Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Borane-Catalyzed Metal-Free Hydrogenation of 2,7-Disubstituted 1,8-Naphthyidines

Wei Wang, Xiangqing Feng and Haifeng Du\*

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and

Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

**Supporting Information** 

**General information:** All air-sensitive compounds were handled under an atmosphere of argon or in a nitrogen-filled glovebox. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on Bruker AV 400 at ambient temperature with CDCl<sub>3</sub> as solvent and TMS as internal standard. Chemical shifts ( $\delta$ ) were given in ppm, referenced to the residual proton resonance of TMS (0), to the carbon resonance of the CDCl<sub>3</sub> (77.23). Coupling constants (*J*) were given in Hertz (Hz). IR spectrums were recorded on Perkin-Elmer-983 spectrometer. Column chromatography was performed on silica gel (200-300 mesh). All solvents were purified by conventional methods, distilled before use. Commercially available reagents were used without further purification.

**Representative procedure for the synthesis of 1,8-naphthyridines (1a-1j)**: see the reference: P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner and P. Langer, *Synlett*, 2013, 359-362.

**Representative procedure for the synthesis of 1,8-naphthyridines (1k-1y)**: A solution of 2-aminonicotinaldehyde (50 mmol, 6.1 g), acetone (150 mmol, 15 mL), and L-proline (55 mmol, 6.4 g) in ethanol (70 mL) was stirred at reflux over night. The reaction solution was then cooled to room temperature, concentrated and the residue was dissolved in dichloromethane (70 mL) and filtrated. The residue was then concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel using ethyl acetate as the eluent to give 2-methyl-1,8-naphthyridine as a yellow solid (7.2 g, 99% yield). K. Leonard, W. Pan, B. Anaclerio, J. Gushue, Z. Guo, R. DesJarlais, M. Chaikin, J. Lattanze,

C. Crysler, C. Manthey, B. Tomczuk and J. Marugan, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 2679-2684.

To a stirred solution of 2-methyl-1,8-naphthyridine (0.72 g, 5 mmol) in tetrahydrofuran (10 mL) cooled at -78 °C was slowly added a solution of 1.0 M phenyllithium in ether (7.5 mL, 7.5 mmol) under argon atmosphere. The solution was stirred for 15 min, and then warmed to room temperature and stirred over night. A solution of saturated ammonium chloride (5 mL) was added to quench the reaction and then water (5 mL) was added. The organic layers were separated and the aqueous phase was extracted with dichloromethane (2 x 10 mL). The combined organic layer was dried over anhydrous sodium sulphate, filtered, and condensed by evaporation under reduced pressure. Then, acetone (10 mL) and an excess acetone solution of KMnO<sub>4</sub> were added. The mixture was stirred under room temperature over night. Then, the mixture was filtered and evaporated. The resulting residue was purified by silical gel column chromatography using petroleum ether/dichloromethane as the eluent to give **1k** as gray solid (0.66 g, 60% yield).

**Representative procedure for hydrogenation of 1,8-naphthyridines**: To a glass test tube (10 mL) was added HB(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub> (0.0086 g, 0.025 mmol), 1,2,3,4,5-pentafluorostyrene (0.0049 g, 0.025 mmol) and dry toluene (0.5 mL) in a nitrogen atmosphere glovebox. The resulting mixture was stirred at room temperature for 5 min followed by addition 2,7-diphenyl-1,8-naphthyridine (**1a**) (0.0706 g, 0.25 mmol). The tube was then moved to a stainless-steel autoclave. After being sealed, the autoclave was purged three times with H<sub>2</sub> and the final pressure of hydrogen was adjusted to 30 bar. The reaction mixture was stirred at 40 °C for 20 h. After cooling to ambient temperature, the solvent was removed under reduced pressure. The crude residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to give 2,7-diphenyl-1,2,3,4-tetrahydro-

1,8-naphthyridine (**3a**) as a light yellow oil (0.0688 g, 96% yield).

Representative procedure for the metal-free catalytic asymmetric hydrogenation of 1,8-naphthyridines: To a glass test tube (10 mL) was added HB(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub> (0.0087 g, 0.025 mmol), chiral diene 4d (0.0082 g, 0.0125 mmol), dry hexane (0.25 mL), and dry toluene (0.75 mL) in a nitrogen atmosphere glovebox. The resulting mixture was stirred for 10 min at room temperature followed by addition of 1,8-naphthyridine 1k (0.0551 g, 0.25 mmol). The tube was then moved to a stainless-steel autoclave. After being sealed, the autoclave was purged three times with H<sub>2</sub> and the final pressure of hydrogen was adjusted to 30 bar. The reaction mixture was stirred at room temperature for 20 h, and the solvent was removed under reduced pressure. The crude residue was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to give the desired chiral 3k as a yellow oil (0.0521 g, 93% yield, 47% ee).

| entry | temp. (°C) | time (h) | solvent                          | $\operatorname{convn}(\%)^b$ |
|-------|------------|----------|----------------------------------|------------------------------|
| 1     | 25         | 12       | Toluene                          | 63                           |
| 2     | 25         | 12       | DCM                              | nr <sup>c</sup>              |
| 3     | 25         | 12       | Dioxane                          | nr <sup>c</sup>              |
| 4     | 25         | 12       | MTBE                             | nr <sup>c</sup>              |
| 5     | 25         | 12       | Hexane                           | 60                           |
| 6     | 25         | 12       | C <sub>6</sub> H <sub>5</sub> Cl | 61                           |
| 7     | 40         | 12       | Toluene                          | 90                           |
| $8^d$ | 40         | 12       | Toluene                          | 95                           |
| $9^d$ | 40         | 20       | Toluene                          | >99                          |

Table S1 Optimization of reaction conditions for hydrogenation of  $1a^{a}$ 

<sup>*a*</sup> Conditions: **1a** (0.1 mmol) in solvent (0.4 mL) under H<sub>2</sub> (30 bar). <sup>*b*</sup> Determined by <sup>1</sup>H NMR analysis of the crude reaction mixtures. <sup>*c*</sup> No reaction. <sup>*d*</sup> In solvent (0.2 mL).

