 equiv) was used to give 32.9 mg of product (32%) as a brown solid and as a mixture of

diastereomers: ¹H NMR (400 MHz, Chloroform-d) & 7.90-7.83 (m, 2H), 7.57-7.50 (m, 1H), 7.50-7.42 (m, 2H), 7.42-7.21 (m, 11H), 5.08-4.95 (m, 1H), 4.74-4.38 (m, 4.5H), 4.25 (dd, J = 9.3, 3.9 Hz, 0.6H), 3.86-3.66 (m, 1H), 3.32- $3.21 \text{ (m, 1H)}, 3.15-3.04 \text{ (m, 1H)}, 2.58 \text{ (ddd, } J = 20.7, 19.1, 3.8 \text{ Hz}, 1\text{H}); {}^{13}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 178.88,$ 178.81, 174.42, 174.24, 170.27, 170.13, 167.82, 167.46, 137.68, 137.60, 135.22, 135.19, 134.19, 133.34, 133.19, 132.06, 132.03, 128.72, 128.66, 128.63, 128.57, 128.38, 128.12, 127.72, 127.63, 127.51, 127.48, 127.40, 127.23, 53.73, 52.93, 43.73, 42.82, 41.43, 36.50, 35.94, 30.71, 30.04, 29.71, 28.09, 27.39; IR (neat) 3298, 2927, 1774, 1699, 1635, 1531, 1396, 1340, 1167, 908, 727, 664 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₈N₃O₄Se (M+H)⁺ 550.1245, found 550.1241

mmol, 2.5 equiv) was used to give 48 mg of product (50%) was a white solid: ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.74 (m, 2H), 7.57-7.47 (m, 1H), 7.48-7.39 (m, 2H), 7.36-7.17 (m, 12H), 4.77 (dd, J = 7.6, 5.1 Hz, 1H), 4.49-4.36 $(m, 4H), 3.40-3.25 (m, 2H), 3.19 (dd, J = 13.5, 4.9 Hz, 1H), 2.90 (dd, J = 13.5, 7.8 Hz, 1H); {}^{13}C NMR (101 MHz, 10.1 MHz), 10.1 MHz, 10.1 MHz, 10.1 MHz, 10.1 MHz)$ CDCl₃:CH₃OD/15:1) & 171.16, 170.51, 167.82, 137.77, 137.47, 133.13, 131.93, 128.49, 128.48, 128.45, 127.64, 127.50, 127.32, 127.16, 53.36, 43.84, 43.59, 26.73, 25.47; IR (neat) 3298, 1657, 1633, 1522, 1453, 694, 663 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₈N₃O₃Se (M+H)⁺ 510.1296, found 510.1294

 NHBz
 (R)-N-(1-(benzylamino)-3-((4-(benzylamino)-4-oxobut-1-en-2-yl)selanyl)-1

 One
 One

 One</t (10, 65.2 mg, 0.376 mmol, 4 equiv) was used to give 83.6 mg of product (83%) as a brown solid:

¹H NMR (400 MHz, DMSO- d_6) δ 8.72 (d, J = 8.0 Hz, 1H), 8.63 (t, J = 6.0 Hz, 1H), 8.44 (t, J = 6.0 Hz, 1H), 7.95-7.89 (m, 2H), 7.58-7.51 (m, 1H), 7.51-7.44 (m, 2H), 7.34-7.17 (m, 11H), 5.62 (s, 1H), 5.31 (s, 1H), 4.73 (ddd, J = 9.7, 7.8, 4.9 Hz, 1H), 4.31 (dd, J = 6.0, 3.2 Hz, 2H), 4.25 (d, J = 6.0 Hz, 2H), 3.26 (dd, J = 12.2, 5.0 Hz, 1H), 3.23 (s, 2H), 3.14 (dd, J = 12.3, 9.7 Hz, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 170.33, 168.51, 166.43, 139.27, 139.24, 134.71, 133.92, 131.41, 128.22, 128.20, 128.17, 127.61, 127.20, 127.03, 126.73, 126.69, 116.73, 53.48, 45.81, 42.22, 27.14; IR (neat) 3298, 2974, 1640, 1534, 1086, 1045, 879, 697 cm⁻¹; HRMS (ESI) calcd for C₂₈H₃₀N₃O₃Se (M+H)⁺ 536.1452, found 536.1451

tert-Butyl (4-(buta-2,3-dienamido)butyl)carbamate (21): 3-butynoic acid (100 mg, H_{H} , H_{H} ,

