Electronic supplementary information (ESI)

Synthesis and antitumor activity of novel N-substituted tetrahydro-β-carboline–imidazolium salt derivatives

Bei Zhou ^a, Zheng-Fen Liu ^a, Guo-Gang Deng ^a, Wen Chen ^a, Min-Yan Li ^c, Li-Juan Yang ^d, Yan Li ^{b, *}, Xiao-Dong Yang ^{a, *}, Hong-Bin Zhang^{a, *}

- ^b State Key Laboratory for Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, P. R. China
- ^c Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States
- ^dSchool of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500, P. R. China.

TABLE OF CONTENTS

1. General Experimental	
2. Experimental Procedures and Analytical Data	
3. Biological Assay Procedures and Results	S36-S38
4. Cell Apoptosis and Cell Cycle Analysis	
5. ¹ H-NMR and ¹³ C-NMR Spectral of New Compounds	

^a Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

^{*} Corresponding author. Tel.: +86-871-65031119; fax.: +86-871-65035538. E-mail: zhanghb@ynu.edu.cn, xdyang@ynu.edu.cn, liyanb@mail.kib.ac.cn

1. General Experimental

Melting points were obtained on a XT-4 melting-point apparatus and were uncorrected. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a Bruker Avance 400 (600) spectrometer at 400 (600) MHz. Carbon-13 nuclear magnetic resonance (¹³C-NMR) was recorded on Bruker Avance 400 (400) spectrometer at 100 (120) MHz. Chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (TMS) for all recorded NMR spectra. Low-resolution Mass spectra were recorded on a VG Auto Spec-3000 magnetic sector MS spectrometer. High Resolution Mass spectra were taken on AB QSTAR Pulsar mass spectrometer. Elemental analysis (%CHN) was conducted on a Vario EL III spectrometer.

Silica gel (200–300 mesh) for column chromatography and silica GF_{254} for TLC were produced by Qingdao Marine Chemical Company (China). All air- or moisturesensitive reactions were conducted under an argon atmosphere. Starting materials and reagents used in reactions were obtained commercially from Acros, Aldrich, Fluka and were used without purification, unless otherwise indicated.

2. Experimental Procedures and Analytical Data

Synthesis of hybrid compounds 16-51.

Entry	Compound	\mathbb{R}^1	Imidazole ring	R ³	Molecular	mp (°C)	Yields (%)
	No.				formula		
1	16	Н	imidazole	-	$C_{16}H_{16}N_4O$	85-86	85
2	17	Н	benzimidazole	-	$C_{20}H_{18}N_4O$	275-276	88
3	18	$PhSO_2$	imidazole	-	$C_{22}H_{20}N_4O_3S\\$	77-79	82
4	19	$PhSO_2$	2-ethyl-imidazole	-	$C_{24}H_{24}N_4O_3S\\$	147-148	88
5	20	$PhSO_2$	benzimidazole	-	$C_{26}H_{22}N_{4}O_{3}S$	139-140	72
6	21	$PhSO_2$	5,6-dimethyl-benzimidazole	-	$C_{28}H_{26}N_4O_3S$	278-279	76
7	22	Н	imidazole	phenacyl	$\mathrm{C}_{28}\mathrm{H}_{25}\mathrm{BrN}_{4}\mathrm{O}_{2}$	201-202	78
8	23	Н	imidazole	1-(naphthalen-2-	$C_{28}H_{25}BrN_4O_2$	249-251	92
				yl)ethan-1-one			
9	24	Н	benzimidazole	phenacyl	$\mathrm{C}_{28}\mathrm{H}_{25}\mathrm{BrN_4O_2}$	236-238	92
10	25	Н	benzimidazole	4-methoxyphenacyl	C ₂₉ H ₂₇ BrN ₄ O ₃	258-260	88
11	26	Н	benzimidazole	4-bromophenacyl	$C_{28}H_{24}Br_2N_4O_2$	240-242	78
12	27	Н	benzimidazole	1-(naphthalen-2-	$C_{32}H_{27}BrN_4O_2$	270-271	83
				yl)ethan-1-one			
13	28	Н	benzimidazole	4-bromobenzyl	$C_{27}H_{24}Br_2N_4O$	272-274	88
14	29	Н	benzimidazole	4-nitrobenzyl	C ₂₇ H ₂₄ BrN ₅ O ₃	279-280	82
15	30	Н	benzimidazole	3-naphthylmethyl	C ₃₁ H ₂₇ BrN ₄ O	272-273	76
17	31	PhSO ₂	imidazole	phenacyl	C ₃₀ H ₂₇ BrN ₄ O ₄ S	222-223	89
18	32	PhSO ₂	imidazole	1-(naphthalen-2-	C34H29BrN4O4S	195-196	86
				yl)ethan-1-one			
29	33	PhSO ₂	2-ethyl-imidazole	phenacyl	$C_{32}H_{31}BrN_4O_4S$	272-273	86
20	34	PhSO ₂	2-ethyl-imidazole	4-bromophenacyl	$C_{32}H_{30}Br_2N_4O_4S$	279-280	89
21	35	PhSO ₂	2-ethyl-imidazole	1-(naphthalen-2-	C ₃₆ H ₃₃ BrN ₄ O ₄ S	273-274	78
				yl)ethan-1-one			
22	36	PhSO ₂	2-ethyl-imidazole	4-methylbenzyl	C ₃₂ H ₃₃ BrN ₄ O ₃ S	244-245	81
23	37	PhSO ₂	2-ethyl-imidazole	3-naphthylmethyl	C35H33BrN4O3S	253-254	87
24	38	PhSO ₂	benzimidazole	phenacyl	C34H29BrN4O4S	200-201	86
25	39	PhSO ₂	benzimidazole	4-bromophenacyl	C34H28Br2N4O4S	197-198	75
26	40	PhSO ₂	benzimidazole	4-methoxyphenacyl	C ₃₅ H ₃₁ BrN ₄ O ₅ S	209-210	89
27	41	PhSO ₂	benzimidazole	1-(naphthalen-2-	C ₃₈ H ₃₁ BrN ₄ O ₄ S	214-215	77
				yl)ethan-1-one			
28	42	PhSO ₂	benzimidazole	4-methylbenzyl	C ₃₄ H ₃₁ BrN ₄ O ₃ S	290-291	84
29	43	PhSO ₂	benzimidazole	4-nitrobenzyl	C33H28BrN5O5S	272-273	86
30	44	PhSO ₂	benzimidazole	3-naphthylmethyl	C37H31BrN4O3S	136-137	72
31	45	PhSO ₂	5,6-dimethyl-benzimidazole	phenacyl	C ₃₆ H ₃₃ BrN ₄ O ₄ S	239-240	91
32	46	PhSO ₂	5,6-dimethyl-benzimidazole	4-bromophenacyl	$C_{36}H_{32}Br_2N_4O_4S$	250-252	88
33	47	PhSO ₂	5,6-dimethyl-benzimidazole	4-methoxyphenacyl	C37H35BrN4O5S	244-245	90
34	48	PhSO ₂	5,6-dimethyl-benzimidazole	1-(naphthalen-2-	$C_{40}H_{35}BrN_4O_4S$	234-235	91
				yl)ethan-1-one			
35	49	PhSO ₂	5,6-dimethyl-benzimidazole	4-methylbenzyl	$C_{36}H_{35}BrN_4O_3S$	270-271	79
36	50	PhSO ₂	5,6-dimethyl-benzimidazole	4-nitrobenzyl	$C_{35}H_{32}BrN_5O_5S$	227-228	89
37	51	$PhSO_2$	5,6-dimethyl-benzimidazole	3-naphthylmethyl	$C_{39}H_{35}BrN_4O_3S$	252-254	82