| entry                 | solvent                          | conc. (mol/L) | $\operatorname{convn}(\%)^b$ | ee $(\%)^{c}$ |
|-----------------------|----------------------------------|---------------|------------------------------|---------------|
| 1                     | Hexane                           | 0.25          | 68                           | 50            |
| 2                     | Toluene                          | 0.25          | >99                          | 43            |
| 3                     | C <sub>6</sub> H <sub>5</sub> Cl | 0.25          | 84                           | 26            |
| 4                     | Toluene                          | 0.125         | >99                          | 41            |
| 5                     | Toluene                          | 0.5           | >99                          | 37            |
| 6                     | Toluene:Hexane = 1:1             | 0.25          | 90                           | 50            |
| 7                     | Toluene:Hexane = 3:1             | 0.25          | >99                          | 48            |
| $8^d$                 | Toluene                          | 0.25          | >99                          | 46            |
| <b>9</b> <sup>d</sup> | Toluene:Hexane = 3:1             | 0.25          | >99                          | 47            |

**Table 2** Optimization of the asymmetric hydrogenation<sup>a</sup>

<sup>*a*</sup> All reactions were carried out with **1u** (0.10 mmol), HB(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub> (0.010 mmol), chiral diene **4c** (0.005 mmol) under H<sub>2</sub> (30 bar) at room temperature. <sup>*b*</sup> Determined by <sup>1</sup>H NMR spectroscopy of the crude reaction mixture. <sup>*c*</sup> Determined by HPLC using a Chiralcel OD-H column. <sup>*d*</sup> **1k** (0.10 mmol), chiral diene **4d** (0.005 mmol).

## Characterization data of 1,8-naphthyridines



**1a**, 1.05 g (74% yield); white solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.31 (d, J = 6.8 Hz,

4H), 8.23 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 8.4 Hz, 2H), 7.59-7.44 (m, 6H); <sup>13</sup>C NMR (100

MHz, CDCl<sub>3</sub>, ppm): δ 161.1, 156.4, 139.0, 137.6, 130.2, 128.9, 128.3, 120.8, 119.8.

P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner and

P. Langer, Synlett, 2013, 359-362.



**1b**, 0.98 g (63% yield); light yellow solid; m.p. 207-209 °C; IR (film): 1598, 1525, 1482 cm<sup>-1</sup>;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.28 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.62 (dd, J = 8.4, 2.0 Hz, 2H), 7.37-7.28 (m, 6H), 2.49 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 164.0, 155.8, 140.4, 136.8, 136.3, 131.0, 130.5, 129.0, 126.1, 123.6, 119.8, 20.8; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 311.1543, Found: 311.1539.



**1c**, 1.16 g (73% yield); light yellow solid; m.p. 197-199 °C; IR (film): 1607, 1532, 1435 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.30 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 4H), 7.97 (d, J = 8.4 Hz, 2H), 7.56-7.45 (m, 2H), 7.24-7.15 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.5 (d,  $J_{C-F} = 244.0$  Hz), 160.0, 156.2, 141.2 (d,  $J_{C-F} = 2.0$  Hz), 138.0, 130.5 (d,  $J_{C-F} = 8.0$ Hz), 123.8 (d,  $J_{C-F} = 3.0$  Hz), 121.3, 119.9, 117.2 (d,  $J_{C-F} = 21.0$  Hz), 115.3 (d,  $J_{C-F} = 23.0$  Hz); HRMS (ESI) Calcd. for C<sub>20</sub>H<sub>13</sub>N<sub>2</sub>F<sub>2</sub> (M+H): 319.1041, Found: 319.1037.



1d, 1.29 g (75% yield); yellow solid; m.p. > 250 °C; IR (film): 1607, 1526, 1037 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.25 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 8.4 Hz, 2H), 7.94 (d, J= 2.4 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.45 (dd, J = 8.0, 8.0 Hz, 2H), 7.05 (ddd, J = 8.4, 2.4, 0.6 Hz, 2H), 3.96 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  161.0, 160.4, 156.3, 140.5, 137.6, 129.9, 121.0, 120.6, 120.0, 116.8, 112.9, 55.8; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>19</sub>O<sub>2</sub>N<sub>2</sub> (M+H): 343.1441, Found: 343.1437.



**1e**, 1.03 g (65% yield); white solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.34-8.28 (m, 4H), 8.26 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.25-7.19 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  164.5 (d, *J*<sub>C-F</sub> = 249.0 Hz), 160.2, 156.3, 137.8, 135.1 (d, *J*<sub>C-F</sub> = 3.0 Hz), 130.2 (d, *J*<sub>C-F</sub> = 9.0 Hz), 120.6, 119.5, 116.0 (d, *J*<sub>C-F</sub> = 22.0 Hz).

P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner andP. Langer, *Synlett*, 2013, 359-362.



**1f**, 1.57 g (75% yield); light yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.43 (d, J = 8.0 Hz, 4H), 8.36 (d, J = 8.4 Hz, 2H), 8.04 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  159.9, 156.2, 142.1, 138.2, 132.0 (q,  $J J_{C-F} = 32.0$  Hz), 128.6, 126.0 (q,  $J_{C-F} = 3.0$  Hz), 124.3 (q,  $J_{C-F} = 270.6$  Hz), 121.5, 120.2.

P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner andP. Langer, *Synlett*, 2013, 359-362.



**1g**, 1.26 g (81% yield); white solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.22 (d, *J* = 8.4 Hz, 4H), 8.21 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 4H), 2.44 (s, 6H);

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 161.0, 156.5, 140.3, 137.4, 136.2, 129.7, 128.2, 120.6, 119.4, 21.6.

P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner andP. Langer, *Synlett*, 2013, 359-362.



1h, 1.42 g (83% yield); yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.30 (dd, J = 6.8, 2.0 Hz, 4H), 8.19 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H), 7.06 (dd, J = 6.8, 2.0 Hz, 4H), 3.91 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 161.5, 160.5, 156.5, 137.4, 131.6, 129.7, 120.2, 118.9, 114.3, 55.6.

P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner andP. Langer, *Synlett*, 2013, 359-362.



**1i**, 1.92 g (85% yield); white solid; m.p. 231-232 °C; IR (film):1600, 1524 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.40 (d, *J* = 8.4 Hz, 2H), 8.29 (d, *J* = 8.0 Hz, 2H), 8.00-7.92 (m, 4H), 7.92-7.85 (m, 4H), 7.61 (dd, *J* = 8.0, 7.2 Hz, 2H), 7.50 (ddd, *J* = 14.0, 6.8, 1.4 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.3, 156.4, 138.3, 137.0, 134.1, 131.3, 129.8, 128.9, 128.7, 127.0, 126.2, 125.9, 125.6, 124.6, 120.4; HRMS (ESI) Calcd. for C<sub>28</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 383.1543, Found: 383.1547.