N-(4-(buta-2,3-dienamido)butyl)-3',6'-dihydroxy-3-oxo-3Hspiro[isobenzofuran-1,9'-xanthene]-5-carboxamide (Fl-ALL,
19). tert-Butyl (4-(buta-2,3-dienamido)butyl)carbamate (21, 24.6

mg, 0.097 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (0.29 mL) and placed in an ice bath before CF₃CO₂H (0.19 mL) was added dropwise. The reaction mixture was stirred in the ice bath for 1 h, concentrated under reduced pressure to give *N*-(4-aminobutyl)buta-2,3-dienamide trifluoroacetate salt as a yellow gel. To 5-carboxyfluorescein (18.2 mg, 48 μ mol, 1 equiv), EDCI•HCl (18.5 mg, 97 μ mol, 2 equiv), and Oxyma (14.1 mg, 97 μ mol, 2 equiv) was added DMF (0.5 mL) and Et₃N (20.2 μ L) followed by *N*-(4-aminobutyl)buta-2,3-dienamide trifluoroacetate (13.0 mg, 48 μ mol, 1 equiv) in DMF (0.5 mL). The reaction mixture was stirred for 3.5 h, purified by preparative HPLC and lyophilized to give product (5.3 mg, 21%) as a white solid: Retention Time: 6.406 min, LRMS (ESI) calcd for C₂₉H₂₅N₂O₇ [M+H]⁺ 513.17, found 513.5; 90 % purity by LC-MS at 254 nm; HRMS (ESI) calcd for C₂₉H₂₅N₂O₇ (M+H)⁺ 513.1662, found 513.1651

3.3. Figures and Schemes

Fig. S1 All the electrophilic reagents surveyed for selenocysteine conjugation. Conversion determined by ¹H NMR of crude product. ^aYield determined by LC-MS. ^bIsolated yield.

Oxadiazole SELENOMAB-fluorescein conjugate (SFC-ODA) 24

Scheme S1 Conjugation of SELENOMAB to fluorescein oxadiazole probe to give SELENOMAB-fluorescein conjugate 24 (SFC-ODA)

3.4. Antibody Conjugation and Analysis

SELENOMAB Conjugation Reactions

The cloning, expression, and purification of trastuzumab scFv-Fc-Sec and scFv-Fc-stop antibody were performed as previously described.⁴ Conjugation reactions were carried out using 4 μ M (~ 0.5 mg/mL) tratuzumab scFv-Fc-Sec or scFv-Fc-stop and 40 μ M fluorescein-attached ALL **19** (Fl-ALL) or sulfone linker **18** (Fl-ODA) in 100 mM sodium acetate (pH 5.2) buffer in the presence of 0.1 mM dithiothreitol (DTT). The reactions were allowed to proceed for indicated time points at room temperature. Unconjugated compounds were removed by using NAP-5 columns (GE healthcare) and buffer-exchanged with PBS. The labeling was analyzed by SDS-PAGE.

SDS-PAGE

2 μg conjugates were incubated at 70 °C for 5 min in NuPAGE LDS Sample Buffer (Life Technologies) supplemented with or without 50 mM DTT and then loaded on a NuPAGE Novex Bis-Tris 4-12% gradient gel (Life Technologies). Following SDS-PAGE and prior to staining with SimplyBlue SafeStain (Life Technologies), a picture of the gel was taken under blue light illumination (Life Technologies) to record the fluorescence.

Analysis of HER2 Binding by Flow Cytometry

Human breast cancer cell lines SK-BR-3 and MDA-MB-468 were maintained at 37 °C in a humidified 5% CO_2 atmosphere in DMEM completed with 10% FBS and 1% Pen Strep. 2 x 10⁵ cells were distributed in each well of a V-shaped 96-well plate. The cells were incubated with 10 µg SELENOMAB-fluorescein conjugates for 30 min on ice. Samples were washed three times with 200 µL FACS buffer and transferred to FACS tubes. Fluorescence was measured on an LSR II Flow Cytometer (Becton-Dickinson), and data were analyzed using FlowJo software (Tree Star, Inc.).

Human plasma stability

Conjugate plasma stability was carried out as previously described.⁵ In brief, SELENOMAB-fluorescein conjugates at a concentration of 1 mg/mL were diluted 1:1 (v/v) into human plasma and incubated at 37 °C for the duration of the study. Aliquots were removed at various time points (0, 4, 8, 12, 24, 48, and 72 h) and stored at -80 °C, and then SDS-PAGE was performed as above.

4. NMR Spectra

5. LC-MS Traces for Selenocysteine Adducts Stability Studies

5.1. Stability experiments at pH 5.2 NaOAc buffer

The solution of the substrate (0.0025 mmol) in THF (0.75 mL) and 100 mM pH 5.2 NaOAc buffer (0.25 mL) was stirred for 3 days at room temperature. Remaining amounts of substrate were analyzed by HPLC at 0 and 72 h.