31

2.1 Synthesis of hybrid compounds

To a stirred solution of tryptophol 1 (1.00g, 6.2 mmol) and imidazole (0.63 g, 9.3 mmol) in dichloromethane (30 mL) at 0°C was added tert-Butyldimethylsilyl chloride (1.00 g, 6.8 mmol) in small portions over a period of 5 minutes, and then at ambient temperature for 1 hours. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min. Mixture was washed by CH_2Cl_2 (3×30 mL). The combined organic phases was dried over Na_2SO_4 and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : $Et_3N = 100/1/0.1$ as eluant) affording the title compound **2** (1.68g, 99%) as a yellow oil.

Compound **2** (1.00 g, 3.6 mmol) dissolved in THF (20 mL) at 0°C under inert gas for 15 minutes, and then sodium hydride (60% dispersion in mineral oil, 218mg, 5.4mmol) was slowly added in small portions over a period of 15 minutes, then mixture kept 0°C for 45 minutes. In sequence, add benzenesulfonyl chloride (0.58mL, 4.6mmol) with a syringe to the mixture, and then mixture at ambient temperature overnight. Mixture quenched by NH₄Cl (aq., 5 mL), washed by EtOAc (3×30 mL), The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 100/0.8/0.1 as eluant) affording compound **3** (1.24g, 82%) as a solid compound.

Compound **3** (1.00 g, 2.4 mmol) dissolved in 1,2-dimethoxyethane (20 mL) at -78°C under inert gas for 15 minutes, and then *n*-BuLi (1M solution in hexanes, 3.6mL, 3.6mmol) was slowly added with a syringe over a period of 5 minutes, then mixture kept -78°C for 45 minutes. Anhydrous DMF (1.1mL, 14.4mmol) was added quickly to the mixture. After 30 minutes, mixture warmed to ambient temperature for 2 hours. Mixture quenched by NH₄Cl (aq., 5 mL), washed by EtOAc (3×30 mL), The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 100/1/0.1 as eluant) affording the title compound **4** (770 mg, 72%) as a solid compound. ¹H NMR (400 MHz, CDCl₃): δ = 10.58 (1H, s), 8.21 (1H, d, J= 8.0 Hz), 7.71-7.66 (3H, m), 7.54-7.48 (2H, m), 7.38-7.26 (3H, m), 3.78 (2H, t, J= 16 Hz), 3.17 (2H, t, J= 12 Hz), 0.69 (9H, s), -0.221 (6H, s).¹³C NMR (100 MHz, CDCl₃): δ = 184.85, 137.55, 137.28, 134.58, 134.22, 133.27, 130.89, 129.26, 126.81, 124.68, 122.90, 115.64, 77.47, 77.16, 76.84, 63.21, 28.73, 25.87, 18.24.

compound **4** (700 mg, 1.6 mmol), dissolved in THF(20 mL) under inert gas at room temperature, (R)-(+)-2-Methyl-2-propanesulfinamide (213mg, 1.76mmol) was added to the mixture, and titanium ethoxide (0.67mL, 3.2mmol) added in sequence. Reaction progress was monitored by TLC. Quench reaction by the adding of EtOAc (50 mL) while the mixture was stirred vigorously to prevent concretion. Mixture was stirred for 15 minutes followed by the washed of EtOAc (2×30 mL). The combined organic

phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 10/1/0.1 as eluant) affording compound **6** (793mg, 92%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.31$ (1H, s), 8.27 (1H, d, J=8.4 Hz), 7.76 (2H, d, J= 7.6 Hz), 7.65 (1H, d, J= 4.0 Hz), 7.52-7.44 (2H, m), 7.38 (2H, d, J= 7.6 Hz), 7.35- 7.26 (1H, m), 3.76 (2H, t, J= 13.2 Hz), 3.28-3.17 (2H, m), 1.27 (9H, s), 0.71 (9H, s), 0.23 (6H, s). ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.41$, 138.17, 137.51, 134.10, 131.03, 130.72, 130.00, 129.33, 127.99, 126.81, 124.31, 121.79, 115.40, 77.47, 77.16, 76.84, 62.85, 57.98, 29.18, 15.88, 22.69, 18.27.

To a stirred solution of compound **6** (700 mg, 1.3 mmol) in MeOH (20 mL) at 0°C was added sodium borohydride (73 mg, 1.9 mmol) in small portions over a period of 10 minutes, and then mixture at 0°C for 1 hour. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min. Mixture was washed by CH₂Cl₂ (3×30 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 80/10/0.1 as eluant) affording the title compound **7** (700mg, 99%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (1H, d, J=8.4 Hz), 7.78 (2H, d, J= 7.6 Hz), 7.53-7.48 (2H, m), 7.40 (2H, t), 7.33- 7.23 (3H, m), 4.65-4.60 (1H, m), 4.55-4.47 (2H, m), 3.76-3.74 (2H, m), 1.19 (9H, s), 0.77 (9H, s), -0.16 (6H, d, J= 7.6 Hz).

To a stirred solution of compound 7 (700 g, 1.3 mmol) in THF (20 mL) at 0°C was added TBAF (1M in THF, 2.6 mL, 2.6 mmol), and then mixture at room temperature for 1 hour. Reaction progress was monitored by TLC. Mixture was washed by EtOAc (2×50 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 30/10/0.1 as eluant) affording the title compound **8** (500mg, 90%) as a yellow solid.