1j, 1.18 g (80% yield); yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.11 (d, J = 8.4 Hz, 2H), 7.87 (dd, J = 3.6, 0.8 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.54 (dd, J = 5.2, 0.8 Hz, 2H), 7.18 (dd, J = 6.0, 3.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.2, 144.7, 137.5, 130.0, 128.3, 127.4, 120.9, 118.4.

P. Ehlers, A. Petrosyan, T. V. Ghochikyan, A. S. Saghyan, A. Neubauer, S. Lochbrunner andP. Langer, *Synlett*, 2013, 359-362.



1k, 0.66 g (60% yield); gray solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.33 (d, J = 6.8 Hz, 2H), 8.20 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.58-7.46 (m, 3H), 7.36 (d, J = 8.4 Hz, 1H), 2.84 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.5, 160.2, 156.1, 138.8, 137.5, 136.7, 130.1, 128.9, 128.1, 122.8, 119.8, 119.0, 25.9.

P. Galatsis, K. Yamagata, J. A. Wendt, C. J. Connolly, J. W. Mickelson, J. B. J. Milbank, S. E.
Bove, C. S. Knauer, R. M. Brooker, C. E. Augelli-Szafran, R. D. Schwarz, J. J. Kinsora and K.
S. Kilgore, *Bioorg. Med. Chem. Lett.*, 2007, 17, 6525-6528.



11, 0.49 g (42% yield); white solid; m.p. 131-133 °C; IR (film): 1603, 1508, 1303 cm<sup>-1</sup>; <sup>1</sup>H

NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.24 (s, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.38 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.29 (s, 2H), 2.81 (s, 3H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  163.3, 160.1, 155.9, 138.6, 138.5, 137.3, 136.6, 130.8, 128.7, 128.6, 124.9, 122.6, 119.6, 118.9, 25.7, 21.5; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub> ((M+H)<sup>+</sup>): 235.1230, Found: 235.1230.



**1m**, 0.73 g (61% yield); white solid; m.p. 235-237 °C; IR (film): 1609, 1596, 1516, 1224 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.31 (dd, J = 8.4, 3.2 Hz, 2H), 8.18 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.19 (dd, J = 8.8, 8.4 Hz, 2H), 2.83 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  164.3 (d,  $J_{C-F}$  = 249.0 Hz), 163.7, 159.0, 156.0, 137.7, 136.7, 135.0 (d,  $J_{C-F}$  = 5.0 Hz), 130.0 (d,  $J_{C-F}$  = 8.0 Hz), 122.9, 119.7, 118.6, 115.8 (d,  $J_{C-F}$  = 21.0 Hz), 25.9; HRMS (ESI) Calcd. for C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>F (M+H): 239.0979, Found: 239.0977.



1n, 0.82 g (57% yield); white solid; m.p. 267-268 °C; IR (film): 1614, 1537, 1328, 1124 cm<sup>-1</sup>;
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.36 (d, J = 7.2 Hz, 2H), 8.12 (d, J = 7.6 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 7.2 Hz, 2H), 7.32 (d, J = 7.6 Hz, 1H), 2.81 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.7, 158.0, 155.6, 141.8, 137.8, 136.6,

131.4 (q,  $J_{C-F}$  = 32.0 Hz), 128.0, 125.6 (q,  $J_{C-F}$  = 3.0 Hz), 124.1 (q,  $J_{C-F}$  = 270.4 Hz), 123.1, 120.0, 118.6, 25.6; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>12</sub>N<sub>2</sub>F<sub>3</sub> (M+H): 289.0947, Found: 289.0944.



**10**, 0.52 g (44% yield); light yellow solid; m.p. 183-185 °C; IR (film): 1602, 1500 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.24 (d, *J* = 8.0 Hz, 2H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.37-7.31 (m, 3H), 2.84 (s, 3H), 2.44 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.4, 160.2, 156.2, 140.4, 137.4, 136.7, 136.1, 129.7, 128.0, 122.6, 119.8, 118.9, 25.9, 21.6; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub> (M+H): 235.1230, Found: 235.1231.



**1p**, 0.50 g (40% yield); white solid; m.p. 164-165 °C; IR (film): 1599, 1499, 1252, 1174 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.31 (d, *J* = 8.4 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 3.88 (s, 3H), 2.82 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.3, 161.5, 159.8, 156.1, 137.3, 136.7, 131.4, 129.5, 122.4, 119.5, 118.5, 114.3, 55.6, 25.8; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>15</sub>ON<sub>2</sub> (M+H): 251.1179, Found: 251.1175.



**1q,** 0.74 g (50% yield); white solid; m.p. > 250 °C; IR (film): 1601, 1486, 1305 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.43 (d, J = 8.4 Hz, 2H), 8.22 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.53-7.46 (m, 2H), 7.43-7.34 (m, 2H), 2.86 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  163.6, 159.7, 156.2, 142.9, 140.6, 137.7, 137.6, 136.8, 129.1, 128.5, 127.9, 127.6, 127.4, 122.8, 119.9, 118.9, 25.9; HRMS (ESI) Calcd. for C<sub>21</sub>H<sub>17</sub>N<sub>2</sub> (M+H): 297.1386, Found: 297.1383.



**1r**, 0.27 g (24% yield); yellow solid; m.p. 105-106 °C; IR (film): 1601, 1534, 1501, 1439 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.11 (d, *J* = 8.0 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.87-7.80 (m, 2H), 7.50 (d, *J* = 5.2 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.20-7.13 (m, 1H), 2.82 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.7, 156.0, 155.5, 145.0, 137.5, 136.7, 129.9, 128.3, 127.1, 122.6, 119.9, 118.1, 25.9; HRMS (ESI) Calcd. for C<sub>13</sub>H<sub>11</sub>N<sub>2</sub>S (M+H): 227.0638, Found: 227.0640.



**1s**, 0.41 g (31% yield); white solid; m.p. 49-50 °C; IR (film): 2956, 1603, 1510 cm<sup>-1</sup>; <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.33 (d, J = 7.2 Hz, 2H), 8.21 (d, J = 8.8 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.58-7.44 (m, 3H), 7.37 (d, J = 8.4 Hz, 1H), 3.08 (t, J = 8.0 Hz, 2H), 1.93-1.81 (m, 2H), 1.53-1.40 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  167.7, 160.3, 156.3, 139.0, 137.6, 136.8, 130.1, 128.9, 128.2, 122.3, 120.1, 119.1, 39.5, 32.3, 22.9, 14.2; HRMS (ESI) Calcd. for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 263.1543, Found: 263.1547.