0 h [THF/100 mM NaOAc (pH 5.2)] Sec-ODA (11) DAD1 A, Sig=254,4 Ref=360,100 (DEF_LC 2015-01-28 16-39-54\005-0301.D) mAU NHB₇ 8.871 400 Se **BnHN** 0 \\ // N~N 300 200 100 0 10 2 4 6 8 12 14 min

72 h [THF/100 mM NaOAc (pH 5.2)]

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.875	BB	0.0513	1316.81531	411.38223	100.0000

0 h [THF/100 mM NaOAc (pH 5.2)] Sec-BTA (12)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.411	BB	0.0511	1026.44470	322.95502	100.0000

0 h [THF/100 mM NaOAc (pH 5.2)] Sec-MAL (13)

72 h [THF/100 mM NaOAc (pH 5.2)]

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	7.827	BB	0.0480	79.02779	25.60394	16.5923
2	8.765	BB	0.0643	259.63531	65.40703	54.5118
3	9.095	BB	0.0555	137.62874	38.66005	28.8959

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.801	BB	0.0509	409.35870	129.48523	46.8871
2	8.199	BB	0.0470	331.40213	110.49889	37.9581
3	9.085	BB	0.0581	132.31171	36.67674	15.1547

0 h [THF/100 mM NaOAc (pH 5.2)] Sec-ALL (15)

Peak Ret # [m	Time nin]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-	-	-		
1 8	8.395	BB	0.0462	453.97052	154.90054	100.0000
Totals :				453.97052	154.90054	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

5.2. Stability experiments under basic conditions

The solution of the substrate (0.0025 mmol) in THF (0.75 mL), K_2CO_3 (0.01 mmol) and water (0.25 mL) was stirred for 3 days at room temperature. Remaining amounts of substrate were analyzed by HPLC at 0 and 72 h.

$0 h [THF/K_2CO_3]$ Sec-BTA (12)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.752	BB	0.0489	226.18492	71.56116	15.6437
2	9.036	BB	0.0572	163.73650	44.21599	11.3245
3	9.405	BB	0.0510	1055.93469	332.84763	73.0318

Just before adding K₂CO₃ Sec-MAL (13)

0 h [THF/K₂CO₃]

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.136	BB	0.0490	438.51343	138.19540	47.7976
2	7.835	BB	0.0496	96.40651	29.90200	10.5082
3	9.098	BB	0.0565	133.43469	36.60106	14.5443
4	9.616	BB	0.0481	249.08412	80.43068	27.1499

72 h [THF/K₂CO₃]

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.831	BB	0.0506	188.73688	60.13903	19.8100
2	8.216	BB	0.0459	529.01312	182.25276	55.5256
3	9.093	BB	0.0584	234.98654	64.58604	24.6644

5.3. Stability experiments under oxidizing conditions

The solution of the substrate (0.0025 mmol) in THF (0.75 mL), H₂O₂ (5 mM) and pH 7 buffer (0.25 mL) was stirred for 3 days at room temperature. Remaining amounts of substrate were analyzed by HPLC at 0 and 72 h

$0 h [THF/H_2O_2]$ Sec-ODA (11)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.878	BB	0.0495	1249.99243	389.19852	100.0000

1

9.414 mAU NHBz 250 BnHN. Se 200 ö 150 100 50 0 10 2 4 6 8 12 14 min 72 h [THF/H₂O₂] DAD1 A, Sig=254,4 Ref=360,100 (DEF_LC 2015-05-04 16-50-48\002-0201.D) mAU 9.407 350 NHBz BnHN 300 250 ö 200 150 100 50 0 6 8 10 1 Signal 1: DAD1 A, Sig=254,4 Ref=360,100 2 4 12 14 min Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 9 ----|-----|-----|-----|------|

9.407 BB

1

0.0492 1296.25757 407.00394 100.0000

0 h [THF/H₂O₂] Sec-MAL (13)

72 h [THF/H₂O₂]

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
		-	-			
1	5.946	VB	0.0458	160.32913	55.33151	27.9014
2	7.834	BB	0.0506	139.63368	44.50903	24.2999
3	8.767	BB	0.0668	134.37415	33.50397	23.3846
4	9.097	BB	0.0563	140.29071	38.68728	24.4142

$0 h [THF/H_2O_2]$ Sec-IAM (14)

72 h [THF/H₂O₂]

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.829	BB	0.0489	1119.75000	354.50128	89.6153
2	9.090	BB	0.0583	129.75697	35.75947	10.3847

5.4. Stability study in the presence of glutathione

The solution of the substrate (2.5 μ mol) in THF (0.75 mL) was added glutathione (GSH, 20 nmol, 20 μ M final concentration) in PBS buffer pH 7.4 (0.25 mL) and the mixture was stirred at 37 °C for 3 days. Remaining amounts of substrate were analyzed by HPLC at 0 and 72 h.