To a stirred solution of compound **8** (500mg, 1.2 mmol) and Et₃N (0.3mL, 2.3 mmol) in dichloromethane (30 mL) at 0°C was added methanesulfonyl chloride (0.1mL, 1.5 mmol) with a syringe over 5 minutes, and then at ambient temperature for 1 hour. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min. Mixture was washed by CH_2Cl_2 (3×30 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 10/1/0.1 as eluant) affording compound **9** (560 mg, 96%) as a yellow oil.

To a stirred solution of compound **9** (500 mg, 0.98 mmol) in DMF (20 mL) added Cs_2CO_3 (650 mg, 2 mmol), mixture at 50°C for 3 hours. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min at room temperature. Mixture was washed by EtOAc (2×50 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was

purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 10/1/0.1 as eluant) affording the title compound **10** (400 mg, 99%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06$ (1H, d, J=8.4 Hz), 7.84 (2H, d, J = 4.0 Hz), 7.51 (1H, t, J = 8.0 Hz), 7.42 (2H, t, J = 8.0 Hz), 7.34 (1H, d, J = 7.6 Hz), 7.28-7.20 (3H, m), 4.82 (1H, d), 4.49 (1H, d), 3.55-3.51 (1H, m), 3.44-3.41 (1H, m), 2.80-2.75 (2H, m) 1.24 (9H, s).¹³C NMR (100 MHz, CDCl₃): $\delta = 138.21$, 135.87, 133.79, 131.70, 129.79, 129.30, 126.57, 124.63, 123.60, 118.33, 117.70, 114.24, 77.33, 77.02, 76.70, 60.40, 58.75, 44.65, 43.25, 22.99, 21.66, 21.05, 14.20.

Compound **10** (400 mg, 0.96 mmol) in DMF (20 mL) added magnesium powder (200 mg) and NH₄Cl (5 mg, 0.096 mmol), mixture under ultrasonic equipment at room temperature under inert gas for 2 hours. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min at room temperature. Mixture was washed by CH_2Cl_2 (2×50 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 50/10/0.1 as eluant) affording compound **11a** (150mg, 91%) as a yellow solid.

To a stirred solution of compound **10** (500 mg, 1.2 mmol) in MeOH (20 mL) at 0°C was added HCl (4M in dioxane, 3 mL, 12 mmol), and then mixture at room temperature for 3 hour. Reaction progress was monitored by TLC. Mixture was washed by EtOAc (2×50 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel

(petroleum ether : EtOAc : Et₃N = 80/10/0.1 as eluant) affording compound **11b** (350 mg, 86%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 8.13 (1H, d, J=8.0 Hz), 7.79 (2H, d, J= 7.6 Hz), 7.54-7.50 (1H, m), 7.43-7.22 (5H, m), 4.29 (2H, s), 3.12-3.10 (2H, m), 2.64 (2H, d, J= 4.0 Hz), 1.75 (1H, s).¹³C NMR (100 MHz, CDCl₃): δ = 138.92, 136.00, 134.19, 133.81, 130.30, 129.43, 126.50, 124.52, 123.59, 118.33, 117.52, 114.34, 77.47, 77.15, 16.64, 44.63, 42.77, 22.78.

To a stirred solution of compound **11a**(173 mg, 1 mmol) and triethylamine (0.28mL, 2 mmol) in dichloromethane (10 mL) at 0°C was added chloroacetyl chloride (87 uL, 1.1 mmol) dropwise over a period of 10 minutes, and then at ambient temperature for 1 h. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min. The aqueous phase was washed with CH_2Cl_2 (4×50 mL). The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 80/10/0.1 as eluant) affording the title compound **13a** (220g, 89%) as a red solid.

To a stirred solution of compound **11b**(312mg, 1 mmol) and triethylamine (0.28mL, 2 mmol) in dichloromethane (10 mL) at 0°C was added chloroacetyl chloride (87 uL, 1.1 mmol) dropwise over a period of 10 minutes, and then at ambient temperature for 1 h. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 10 min. The aqueous phase was washed with CH_2Cl_2 (4×50 mL). The combined organic phases was dried over Na_2SO_4 and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc : Et₃N = 80/10/0.1 as eluant) affording the title compound **13b** (360g, 93%) as a red solid.

2.2 Synthesis of hybrid compounds

A mixture of compound **13** (2 mmol) and imidazole or substituted imidazole (6 mmol) and K_2CO_3 (3 mmol) was stirred in DMF (20 ml) at 50°C for 1 h (monitored by TLC). After cooling to room temperature, the solvent was concentrated, and the residue was diluted with EtOAc (20 mL). The organic layer was washed with water (20 mL) and brine (20 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography (silica gel, petroleum ether : EtOAc : Et₃N = 1:1:0.1) to afford **16-21** in 72-88% yield as yellow solid.

2-(1*H*-benzo[*d*]imidazol-1-yl)-1-(1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethan-1-one

Yield 88%. Yellow solid. Mp 275-276 °C. IR vmax (cm⁻¹): 3729.96, 3391.12, 3158.44, 3055.81, 2976.81, 2926.60, 2882.33, 2842.56, 2761.58, 2657.92, 2314.66, 1951.10, 1902.33, 1862.31, 1776.74, 1657.75, 1503.21, 1460.00, 1253.49, 1210.94, 1040.11, 890.19, 849.07, 806.18, 736.32. ¹H NMR (400 MHz, DMSO): δ = 10.94 (1H, d), 8.13 (1H, d), 7.65 (1H, d, J = 7.6 Hz), 7.50 (1H, d, J = 7.2 Hz), 7.44 (1H, d, J = 7.2

Hz), 7.37-7.30 (1H, m), 7.19 (2H, d, J = 5.2 Hz), 7.07-7.01 (1H, m), 6.98 (1H, t, J = 7.2 Hz), 5.46 (2H, d, J = 7.6 Hz), 4.79 (2H, d), 3.94-3.85 (2H, m), 2.92 (2H, s). ¹³C NMR (100 MHz, DMSO): δ = 167.13, 166.96, 146.06, 145.99, 144.01, 137.13, 136.85, 135.74, 135.67, 131.68, 131.14, 127.45, 127.33, 123.07, 122.23, 121.79, 120.15, 119.51, 118.49, 112.00, 111.59, 111.47, 108.21, 107.54, 22.37, 21.51. HRMS (ESI-TOF) m/z Calcd for C₂₀H₁₈N₄O [M+H]⁺ 331.1553. found 331.1553.