**1t**, 0.30 g (23% yield); white solid; m.p. 75-76 °C; IR (film): 2955, 1603, 1511, 1302 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.32 (dd, J = 8.0, 1.2 Hz, 2H), 8.21 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.58-7.44 (m, 3H), 7.34 (d, J = 8.4 Hz, 1H), 2.95 (d, J = 7.2 Hz, 2H), 2.33 (heptet, J = 6.8 Hz, 1H), 1.00 (d, J = 6.8 Hz, 6H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 166.8, 160.4, 156.3, 139.0, 137.6, 136.6, 130.1, 128.9, 128.3, 122.9, 120.1, 119.2, 48.7, 29.7, 22.8; HRMS (ESI) Calcd. for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 263.1543, Found: 263.1546.



1u, 0.48 g (61% yield); brown solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.01 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.78 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 162.6, 155.6, 136.4, 122.1, 118.6, 25.6.

G. R. Newknow, K. J. Theriot, V. K. Majestic, P. A. Spruell and J. R. Baker, *J. Org. Chem.*, 1990, **55**, 2838-2842.



**1v**, 0.34 g (32% yield); white solid; m.p. 62-64 °C. IR (film): 2964, 1607, 1541 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.07 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 3.34 (heptet, J = 6.8 Hz, 2H), 1.42 (d, J = 6.8 Hz, 12H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  171.5, 155.7, 137.1, 119.8, 119.7, 37.7, 22.7; HRMS (ESI) Calcd. for C<sub>14</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 215.1543, Found: 215.1540.



**1w**, 0.87 g (72% yield); white solid; m.p. 90-91 °C; IR (film): 2955, 1606, 1539 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  8.03 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 2.90 (d, *J* = 7.2 Hz, 4H), 2.33 (heptet, *J* = 6.8 Hz, 2H), 0.98 (d, *J* = 6.8 Hz, 12H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  166.0, 156.0, 136.5, 122.4, 119.2, 48.7, 29.5, 22.8; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 243.1856, Found: 243.1853.



**1x**, 0.13 g (13% yield); light yellow solid; m.p. 84-85 °C; IR (film): 2957, 1607, 1507 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.07 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 2.82 (s, 3H), 1.51 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 173.3, 162.8, 155.4, 136.7, 136.6, 122.4, 118.8, 118.6, 38.6, 30.3, 25.8; HRMS (ESI) Calcd. for C<sub>13</sub>H<sub>17</sub>N<sub>2</sub> (M+H): 201.1386, Found: 201.1384.



**1y**, 0.35 g (35% yield); white solid; m.p. 52-53 °C; IR (film): 2956, 1607, 1507 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 3.01 (t, *J* = 7.6 Hz, 2H), 2.78 (s, 3H), 1.93-1.80 (m, 2H), 1.51-1.37 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 166.7, 162.6, 155.7, 136.51, 136.49, 122.1, 121.7, 118.8, 39.1, 31.7, 25.6, 22.6, 14.0; HRMS (ESI) Calcd. for C<sub>13</sub>H<sub>17</sub>N<sub>2</sub> (M+H): 201.1386, Found: 201.1384.

## Characterization data of 1,2,3,4-tetrahydro-1,8-naphthyridines



**3a**, 0.0688 g (96% yield); yellow oil; IR (film): 3406, 1597, 1461 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.85 (d, *J* = 7.2 Hz, 2H), 7.45-7.28 (m, 9H), 6.99 (d, *J* = 7.6 Hz, 1H), 5.65 (br s, 1H), 4.65 (dd, *J* = 7.2, 2.8 Hz, 1H), 2.90-2.80 (m, 1H), 2.77-2.67 (m, 1H), 2.23-2.13 (m, 1H), 2.06-1.94 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.2, 154.5, 144.2, 140.1, 137.1, 128.8, 128.7, 128.4, 127.7, 126.8, 126.6, 114.6, 110.3, 56.2, 30.6, 25.3; HRMS (ESI) Calcd. for C<sub>20</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 287.1543, Found: 287.1539.



**3b**, 0.0726 g (92% yield); light yellow oil; IR (film): 3223, 1600, 1459 cm<sup>-1</sup>; <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>, ppm): 7.47 (dd, *J* = 6.4, 1.6 Hz, 1H), 7.41-7.35 (m, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.27-7.14 (m, 6H), 6.63 (d, *J* = 7.6 Hz, 1H), 5.12 (s, 1H), 4.84 (dd, *J* = 8.4, 2.4 Hz, 1H), 2.93-2.81 (m, 1H), 2.78-2.69 (m, 1H), 2.39 (s, 3H), 2.38 (s, 3H), 2.19-2.10 (m, 1H), 1.95-1.83 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.8, 156.0, 141.9, 141.1, 136.4, 135.9, 134.6, 130.77, 130.75, 129.5, 127.9, 127.3, 126.6, 126.1, 125.9, 113.8, 113.4, 52.3, 28.6, 25.5, 20.6, 19.2; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 315.1856, Found: 315.1859.



**3c**, 0.0757 g (94% yield); light brown oil; IR (film): 3243, 1598, 1576, 1463 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.71-7.62 (m, 2H), 7.32-7.25 (m, 1H), 7.32-7.25 (m, 2H), 7.14 (d, J = 7.6 Hz, 1H), 7.08 (d, J = 10.0 Hz, 1H), 7.06-6.93 (m, 3H), 5.29 (s, 1H), 4.63 (d, J = 6.0 Hz, 1H), 2.88-2.76 (m, 1H), 2.72-2.62 (m, 1H), 2.20-2.09 (m, 1H), 2.01-1.90 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  163.4 (d,  $J_{C-F} = 243.0$  Hz), 162.3 (d,  $J_{C-F} = 245.0$  Hz), 155.9, 153.0 (d,  $J_{C-F} = 3.0$  Hz), 146.8 (d,  $J_{C-F} = 7.0$  Hz), 142.4 (d,  $J_{C-F} = 8.0$  Hz), 137.1, 130.3 (d,  $J_{C-F} = 8.0$  Hz), 130.1 (d,  $J_{C-F} = 8.0$  Hz), 122.3 (d,  $J_{C-F} = 3.0$  Hz), 121.3 (d,  $J_{C-F} = 3.0$  Hz), 115.3 (d,  $J_{C-F} = 7.0$  Hz), 113.7 (d,  $J_{C-F} = 20.0$  Hz), 113.5 (d,  $J_{C-F} = 19.0$  Hz), 110.4, 55.6 (d,  $J_{C-F} = 1.0$  Hz), 30.3, 25.0; HRMS (ESI) Calcd. for C<sub>20</sub>H<sub>17</sub>N<sub>2</sub>F<sub>2</sub> (M+H): 323.1354, Found: 323.1352.