0 h [20 µM Glutathione (GSH)/THF/PBS] Sec-ODA (11)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.825	VV	0.0506	2580.00488	822.29919	83.3087
2	9.065	VV	0.0633	516.91522	122.26472	16.6913

0 h [20 μ M Glutathione (GSH)/THF/PBS] Sec-BTA (12)

72 h [20 µM Glutathione (GSH)/THF/PBS]

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.068	VV	0.0680	490.57880	110.04535	20.2209
2	9.426	VV	0.0533	1935.52014	574.12799	79.7791

0 h [20 μ M Glutathione (GSH)/THF/PBS] Sec-MAL (13)

9.585 VV

3

72 h [20 µM Glutathione (GSH)/THF/PBS]

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

0.0687

130.92946

27.90836 20.2838

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.936	VV	0.0684	68.47449	14.16934	3.7185
2	7.808	VV	0.0523	655.33435	189.61926	35.5874
3	8.556	VV	0.0661	136.61131	30.58173	7.4186
4	8.742	VV	0.0806	256.21854	49.35325	13.9137
5	9.065	VV	0.0655	527.39581	119.42727	28.6398
6	9.589	VV	0.0588	197.44440	49.27272	10.7221

72 h [20 µM Glutathione (GSH)/THF/PBS]

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	55
1	7.815	VV	0.0765	126.16600	22.81664	8.2566
2	8.206	VV	0.0509	791.66071	250.46336	51.8082
3	8.562	VV	0.0643	114.67382	26.59954	7.5045
4	9.071	VV	0.0678	495.55920	111.65112	32.4306

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.817	MM	0.0542	51.20485	15.74344	9.3682
2	8.422	BB	0.0461	495.37906	169.32568	90.6318

72 h [20 µM Glutathione (GSH)/THF/PBS]

5.5. Stability study in human blood plasma

A solution of substrate (50 μ L, 4 mM in DMSO) was added to human plasma (950 μ L) at 0 °C. The mixture was incubated for 72 h at 37 °C. Samples for HPLC analysis (100 µL) were collected from the mixture at each time point. To the collected samples were added MeCN (600 μ L) containing Nbenzylbenzamide (internal standard, IS) and centrifuged for 5 minutes at 5000 rpm. The supernatant (600 μ L) was analyzed by HPLC (254 nm).

0 h [plasma] Phenyloxadiazole-Selenocysteine Adduct (Sec-ODA 11)

24 h [plasma]

48 h [plasma]

72 h [plasma]

Time/h	IS area	Sec-ODA (11) area	% Remaining
0	150.21799	101.38508	100
24	145.25957	10.37195	10.6
48	144.67004	8.44145	8.65
72	146.65027	0	0.00

Time/h	IS area	Sec-BTA (12) area	% Remaining
0	144.55676	93.96006	100
24	146.74489	56.03693	58.7
48	145.50803	34.67171	36.7
72	147.53522	24.39896	25.4

0 h [plasma] Iodoacetamide-Selenocysteine Adduct (Sec-IAM (14)) DAD1 A, Sig=254,4 Ref=360,100 (DEF_LC 2015-05-06 07-02-18\002-0201.D)

24 h [plasma]

48 h [plasma]

72 h [plasma]

Time/h	IS area	Sec-IAM (14) area	% Remaining
0	145.50101	40.32212	100
24	148.23933	37.86126	92.2
48	150.33929	28.08746	67.4
72	147.77037	20.66275	50.5

0 h [plasma] Allene-Selenocysteine Adduct (Sec-ALL (**15**)) DAD1 A, Sig=254,4 Ref=360,100 (DEF_LC 2015-05-06 07-02-18\003-0301.D)

72 h [plasma]

Time/h	IS area	Sec-ALL (15) area	% Remaining
0	147.14783	49.82321	100
24	148.26094	43.2604	86.2
48	148.00545	39.35146	78.5
72	148.81026	36.97701	73.4

6. References

- 1. N. Toda, S. Asano and C. F. Barbas, *Angew. Chem. Int. Ed.*, 2013, **52**, 12592-12596.
- 2. A. A. H. Elmehriki, M. Milne, M. Suchy, R. Bartha and R. H. E. Hudson, *Can J Chem*, 2013, **91**, 211-219.
- 3. A. Abbas, B. G. Xing and T. P. Loh, *Angew. Chem. Int. Ed.*, 2014, **53**, 7491-7494.
- 4. X. L. Li, J. T. Patterson, M. Sarkar, L. Pedzisa, T. Kodadek, W. R. Roush and C. Rader, *Bioconjugate Chem.*, 2015, **26**, 2243-2248.
- 5. J. T. Patterson, S. Asano, X. L. Li, C. Rader and C. F. Barbas, *Bioconjugate Chem.*, 2014, **25**, 1402-1407.