Yield 82%. Yellow solid. Mp 77-79 °C. IR vmax (cm⁻¹): 3398.76, 3106.331, 3061.73, 2923.87, 2855.41, 2663.50, 2589.61, 2472.49, 1811.20, 1667.08, 1511.55, 1451.83, 1370.47, 1297.24, 1223.09, 1178.93, 1138.54, 1088.49, 959.36, 800.59, 754.84, 602.77, 562.26. ¹H NMR (400 MHz, DMSO): $\delta = 8.16$ -8.09 (1H, m), 7.87 (1H, d, J = 8.0 Hz), 7.74 (1H, d, J = 7.6 Hz), 7.58-7.47 (2H, m), 7.45-7.28 (5H, m), 7.11 (1H, s), 6.97 (1H, s), 5.11 (1H, s), 4.89 (2H, d, J = 10.0 Hz), 3.92 (1H, t, J = 9.6 Hz), 3.74 (1H, t, J = 10.4 Hz), 2.74 (2H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 165.62$, 165.37, 138.38, 138.22, 136.45, 134.37, 130.78, 129.88, 129.72, 129.63, 129.16, 129.09, 129.02, 126.70, 126.35, 125.53, 125.10, 124.19, 123.86, 120.33, 119.06, 118.92, 118.45, 116.07, 114.41, 53.55, 48.61, 48.56, 46.49, 44.17, 42.64, 42.23, 39.87, 22.16, 20.92. HRMS (ESI-TOF) m/z Calcd for C₂₂H₂₀N₄O₃S [M+H]⁺ 421.1328. found 421.1329.

2-(2-ethyl-1*H*-imidazol-1-yl)-1-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*pyrido[3,4-*b*]indol-2-yl)ethan-1-one

Yield 88%. Yellow solid. Mp 147-148 °C. IR vmax (cm⁻¹): 3874.17, 3832.90, 3729.52, 3390.04, 3101.13, 3062.02, 2976.98, 2927.11, 2314.59, 1759.46, 1665.86, 1451.48, 1370.30, 1221.98, 1179.24, 1087.08, 1053.64, 959.88, 885.61, 755.20,

717.28, 680.70, 603.30, 587.29, 562.91. ¹H NMR (400 MHz, DMSO): $\delta = 8.13$ -7.99 (1H, m), 7.85 (1H,d, J= 8.0 Hz), 7.73 (1H, d, J= 7.6 Hz), 7.56-7.50 (1H, m), 7.46-7.39 (4H, m), 7.35-7.26 (1H, m), 6.98 (1H, m), 6.80 (1H, s), 5.10 (1H, s), 4.90 (1H, s), 4.76 (2H, d, J=8.4 Hz), 3.91 (1H, t, J= 11.2 Hz), 3.73 (1H, t, J= 11.2 Hz), 2.73 (2H, d, J= 6 Hz), 2.61-2.56 (2H, m), 1.32-1.24 (3H, m). ¹³C NMR (100 MHz, DMSO): $\delta = 165.57$, 165.38, 162.52, 149.97, 149.85, 138.21, 136.30, 135.95, 134.24, 134.01, 130.77, 129.58, 129.48, 129.05, 128.94, 127.54, 127.47, 126.57, 126.22, 125.39, 124.97, 124.07, 123.74, 120.17, 120.12, 118.97, 118.78, 118.32, 115.98, 114.29, 60.38, 47.55, 47.38, 44.00, 42.40, 42.15, 39.77, 36.46, 31.42, 22.05, 21.04, 20.83, 20.02, 14.19, 11.68. HRMS (ESI-TOF) m/z Calcd for C₂₄H₂₄N₄O₃S [M+H]⁺ 449.1641. found 449.1639. Anal. Cacld for C₂₄H₂₄N₄O₃S: C 64.27, H 5.39, 12.49; Found: C 63.90, H 5.45, N 12.54.

2-(1*H*-benzo[*d*]imidazol-1-yl)-1-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethan-1-one

Yield 72%. Yellow solid. Mp 139-140 °C. IR vmax (cm⁻¹): 3874.06, 3831.88, 3729.67, 3629.29, 3381.15, 3053.30, 2933.22, 2850.49, 2386.46, 2315.05, 1902.38, 1808.91, 1655.02, 1452.87, 1415.40, 1370.82, 1222.87, 1178.06, 1086.98, 960.29, 879.37, 752.70, 676.04, 600.49, 560.28. ¹H NMR (400 MHz, DMSO): $\delta = 8.12$ (1H, t), 7.91 (1H, d, J= 2.8 Hz), 7.82 (2H, t), 7.74 (1H, d, J=7.6 Hz), 7.55-7.33 (10H, m), 5.09-4.98 (4H, m), 3.88 (1H, s), 3.77 (1H, s), 2.73 (2H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 165.23$, 164.96, 143.78, 143.67, 143.50, 138.17, 136.32, 135.93, 134.25, 134.02, 130.67, 129.59, 129.48, 129.05, 128.92, 126.53, 126.22, 125.41, 124.97, 124.08, 123.73, 123.32, 122.39, 122.34, 120.53, 120.44, 119.00, 118.83, 118.35, 115.95, 114.27, 109.48, 109.32, 46.47, 16.17, 44.12, 42.48, 42.13, 39.78. HRMS (ESI-TOF) m/z Calcd for C₂₆H₂₂N₄O₃S [M+H]⁺ 471.1485. found 471.1486. Anal. Cacld for C₂₆H₂₂N₄O₃S: C 66.37, H 4.71, N 11.91; Found: C 66.20, H 4.83, N 12.02.

2-(5,6-dimethyl-1*H*-benzo[*d*]imidazol-1-yl)-1-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethan-1-one

Yield 76%. Yellow solid. Mp 278-279 °C. IR vmax (cm⁻¹): 3101.40, 3059.93, 3020.07, 2971.26, 2920.64, 2849.21, 2315.67, 1952.17, 1903.14, 1793.92, 1658.60, 1508.84, 1416.91, 1370.55, 1221.56, 1179.85, 1080.26, 880.44, 840.73, 791.34, 754.97, 715.54, 691.55, 604.57, 562.96. ¹H NMR (400 MHz, DMSO): $\delta = 8.05$ -7.87 (4H, m), 7.68-7.52 (4H, m), 7.42 (1H, s), 7.39-7.32 (1H, m), 7.30-7.26 (2H, m), 5.43 (2H, d), 5.15 (2H, s), 3.93-3.82 (2H, m), 2.90 (2H, s), 2.29 (6H, d, J= 6.0 Hz). ¹³C NMR (100 MHz, DMSO): $\delta = 166.85$, 144.62, 142.16, 137.47, 135.57, 135.20, 133.74, 131.44, 131.20, 130.40, 130.05, 129.55, 127.10, 126.78, 125.38, 124.36, 119.75, 119.42, 117.94, 114.23, 111.12, 111.09, 21.81, 20.57, 20.32. HRMS (ESI-TOF) m/z Calcd for C₂₈H₂₆N₄O₃S [M+H]⁺ 499.1798. found 499.1796.