**3d**, 0.0830 g (96% yield); light brown oil; IR (film): 3394, 1598, 1575, 1463, 1283 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.53-7.50 (m, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.31-7.26 (m, 2H), 7.00 (d, J = 7.6 Hz, 1H), 6.97-6.94 (m, 2H), 6.90 (dd, J = 8.2, 2.0Hz, 1H), 6.83 (dd, J = 8.2, 2.0 Hz, 1H), 5.20 (s, 1H), 4.61 (dd, J = 8.0, 2.0 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 2.90-2.78 (m, 1H), 2.76-2.66 (m, 1H), 2.20-2.10 (m, 1H), 2.04-1.92 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  160.08, 160.06, 156.0, 154.1, 145.9, 141.6, 137.0, 129.8, 129.6, 119.3, 118.9, 114.8, 114.5, 113.1, 112.1, 111.9, 110.4, 56.1, 55.49, 55.46, 30.6, 25.3; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>23</sub>O<sub>2</sub>N<sub>2</sub> (M+H): 347.1754, Found: 347.1750.



**3e**, 0.0747 g (93% yield); light brown oil; IR (film): 3250, 1601, 1509, 1460 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.89 (d, J = 5.6 Hz, 1H), 7.87 (d, J = 6.0 Hz, 1H), 7.33 (d, J = 5.6 Hz, 1H), 7.31 (d, J = 5.6 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 5.24 (s, 1H), 4.59 (d, J = 5.6 Hz, 1H), 2.89-2.77 (m, 1H), 2.74-2.62 (m, 1H), 2.18-2.06 (m, 1H), 2.00-1.86 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  163.3 (d,  $J_{C-F} = 246.0$  Hz), 162.3 (d,  $J_{C-F} = 244.0$  Hz), 156.0, 153.3, 139.8 (d,  $J_{C-F} = 3.0$  Hz), 137.2, 136.1 (d,  $J_{C-F} = 3.0$  Hz), 128.5 (d,  $J_{C-F} = 8.0$  Hz), 128.1 (d,  $J_{C-F} = 8.0$  Hz), 115.7 (d,  $J_{C-F} = 10.0$  Hz), 115.4 (d,  $J_{C-F} = 11.0$  Hz), 114.5, 110.0, 55.5, 30.6, 25.1; HRMS (ESI) Calcd. for C<sub>20</sub>H<sub>17</sub>N<sub>2</sub>F<sub>2</sub> (M+H): 323.1354, Found: 323.1356.



**3f**, 0.0951 g (90% yield); light yellow oil; IR (film): 3246, 1599, 1324, 1122 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 8.00 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 5.63 (s, 1H), 4.63 (d, J = 5.6 Hz, 1H), 2.90-2.78 (m, 1H), 2.72-2.63 (m, 1H), 2.20-2.09 (m, 1H), 2.00-1.88 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  156.1, 152.7, 148.0, 143.2, 137.2, 130.1 (q,  $J_{C-F} = 32.0$  Hz), 129.9 (q,  $J_{C-F} = 32.0$  Hz), 127.0, 126.8, 125.7 (q,  $J_{C-F} = 3.0$  Hz), 125.6 (q,  $J_{C-F} = 4.0$  Hz), 124.5 (q,  $J_{C-F} = 271.0$  Hz), 124.3 (q,  $J_{C-F} = 271.0$  Hz), 115.6, 110.8, 55.6, 30.3, 24.9; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>17</sub>N<sub>2</sub>F<sub>6</sub> (M+H): 423.1290, Found: 423.1285.



**3g**, 0.0771 g (98% yield); yellow solid; m.p. 240-242 °C; IR (film): 3408, 1596, 1461 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.81 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.23-7.18 (m, 3H), 7.14 (d, J = 7.6 Hz, 2H), 6.96 (d, J = 7.6 Hz, 1H), 5.14 (s, 1H), 4.57 (dd, J = 8.4, 2.4 Hz, 1H), 2.88-2.76 (m, 1H), 2.74-2.63 (m, 1H), 2.37 (s, 3H), 2.34 (s, 3H), 2.16-2.06 (m, 1H), 2.00-1.88 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  156.1, 154.4, 141.2, 138.2, 137.3, 137.28, 137.0, 129.42, 129.37, 126.6, 126.5, 114.3, 109.8, 55.9, 30.7, 25.4, 21.4, 21.3; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 315.1856, Found: 315.1852.



**3h**, 0.0820 g (95% yield); yellow solid; m.p. 152-153 °C; IR (film): 3404, 1594, 1460, 1247 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.87 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 6.97-6.92 (m, 3H), 6.88 (d, *J* = 8.8 Hz, 2H), 5.09 (s, 1H), 4.56 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 2.90-2.77 (m, 1H), 2.75-2.64 (m, 1H), 2.17-2.06 (m, 1H), 2.00-1.88 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 160.1, 159.2, 156.1, 154.0, 137.0, 136.3, 132.8, 128.0, 127.7, 114.1, 114.0, 113.9, 109.4, 55.7, 55.5, 30.8, 25.4; HRMS (ESI) Calcd. for C<sub>22</sub>H<sub>23</sub>O<sub>2</sub>N<sub>2</sub> (M+H): 347.1754, Found: 347.1756.



**3i**, 0.0917 g (95% yield); white solid; m.p. 152-153 °C; IR (film): 3226, 1599, 1470 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 8.26-8.16 (m, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.94-7.83 (m, 3H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.67(d, *J* = 6.0 Hz, 1H), 7.60 (d, *J* = 6.8 Hz, 1H), 7.58-7.42 (m, 6H), 7.38 (d, *J* = 7.2 Hz, 1H), 6.58 (d, *J* = 6.8 Hz, 1H), 5.54 (s, 1H), 5.36 (s, 1H), 3.00-2.86 (m, 1H), 2.83-2.69 (m, 1H), 2.55-2.35 (m, 1H), 2.27-2.14 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.1, 155.7, 139.2, 139.0, 136.8, 134.1, 131.5, 130.3, 129.3, 129.2, 128.5, 128.4, 128.0, 127.1, 126.3, 126.2, 125.9, 125.8, 125.7, 125.5, 123.7, 122.7, 114.5, 51.9, 28.4, 24.9; HRMS (ESI) Calcd. for C<sub>28</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 387.1856, Found: 387.1859.



**3j**, 0.0670 g (90% yield); light oil; IR (film): 3398, 1592, 1462 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.47 (d, *J* = 3.2 Hz, 1H), 7.28 (d, *J* = 5.2 Hz, 1H), 7.23 (d, *J* = 5.2 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.07-7.03 (m, 1H), 7.02 (d, *J* = 3.2 Hz, 1H), 6.99-6.94 (m, 2H), 5.23 (s, 1H), 4.91 (d, *J* = 6.8 Hz, 1H), 2.87-2.77 (m, 1H), 2.77-2.69 (m, 1H), 2.26-2.16 (m, 1H), 2.14-2.03 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 155.2, 149.4, 148.0, 145.6, 137.0, 127.9, 126.9, 126.4, 124.5, 123.8, 114.5, 109.0, 51.9, 31.0, 25.1; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>S<sub>2</sub> (M+H): 299.0671, Found: 299.0674.



**3k**, 0.0521 g (93% yield); yellow oil;  $[\alpha]_D^{24} = +17.5$  (*c* 1.03, CHCl<sub>3</sub>) (47% ee); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.89 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.36-7.30 (m, 1H), 7.23 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 4.83 (s, 1H), 3.63-3.51 (m, 1H), 2.85-2.69 (m, 2H), 2.02-1.92 (m, 1H), 1.67-1.52 (m, 1H), 1.26 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  156.2, 154.2, 140.2, 136.9, 128.6, 128.3, 126.8, 114.7, 109.9, 47.4, 29.7, 25.9, 22.7.

B. Xiong, Y. Li, W. Lv, Z. Tan, H. Jiang and M. Zhang, Org. Lett., 2015, 17, 4054-4057.



**31**, 0.0559 g (94% yield); light brown oil; [α]<sub>D</sub><sup>24</sup> = +23.8 (*c* 1.03, CHCl<sub>3</sub>) (52% ee); IR (film): 3251, 1597, 1464, cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.72 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.29 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 4.84 (s, 1H), 3.64-3.54 (m, 1H), 2.86-2.70 (m, 2H), 2.40 (s, 3H), 2.01-1.92 (m, 1H), 1.65-1.54 (m, 1H), 1.27 (d, *J* = 6.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.1, 154.4, 140.1, 138.2, 136.9, 129.1, 128.6, 127.5, 123.9, 114.6, 110.0, 47.4, 29.7, 25.9, 22.7, 21.8; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>19</sub>N<sub>2</sub> (M+H): 239.1543, Found: 239.1539.



**3m**, 0.0582 g (96% yield); brown oil;  $[\alpha]_D^{24} = +12.0$  (*c* 1.06, CHCl<sub>3</sub>) (52% ee); IR (film): 3424, 1602, 1465 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.90-7.84 (m, 2H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.12-7.03 (m, 2H), 6.87 (d, *J* = 7.2 Hz, 1H), 4.87 (s, 1H), 3.61-3.51 (m, 1H), 2.84-2.68 (m, 2H), 2.00-1.90 (m, 1H), 1.62-1.51 (m, 1H), 1.24 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  161.7 (d, *J*<sub>C-F</sub> = 245.0 Hz), 156.1, 153.1, 136.9, 136.3 (d, *J*<sub>C-F</sub> = 3.0 Hz), 128.4 (d, *J*<sub>C-F</sub> = 8.0 Hz), 115.4 (d, *J*<sub>C-F</sub> = 21.0 Hz), 114.6, 109.5, 47.4, 29.6, 25.8, 22.6; HRMS (ESI) Calcd. for C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>F (M+H): 243.1292, Found: 243.1289.



**3n**, 0.0693 g (95% yield); white solid; m.p. 103-105 °C;  $[\alpha]_D^{24} = +0.3$  (*c* 1.14, CHCl<sub>3</sub>) (23% ee); IR (film): 3415, 1596, 1465, 1325, 1123 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 8.00 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H),

4.89 (s, 1H), 3.62-3.52 (m, 1H), 2.85-2.70 (m, 2H), 2.02-1.92 (m, 1H), 1.64-1.52 (m, 1H), 1.25 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  156.3, 152.4, 143.5, 136.9, 130.1 (q,  $J_{C-F} = 32.0$  Hz), 126.9, 125.6 (q,  $J_{C-F} = 4.0$  Hz), 124.6 (q,  $J_{C-F} = 270.0$  Hz), 115.8, 110.1, 47.4, 29.5, 25.9, 22.6; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>16</sub>N<sub>2</sub>F<sub>3</sub> (M+H): 293.1260, Found: 293.1257.



**30**, 0.0536 g (90% yield); light yellow solid; [α]<sub>D</sub><sup>24</sup> = +22.4 (*c* 1.06, CHCl<sub>3</sub>) (64% ee); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.79 (d, *J* = 8.0 Hz, 2H), 7.24-7.17 (m, 3H), 6.92 (d, *J* = 7.6 Hz, 1H), 4.85 (s, 1H), 3.65-3.53 (m, 1H), 2.84-2.67 (m, 2H), 2.37 (s, 3H), 2.03-1.89 (m, 1H), 1.65-1.53 (m, 1H), 1.26 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.1, 154.1, 138.2, 137.3, 137.0, 129.4, 126.6, 114.4, 109.6, 47.4, 29.7, 25.9, 22.7, 21.4.

B. Xiong, Y. Li, W. Lv, Z. Tan, H. Jiang and M. Zhang, Org. Lett., 2015, 17, 4054-4057.



**3p**, 0.0592 g (93% yield); light yellow solid; m.p. 97-99 °C;  $[\alpha]_D^{24} = +36.2$  (*c* 1.24, CHCl<sub>3</sub>) (74% ee); IR (film): 3254, 1594, 1462, 1246 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.84 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 7.6 Hz, 1H), 4.80 (s, 1H), 3.83 (s, 3H), 3.62-3.53 (m, 1H), 2.84-2.67 (m, 2H), 2.00-1.90 (m, 1H), 1.64-1.53 (m, 1H), 1.25 (d, J = 6.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  160.0, 156.1, 153.9, 136.9, 132.9, 127.9, 114.0, 113.9, 109.2, 55.5, 47.4, 29.8, 25.9, 22.7; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>19</sub>N<sub>2</sub>O (M+H): 255.1492, Found: 255.1494.