2.3 Synthesis of compounds 22-51

A mixture of substituted imidazole **16-21** (0.25 mmol) and phenacylbromides or phenacyl or benzyl or naphthylacyl or naphthylmethyl (0.75 mmol) was stirred in $_{S18}^{S18}$

acetone (10 ml) at reflux 8-36 h. An insoluble substance was formed. After completion of the reaction as indicated by TLC, the precipitate was filtered and washed with acetone (3×10 ml), then dried to afford imidazolium salts **22-51** in 75–92% yields.

Yield 78%. Yellow solid. Mp 201-202 °C. IR v_{max} (cm⁻¹): 3413.84, 3150.03, 3113.89, 3051.00, 2999.56, 2904.48, 2853.30, 1700.60, 1659.21, 1479.58, 1417.24, 1351.58, 1225.65, 1172.21, 1045.57, 992.83, 813.01, 750.99, 684.37, 621.72. ¹H NMR (400 MHz, DMSO): $\delta = 10.97$ (1H, s), 9.06 (1H, s), 8.07 (2H, d, J= 7.6 Hz), 7.76 (3H, d, J= 8.4 Hz), 7.64 (2H, t, J= 12.8 Hz), 7.44 (H, d, J= 7.2 Hz), 7.34 (1H, t, J= 14 Hz), 7.06 (1H, t), 6.99 (1H, t), 6.13 (2H, s), 5.63 (2H, d, J= 8.8 Hz), 4.76 (2H, s), 3.90-3.82 (2H, m), 2.91 (2H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 206.94$, 191.73, 165.02, 164.88, 139.13, 136.63, 136.39, 134.97, 134.19, 130.87, 130.21, 129.56, 128.60, 126.92, 126.78, 124.32, 123.86, 121.53, 121.40, 119.09, 118.06, 118.01, 111.56, 107.67, 107.00, 79.81, 79.48, 79.15, 56.00, 51.00, 31.16, 21.77, 20.99. HRMS (ESI-TOF) *m/z* Calcd for C₂₈H₂₅BrN₄O₂ [M-Br]⁺, 449.1972. found 449.1975.

Yield 92%. Yellow solid. Mp 249-251 °C. IR v_{max} (cm⁻¹): 3421.71, 3280.54, 3072.96, 2977.66, 2922.79, 2850.08, 1693.46, 1657.23, 1563.26, 1436.89, 1226.38, 1176.46, 1046.60, 812.82, 746.35, 647.12, 477.92. ¹H NMR (400 MHz, DMSO): $\delta = 10.97$ (1H, d), 9.10 (1H, s), 8.83 (1H, s), 8.20 (1H, d, J= 8 Hz), 8.14 (1H, d, J= 8.8 Hz), 8.06 (2H, t), 7.80-7.68 (4H, m), 7.44 (1H, t, J= 2.4 Hz), 7.08-6.97 (2H, m), 6.26 (2H, s), 5.64 (2H, d, J= 8.4 Hz), 4.77 (2H, s), 3.92-3.83 (2H, m), 2.92 (2H, s). ¹³C NMR (100 MHz,

DMSO): $\delta = 191.64, 165.03, 164.90, 139.19, 136.64, 136.39, 135.99, 132.50, 131.51, 130.91, 130.88, 130.21, 130.21, 130.13, 129.80, 129.26, 128.36, 127.89, 126.92, 126.78, 124.38, 123.92, 123.66, 121.54, 121.41, 119.10, 118.07, 118.02, 111.57, 107.69, 107.01, 79.80, 79.47, 79.14, 56.04, 54.14, 51.02, 21.77, 21.00. HRMS (ESI-TOF)$ *m/z*Calcd for C₂₈H₂₅BrN₄O₂ [M-Br]⁺, 399.1815. found 399.1814.

Yield 92%. Yellow solid. Mp 236-238 °C. IR v_{max} (cm⁻¹): 3872.82, 3831.06, 3728.97, 3385.38, 3242.16, 3044.78, 2986.56, 2984.12, 2923.21, 2811.05, 2315.21, 1697.14, 1666.83, 1565.33, 1481.06, 1233.45, 1044.26, 984.62, 749.84, 683.08. ¹H NMR (400 MHz, DMSO): $\delta = 11.00$ (1H, d), 9.65 (1H, d), 8.15-8.09 (4H, m), 7.80 (1H, t, J= 14.4 Hz), 7.68 (4H, t, J= 14.4 Hz), 7.46 (1H, t), 7.40-7.32 (1H, m), 7.07 (1H, t), 7.00 (1H, t, J= 14.4 Hz), 6.49 (1H, s), 5.98 (2H, d, J= 12 Hz), 4.84 (2H, d), 3.93 (2H, d), 3.00 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 192.10$, 165.22, 165.02, 145.60, 145.50, 137.14, 136.89, 135.55, 134.74, 132.67, 132.60, 132.49, 131.28, 130.80, 130.03, 129.39, 127.63, 127.42, 127.29, 122.04, 121.92, 119.60, 118.56, 114.98, 114.90, 112.07, 108.17, 107.56, 54.32, 22.31, 21.51. HRMS (ESI-TOF) *m/z* Calcd for C₂₈H₂₅BrN₄O₂ [M-Br]⁺ 449.1972. found 449.1972.

3-(2-(4-methoxyphenyl)-2-oxoethyl)-1-(2-oxo-2-(1,3,4,9-tetrahydro-2*H*pyrido[3,4-*b*]indol-2-yl)ethyl)-1*H*benzo[*d*]imidazol-3-ium bromide

Yield 88%. Yellow solid. Mp 258-260 °C. IR v_{max} (cm⁻¹): 3874.29, 3729.79, 3393.09, 3226.77, 3002.79, 2922.01, 2849.00, 2313.76, 1677.56, 1603.84, 1563.77, 1424.79, 1255.33, 1235.52, 1173.63, 1037.62, 978.96, 844.64, 752.82. ¹H NMR (400 MHz,

DMSO): $\delta = 10.99$ (1H, d), 9.63 (1H, d), 8.12-8.05 (4H, m), 7.68 (2H, d, J= 8.8 Hz), 7.46 (1H, t), 7.39-7.32 (1H, m), 7.20 (2H, d, J= 8.4 Hz), 7.09 (1H, t), 7.05-6.98 (1H, m), 6.42 (2H, s), 5.95 (2H, d, J= 11.6 Hz), 4.83 (2H, d), 3.96- 3.91 (5H, m), 2.92 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 190.31$, 165.19, 165.03, 145.67, 137.15, 136.90, 132.66, 132.60, 132.50, 131.84, 131.29, 130.80, 127.62, 127.43, 127.30, 122.06, 121.91, 119.62, 118.57, 115.30, 114.85, 112.08, 108.20, 107.57, 56.79, 53.87, 22.31, 21.52. HRMS (ESI-TOF) *m*/*z* Calcd for C₂₉H₂₇BrN₄O₃ [M-Br]⁺, 479.2077. found 479.2080. Anal. Cacld for C₂₉H₂₇BrN₄O₃: C 62.26, H 4.86, N 10.01; Found: C 62.18, H 4.76, N 10.03.

Yield 78%. Yellow solid. Mp 240-242 °C. IR v_{max} (cm⁻¹): 3873.89, 3729.56, 3386.89, 3253.00, 2991.69, 2923.63, 2810.72, 2717.25, 2314.06, 1918.02, 1695.49, 1663.80, 1575.83, 1480.66, 1430.65, 1231.84, 1074.53, 981.49, 820.60, 752.61, 492.27. ¹H NMR (400 MHz, DMSO): $\delta = 11.01$ (1H, d), 9.64 (1H, d), 8.07 (4H, t), 7.91 (2H, d, J= 8.0 Hz), 7.69 (2H, s), 7.45 (1H, t), 7.39-7.31 (1H, m), 7.06 (1H, t, J= 15.6 Hz), 7.00 (1H, t, J= 14.4 Hz), 6.47 (2H, s), 5.98 (2H, d, J= 12.8 Hz), 4.83 (2H, d), 3.92 (2H, d), 2.86 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 191.54$, 165.24, 165.03, 145.57, 145.47, 137.16, 136.90, 133.83, 133.13, 132.68, 132.61, 132.48, 131.37, 131.30, 130.82, 129.68, 127.66, 127.44, 127.30, 122.06, 121.94, 119.63, 118.59, 115.03, 114.94, 112.10, 108.19, 107.59, 54.35, 22.33, 21.53. HRMS (ESI-TOF) *m/z* Calcd for C₂₈H₂₄Br₂N₄O₂ [M-Br]⁺, 527.1077. found 527.1077.

Yield 83%. Yellow solid. Mp 270-271 °C. IR v_{max} (cm⁻¹): 3229.02, 2994.73, 2921.54, 2812.44, 1674,51, 1563.99, 1478.47, 1430.66, 1359.03, 1270.95, 1230.36, 1189.35, 1130.44, 1041.11, 859.37, 814.10, 751.64 . ¹H NMR (400 MHz, DMSO): $\delta = 11.01$ (1H, d), 9.71 (1H, d), 8.94 (1H, s), 8.23 (1H, s), 8.17-8.08 (10H, m), 7.73 (1H, t), 7.48-7.34 (1H, m), 7.07 (1H, t, J= 15.2 Hz), 7.00 (1H, t, J= 14.4 Hz), 6.63 (2H, s), 6.00 (2H, d, J= 12.8 Hz), 4.83 (2H, d), 3.93 (2H, d), 2.89 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 191.98$, 165.21, 165.01, 145.64, 145.54, 137.14, 136.89, 136.52, 132.97, 132.69, 132.62, 132.52, 132.05, 131.81, 131.27, 130.78, 130.64, 130.33, 129.66, 128.86, 128.38, 127.63, 127.42, 127.28, 124.31, 122.01, 121.90, 119.58, 118.53, 114.93, 114.88, 112.05, 108.17, 107.56, 54.34, 22.30, 21.49. HRMS (ESI-TOF) *m/z* Calcd for C₃₂H₂₇BrN₄O₂ [M-Br]⁺, 499.2128. found 499.2128.

Yield 88%. Yellow solid. Mp 272-274 °C. IR v_{max} (cm⁻¹): 3436.05, 3227.03, 3120.74, 3059.87, 2961.26, 2925.59, 2857.06, 2792.86, 1837.25, 1657.34, 1610.15, 1563.20, 1520.23, 1431.47, 1350.03, 1224.37, 849.46, 802.90, 745.35. ¹H NMR (400 MHz, DMSO): $\delta = 10.99$ (1H, d), 9.80 (1H, d, J= 7.2 Hz), 8.06-8.01 (2H, m), 7.68-7.37 (8H, m), 7.33-7.31 (1H, m), 7.07 (1H, t, J= 15.6 Hz), 7.00 (1H, t, J= 14.8 Hz), 5.86 (4H, t, J= 14.8 Hz), 4.81 (2H, d), 3.90 (2H, t), 2.98 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 164.76$, 164.55, 144.27, 136.63, 136.37, 133.75, 133.70, 132.67, 132.63, 132.49, 131.06, 131.00, 130.81, 130.76, 130.25, 127.33, 127.18, 126.90, 126.77, 122.70, 122.66, 121.55, 121.44, 119.12, 118.05, 114.60, 114.53, 114.27, 111.58, 107.65, 107.03, 49.67, 48.84, 31.17, 21.79, 21.00. HRMS (ESI-TOF) *m/z* Calcd for

C₂₇H₂₄Br₂N₄O [M-Br]⁺ 499.1112. found 499.1113. Anal. Cacld for C₂₇H₂₄Br₂N₄O: C 55.88, H 4.17, N 9.65; Found: C 55.56, H 4.10, N 9.76.

Yield 82%. Yellow solid. Mp 279-280 °C. IR v_{max} (cm⁻¹): 3436.05, 3227.03, 3120.74, 3059.87, 2961.26, 2925.59, 2857.06, 2792.86, 1837.25, 1657.34, 1610.15, 1563.20, 1520.23, 1431.47, 1350.03, 1224.37, 849.46, 802.90, 745.35, 657.30 . ¹H NMR (400 MHz, DMSO): $\delta = 11.00$ (1H, d), 9.90 (1H, d, J= 8.4 Hz), 8.29 (2H, d, J= 4.8 Hz), 8.09 (1H, d, J= 6.8 Hz), 7.98 (1H, t, J= 13.6 Hz), 7.76-7.67 (4H, m), 7.46 (1H, t), 7.33 (1H, d, J= 7.6 Hz), 7.07 (1H, t), 7.00 (1H, t, J= 14.8 Hz), 6.07 (2H, s), 5.91 (2H, d, J= 11.2 Hz), 4.83 (2H, d), 3.96-3.90 (2H, m), 2.99 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 164.73$, 164.53, 148.11, 144.69, 141.80, 141.74, 136.66, 136.39, 132.69, 132.64, 130.83, 130.80, 130.76, 130.26, 129.85, 129.78, 127.41, 127.31, 126.91, 126.79, 124.58, 121.55, 121.44, 119.12, 118.04, 114.71, 114.63, 114.20, 111.58, 107.66, 107.04, 49.55, 48.94, 21.82, 21.01. HRMS (ESI-TOF) *m/z* Calcd for C₂₇H₂₄BrN₅O₃ [M-Br]⁺ 466.1873. found 466.1871.