**3q**, 0.0710 g (94% yield); light yellow solid; m.p. 150-152 °C; [α]<sub>D</sub><sup>24</sup> = +19.6 (*c* 1.58, CHCl<sub>3</sub>) (58% ee); IR (film): 3408, 1594, 1463 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.98 (d, *J* = 8.4 Hz, 2H), 7.68-7.60 (m, 4H), 7.46-7.40 (m, 2H), 7.36-7.30 (m, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 4.87 (s, 1H), 3.61-3.52 (m, 1H), 2.84-2.69 (m, 2H), 1.98-1.90 (m, 1H), 1.64-1.52 (m, 1H), 1.24 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 156.2, 153.6, 141.0, 140.9, 139.1, 136.9, 128.9, 127.4, 127.3, 127.2, 127.1, 114.8, 109.8, 47.4, 29.7, 25.9, 22.6; HRMS (ESI) Calcd. for C<sub>21</sub>H<sub>21</sub>N<sub>2</sub> (M+H): 301.1699, Found: 301.1697.



**3r**, 0.0523 g (92% yield); light orange oil; [α]<sub>D</sub><sup>22</sup> = +14.1 (*c* 1.01, CHCl<sub>3</sub>) (33% ee); IR (film): 3401, 1592, 1490, 1463 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): δ 7.45 (d, *J* = 3.2 Hz, 1H), 7.27 (d, *J* = 4.8 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.07-7.01 (m, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 4.79 (s, 1H), 3.62-3.51 (m, 1H), 2.82-2.65 (m, 2H), 2.00-1.88 (m, 1H), 1.63-1.50 (m, 1H), 1.25 (d, *J* = 6.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 155.9, 149.1, 145.9, 136.7, 127.9, 126.1, 123.5, 114.6, 108.2, 47.4, 29.6, 26.0, 22.6; HRMS (ESI) Calcd. for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>S (M+H): 231.0951, Found: 231.0954.



**3s**, 0.0619 g (93% yield); light oil;  $[\alpha]_D^{23} = +0.3$  (*c* 1.58, CHCl<sub>3</sub>) (14% ee); IR (film): 3268, 1597, 1461 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.88 (d, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 7.2 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.2 Hz, 1H), 4.93 (br s, 1H), 3.47-3.37 (m, 1H), 2.84-2.68 (m, 2H), 2.04-1.94 (m, 1H), 1.67-1.50 (m, 3H), 1.50-1.32 (m, 4H), 0.93 (t, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  155.9, 153.7, 139.6, 137.2, 128.7, 128.5, 126.8, 115.4, 109.9, 51.8, 36.4, 28.0, 27.6, 25.7, 22.9, 14.2; HRMS (ESI) Calcd. for C<sub>18</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 267.1856, Found: 267.1858.



**3t**, 0.0639 g (96% yield); light oil;  $[\alpha]_D^{24} = +8.5$  (*c* 1.70, CHCl<sub>3</sub>) (17% ee); IR (film): 3270, 1596, 1461 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.86 (d, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 6.8 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 6.8 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 5.10 (br s, 1H), 3.56-3.46 (m, 1H), 2.85-2.70 (m, 2H), 2.00-1.90 (m, 1H), 1.81 (heptet, *J* = 6.8 Hz, 1H), 1.66-1.54 (m, 1H), 1.53-1.43 (m, 1H), 1.40-1.32 (m, 1H), 0.96 (d, *J* = 6.4 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  155.9, 153.8, 139.8, 137.2, 128.7, 128.5, 126.8, 115.3, 109.9, 49.5, 45.9, 28.1, 25.7, 24.6, 23.4, 22.4; HRMS (ESI) Calcd. for C<sub>18</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 267.1856, Found: 267.1858.

**3u**, 0.0382 g (94% yield); brown oil;  $[\alpha]_D^{24} = +26.5$  (*c* 0.55, CHCl<sub>3</sub>) (48% ee); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.08 (d, J = 7.2 Hz, 1H), 6.36 (d, J = 7.2 Hz, 1H), 4.79 (br s, 1H),

3.58-3.48 (m, 1H), 2.78-2.62 (m, 2H), 2.31 (s, 3H), 1.96-1.87 (m, 1H), 1.59-1.48 (m, 1H), 1.22 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 155.4, 153.7, 137.1, 113.1, 112.0, 47.4, 29.5, 25.6, 23.6, 22.5.

A. Jean-Claude, D. Benedicte; D. Richard, L. Brempt and C. M. Paul, PCT Int. Appl., 2007, WO2007141473.

**3v**, 0.0535 g (98% yield); light oil; IR (film): 3413, 1600, 1473 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.12 (d, *J* = 7.6 Hz, 1H), 6.38 (d, *J* = 7.2 Hz, 1H), 4.93 (s, 1H), 3.21-3.11 (m, 1H), 2.79 (heptet, *J* = 6.8 Hz, 1H), 2.73-2.64 (m, 2H), 1.94-1.85 (m, 1H), 1.78-1.68 (m, 1H), 1.68-1.57 (m, 1H), 1.23 (d, *J* = 6.8 Hz, 6H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 163.5, 155.7, 137.0, 113.8, 108.7, 57.6, 35.9, 32.7, 25.8, 24.2, 22.9, 22.7, 18.7, 18.5; HRMS (ESI) Calcd. for C<sub>14</sub>H<sub>23</sub>N<sub>2</sub> (M+H): 210.1856, Found: 219.1852.

**3w**, 0.0584 g (95% yield); light oil; [α]<sub>D</sub><sup>24</sup> = +33.0 (*c* 1.21, CHCl<sub>3</sub>) (37% ee); IR (film): 3324, 1600, 1468 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.08 (d, *J* = 7.2 Hz, 1H), 6.32 (d, *J* = 7.6 Hz, 1H), 4.86 (s, 1H), 3.50-3.42 (m, 1H), 2.78-2.63 (m, 2H), 2.40 (d, *J* = 7.2 Hz, 2H), 2.00 (heptet, *J* = 6.8 Hz, 1H), 1.96-1.90 (m, 1H), 1.78 (heptet, *J* = 6.8 Hz, 1H), 1.60-1.47 (m, 1H), 1.47-1.39 (m, 1H), 1.39-1.27 (m, 1H), 0.93 (d, *J* = 6.8 Hz, 6H), 0.91 (d, *J* = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 157.5, 155.7, 136.7, 113.4, 112.5, 49.5, 47.3, 46.0, 29.1,

28.2, 25.7, 24.5, 23.4, 22.7, 22.4; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>27</sub>N<sub>2</sub> (M+H): 247.2169, Found: 247.2164.



**3x**, 0.0505 g (98% yield); light oil; IR (film): 3310, 2957, 1605, 1465 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.10 (d, *J* = 7.6 Hz, 1H), 6.53 (d, *J* = 7.6 Hz, 1H), 4.71 (br s, 1H), 3.58-3.47 (m, 1H), 2.78-2.62 (m, 2H), 1.96-1.85 (m, 1H), 1.63-1.50 (m, 1H), 1.27 (s, 9H), 1.24 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): δ 155.3, 136.6, 112.8, 108.0, 47.4, 36.8, 30.3, 29.9, 25.8, 22.6; HRMS (ESI) Calcd. for C<sub>13</sub>H<sub>21</sub>N<sub>2</sub> (M+H): 205.1699, Found: 205.1697.