Yield 76%. Yellow solid. Mp 272-273 °C. IR v_{max} (cm⁻¹): 3703.56, 3274.28, 3116.03, 3056.46, 2972.08, 2927.07, 2860.44, 2314.51, 1955.55, 1922.65, 1828.18, 1655.36, 1559.56, 1431.58, 1370.52, 1321.18, 1179.82, 860.11, 818.21, 744.11, 474.59. ¹H NMR (400 MHz, DMSO): $\delta = 11.07$ -10.93 (1H, d), 9.91-9.88 (1H, d), 8.12-7.93 (7H, m), 7.68-7.56 (6H, m), 7.47-7.32 (2H, m), 6.06-6.04 (2H, d), 5.93-5.90 (2H, d), 4.90-4.75 (2H, d), 3.94-3.89 (2H, t), 2.98-2.76 (2H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 1200$

165.30, 165.08, 144.81, 137.14, 136.84, 133.70, 133.65, 133.17, 132.21, 131.47, 131.25, 129.86, 128.80, 128.65, 128.58, 127.76, 127.62, 126.54, 122.00, 121.89, 119.58, 118.51, 115.02, 114.82, 112.05, 108.13, 107.52, 51.07, 49.38, 49.17, 43.91, 43.22, 40.86, 40.66, 40.45, 40.24, 40.03, 22.29, 21.47. HRMS (ESI-TOF) m/z Calcd for C₃₁H₂₇BrN₄O [M-Br]⁺ 471.2179. found 471.2176.

Yield 89%. Yellow solid. Mp 222-223 °C. IR v_{max} (cm⁻¹): 3873.54, 3729.78, 3396.85, 3359.58, 3149.29, 3094.30, 3055.49, 2973.11, 2933.63, 2314.14, 2009.53, 1934.15, 1897.58, 1803.97, 1758.75, 1692.11, 1653.28, 1568.79, 1412.74, 1367.21, 1301.87, 1226.12, 1176.29, 995.51, 964.07, 793.55, 755.22, 678.68, 603.14, 565.09. ¹H NMR (400 MHz, DMSO): $\delta = 9.11$ (1H, s), 8.09-8.03 (4H, m), 7.91 (1H, d, J= 7.6 Hz), 7.79 (3H, d, J= 9.6 Hz), 7.69-7.53 (6H, m), 7.37-7.31 (2H, m), 6.18 (2H, s), 5.71 (2H, d), 5.08 (2H, s), 3.86 (2H, s), 2.91 (1H, s), 2.08 (1H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 191.77$, 165.18, 139.10, 137.46, 135.56, 135.26, 134.97, 134.20, 131.08, 130.47, 129.57, 129.47, 128.63, 127.18, 126.80, 125.46, 124.41, 124.32, 123.91, 119.46, 117.93, 114.21, 56.06, 51.02, 31.17, 21.72. HRMS (ESI-TOF) *m/z* Calcd for C₃₀H₂₇BrN₄O₄S [M-Br]⁺ 539.1747. found 539.1746. Anal. Cacld for C₃₀H₂₇BrN₄O₄S: C 58.16, H 4.39, N 9.04; Found: C 58.60, H 4.39, N 9.12.

3-(2-(naphthalen-2-yl)-2-oxoethyl)-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-imidazol-3-ium bromide

Yield 86%. Yellow solid. Mp 195-196 °C. IR v_{max} (cm⁻¹): 3470.30, 3392.33, 3161.56, 3122.50, 3066.33, 3000.48, 2968.98, 2911.92, 2407.12, 2387.40, 2314.59, 1919.57, 1700.57, 1659.42, 1564.70, 1439.46, 1366.77, 1221.92, 1178.35, 798.89, 753.45,

689.59, 602.83, 563.66, 484.63. ¹H NMR (400 MHz, DMSO): δ = 8.22 (1H, d, J= 8.0 Hz), 8.15 (1H, d, J= 8.0 Hz), 8.09-8.03 (5H, m), 7.99-7.90 (5H, m), 7.64-7.51 (3H, m), 7.38 (1H, t, J= 15.2 Hz), 7.31 (1H, t, J= 14.0 Hz), 6.29 (2H, s), 5.76-5.65 (2H, m), 5.09 (2H, s), 3.91-3.85 (2H, m), 2.91 (2H, d). ¹³C NMR (100 MHz, DMSO): δ = 191.67, 165.20, 139.16, 137.48, 136.00, 135.56, 135.27, 132.51, 131.51, 131.09, 130.94, 130.14, 129.82, 129.47, 129.27, 128.37, 127.89, 126.80, 125.47, 124.41, 123.97, 123.67, 119.46, 117.91, 114.22, 56.08, 51.02, 21.72. HRMS (ESI-TOF) *m/z* Calcd for C₃₄H₂₉BrN₄O₄S [M-Br]⁺ 589.1904. found 589.1904.