**3y and 3y'**, (ca. 77:23), 0.0484 g (94% yield); brown oil; IR (film): 3305, 1600, 1470 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm): 7.06-7.02 (m, 1.25H), 6.33-6.32 (m, 1.25H), 4.78-4.71 (m, 1.23H), 3.51-3.45 (m, 1H), 3.39-3.30 (m, 0.30H), 2.75-2.59 (m, 2.75H), 2.50 (t, J = 7.6 Hz, 2H), 2.28 (s, 0.87H), 1.95-1.85 (m, 1.31H), 1.65-1.55 (m, 2.25H), 1.55-1.45 (m, 1.74H), 1.40-1.27 (m, 3.38H), 1.20 (d, J = 6.4 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3.92H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  158.8, 155.8, 155.7, 154.4, 136.73, 136.71, 113.0, 112.9, 112.0, 111.4, 51.7, 47.4, 37.9, 36.5, 32.4, 29.7, 28.0, 27.8, 25.8, 25.6, 24.0, 22.9, 22.8, 22.6, 14.3, 14.2; HRMS (ESI) Calcd. for C<sub>13</sub>H<sub>21</sub>N<sub>2</sub> (M+H): 205.1699, Found: 205.1695.

## The chromatography for the determination of the enantiomeric excess



HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV 254 nm Racemic Chiral









HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 254 nm Racemic Chiral





**HPLC Conditions: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (99/1); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm



**HPLC Conditions: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (99/1); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm

Racemic

Chiral



| Signal | 1:    | VWD1 A, | Waveleng | th=254 | nm |
|--------|-------|---------|----------|--------|----|
| Peak   | RT    | Area %  | Area     |        |    |
| #   [  | min]  |         |          |        |    |
|        |       |         |          |        |    |
| 1      | 6.437 | 49.397  | 5. 528e3 |        |    |
| 2      | 7.833 | 50.603  | 5.663e3  |        |    |
|        |       |         |          |        |    |



| Sign  | al 1: | VWD1 A, | Wavelengt | h=254 nm |
|-------|-------|---------|-----------|----------|
| Peak  | RT    | Area %  | Area      |          |
| #     | [min] |         |           |          |
| 1 I I |       |         | 1         |          |

|   | [min] |                    |
|---|-------|--------------------|
|   |       |                    |
| 1 | 6.390 | 38.498 9.271e3     |
| 2 | 7.773 | 61. 502   1. 481e4 |



**HPLC Conditions: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm



**HPLC Conditions: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm



| Signa | al 1:  | VWD1 A, | Waveleng | th=254 | nm |
|-------|--------|---------|----------|--------|----|
| Peak  | RT     | Area %  | Area     |        |    |
| #     | [min]  |         |          |        |    |
|       |        |         |          |        |    |
| 1     | 13.803 | 49.535  | 3.120e3  |        |    |
| 2     | 17.747 | 50.465  | 3.178e3  |        |    |
|       |        |         |          |        |    |

Chiral



| Sig  | nal 1: | VWD1 A,  | Waveleng | th=254 | nm |
|------|--------|----------|----------|--------|----|
| Peak | RT     | Area %   | Area     |        |    |
| #    | [min]  |          |          |        |    |
|      |        | -        |          |        |    |
| 1    | 13.920 | 0 12.900 | 3. 365e3 |        |    |
| 2    | 17.617 | 7 87.100 | 2.272e4  |        |    |
|      |        |          |          | _      |    |



HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV 254 nm



HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV 254 nm



 Signal
 1:
 VWD1 A, Wavelength=254 nm

 |Peak|
 RT
 |Area %
 |Area |

 | #
 [min]
 |-----|
 |

 |----|
 -----|
 |
 |

 1
 18.301
 50.090 | 3.073e3 |
 |

 2
 25.009
 49.910 | 3.062e3 |
 |





| Sigr | nal 1 | : VWD  | 1 A,   | Waveleng | th=254 | nm |
|------|-------|--------|--------|----------|--------|----|
| Peak | RT    | Are    | ea %   | Area     |        |    |
| #    | [min] |        |        |          |        |    |
|      |       |        |        |          |        |    |
| 1    | 18.09 | 99  33 | 8. 501 | 5. 300e3 |        |    |
| 2    | 24.9  | 01 66  | 6. 499 | 1.052e4  |        |    |
|      |       |        |        |          |        |    |



HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 254 nm



HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 254 nm



Racemic

Signal 1: VWD1 A, Wavelength=254 nm

| Tean | IV I   | niea /0 | niea    |  |
|------|--------|---------|---------|--|
| #    | [min]  |         |         |  |
|      |        |         |         |  |
| 1    | 12.904 | 49.926  | 5.736e3 |  |
| 2    | 25.200 | 50.074  | 5.753e3 |  |
|      |        |         |         |  |





|  | Sig  | nal 1 | : VWD1 A | A, Waveleng  | th=254 | nm |
|--|------|-------|----------|--------------|--------|----|
|  | Peak | RT    | Area     | %   Area     |        |    |
|  | #    | [min] |          |              |        |    |
|  |      |       |          |              |        |    |
|  | 1    | 12.7  | 59 41.3  | 344 2. 949e3 |        |    |
|  | 2    | 24.5  | 59 58.6  | 556 4. 184e3 |        |    |
|  |      |       |          |              |        |    |



İΒι

**HPLC Conditions: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (99/1); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm



**HPLC Conditions: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (99/1); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm



Racemic

Signal 1: VWD1 A, Wavelength=254 nm

| Реак | KI    | Area % | Area    |
|------|-------|--------|---------|
| #    | [min] |        |         |
|      |       |        |         |
| 1    | 6.967 | 50.026 | 1.100e4 |
| 2    | 9.123 | 49.974 | 1.099e4 |
|      |       |        |         |

Chiral



| Signa | al 1: | VWD1 A, | Waveleng | th=254 | nm |
|-------|-------|---------|----------|--------|----|
| Peak  | RT    | Area %  | Area     |        |    |
| #     | [min] |         |          |        |    |
| -     |       |         |          |        |    |
| 1     | 6.915 | 31.651  | 7.797e3  |        |    |
| 2     | 9.033 | 68.349  | 1.684e4  |        |    |
|       |       |         |          | _      |    |






































































































































































