2-ethyl-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethyl)-3-(2-oxo-2-phenylethyl)-1*H*imidazol-3-ium bromide

Yield 86%. Yellow solid. Mp 272-273 °C. IR v_{max} (cm⁻¹): 3833.26, 3729.72, 3643.81, 3395.33, 3176.84, 3137.42, 3057.15, 3044.79, 2975.39, 2925.05, 2666.32, 2386.47, 2314.07, 1955.94, 1907.55, 1759.04, 1690.49, 1652.76, 1522.40, 1450.92, 1415.38, 1368.82, 1232.28, 1178.60, 960.99. 888.28, 757.16, 683.78, 601.26, 563.63. ¹H NMR (400 MHz, DMSO): $\delta = 8.10$ (2H, d, J= 7.2 Hz), 8.03 (1H, t, J= 14.8 Hz), 7.90 (1H, d, J= 7.6 Hz), 7.78 (1H, d, J= 7.2 Hz), 7.71-7.54 (9H, m), 7.38-7.29 (2H, m), 6.14 (2H, s), 5.64 (2H, d, J= 13.6 Hz), 5.08 (2H, d, J= 9.6 Hz), 3.87 (2H, d, J= 5.2 Hz), 3.02 (2H, d, J= 7.6 Hz), 2.93 (2H, s), 1.04 (3H, t, J= 15.2 Hz). ¹³C NMR (100 MHz, DMSO): $\delta = 191.98$, 165.02, 150.64, 137.44, 135.59, 135.25, 135.01, 134.23, 130.98, 130.44, 129.47, 128.86, 127.15, 126.79, 125.48, 124.44, 123.57, 123.14, 119.46, 117.97, 114.26, 54.96, 21.70, 16.48, 11.83, 77.76. HRMS (ESI-TOF) *m/z* Calcd for C₃₂H₃₀BrN₄O₄S [M-Br]⁺ 567.2060. found 567.2060. Anal. Cacld for C₃₂H₃₁BrN₄O₄S: C 59.35, H 4.83, N 8.65; Found: C 59.50, H 4.58, N 8.62.

S25

3-(2-(4-bromophenyl)-2-oxoethyl)-2ethyl-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethyl)-1*H*-imidazol-3-ium bromide

Yield 89%. Yellow solid. Mp 279-280 °C. IR v_{max} (cm⁻¹): 3369.77, 3137.68, 3055.29, 3023.94, 2976.87, 2936.13, 1940.53, 1695.79, 1653.20, 1578.64, 1521.15, 1451.09, 1412.19, 1367.01, 1223.09, 1177.02, 1077.14, 1059.07, 996.87, 959.62, 882.71, 823.75, 756.99, 672.12, 599.95, 561.05. ¹H NMR (400 MHz, DMSO): δ = 8.04-7.88 (7H, m), 7.71-7.53 (6H, m), 7.39-7.29 (2H, m), 6.11 (2H, s), 5.63 (2H, d, J= 14.4 Hz), 5.08 (2H, d, J= 9.2 Hz), 3.87 (2H, d, J= 5.2 Hz), 3.01 (2H, d, J= 7.2 Hz), 2.93 (2H, s), 1.03 (3H, t). ¹³C NMR (100 MHz, DMSO): δ = 191.37, 165.00, 150.66, 137.44, 135.59, 135.25, 133.32, 132.54, 130.98, 130.81, 130.44, 129.49, 129.11, 127.14, 126.78, 125.48, 124.44, 123.59, 123.10, 119.46, 117.96, 114.26, 54.88, 49.86, 21.70, 16.47, 11.85, 11.78. HRMS (ESI-TOF) *m*/*z* Calcd for C₃₂H₃₀Br₂N₄O₄S [M-Br]⁺ 645.1165. found 645.1164. Anal. Cacld for C₃₂H₃₀Br₂N₄O₄S: C 52.91, H 4.16, N 7.71; Found: C 52.75, H 4.26, N 7.90.

Yield 78%. Yellow solid. Mp 273-274 °C. IR v_{max} (cm⁻¹): 3399.10, 3053.33, 3047.20, 3018.90, 2926.89, 2358.20, 2314.82, 1931.80, 1783.96, 1691.05, 1654.22, 1584.53, 1523.44, 1461.05, 1373.80, 1222.50, 1180.27, 1086.23, 957.33, 755.42, 677.71, 604.22, 561.60. ¹H NMR (400 MHz, DMSO): $\delta = 8.86$ (1H, s), 8.21 (1H, d, J= 8 Hz), 8.15 (1H, d, J= 8.4 Hz), 8.09-7.89 (5H, m), 7.73-7.54 (8H, m), 6.26 (2H, s), 5.64 (2H, d), 5.08 (2H, s), 3.78 (2H, s), 3.06 (2H, s), 2.93 (2H, s), 1.10-1.05 (3H, m). ¹³C NMR (100 MHz, DMSO): $\delta = 191.88$, 165.03, 150.68, 137.45, 136.01, 135.59, 135.26, 132.45, 131.57, 131.22, 130.99, 130.45, 130.11, 129.83, 129.49, 129.14, 128.38, 127.91, 127.14, 126.79, 125.50, 124.44, 123.85, 123.62, 123.21, 119.47, 117.96,

114.27, 54.96, 49.85, 21.70. 16.50, 11.80. HRMS (ESI-TOF) m/z Calcd for $C_{36}H_{33}BrN_4O_4S [M-Br]^+ 617.2217$. found 617.2216.

2-ethyl-3-(4-methylbenzyl)-1-(2oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-imidazol-3-ium bromide

Yield 81%. Yellow solid. Mp 244-245 °C. IR v_{max} (cm⁻¹): 3729.06, 3631.84, 3392.44, 3162.53, 3088.99, 3051.37, 2981.70, 2933.56, 2860.48, 2387.69, 2315.06, 1905.57, 1793.26, 1662.77, 1579.47, 1512.96, 1435.32, 1412.93, 1369.44, 1300.47, 1222.29, 1177.77, 1152.43, 963.10, 821.85, 754.52, 691.60, 606.20, 588.19, 566.29, 489.54. ¹H NMR (400 MHz, DMSO): $\delta = 8.01$ -7.85 (3H, m), 7.70-7.49 (6H, m), 7.35-7.22 (6H, m), 5.50 (4H, t), 5.04 (2H, d, J= 9.6 Hz), 3.86-3.81 (2H, m), 3.13-3.01 (2H, m), 2.69 (2H, s), 2.31 (3H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 165.69$, 150.48, 150.31, 139.29, 139.24, 138.25, 138.19, 136.40, 135.85, 135.79, 132.78, 131.63, 131.37, 131.02, 130.99, 130.73, 130.22, 130.12, 128.75, 128.66, 127.76, 127.45, 126.09, 125.07, 124.55, 124.43, 122.69, 120.03, 119.43, 118.64, 114.98, 80.33, 80.00, 79.67, 22.33, 21.68, 21.60, 17.46, 12.18, 12.09. HRMS (ESI-TOF) *m/z* Calcd for C₃₂H₃₃BrN₄O₃S [M-Br]⁺ 553.2267. found 553.2265. Anal. Cacld for C₃₂H₃₃BrN₄O₃S: C 60.66, H 5.25, N 8.84; Found: C 60.50, H 5.09, N 9.02.

2-ethyl-3-(naphthalen-2-ylmethyl)-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-imidazol-3-ium bromide

Yield 87%. Yellow solid. Mp 253-254 °C. IR v_{max} (cm⁻¹): 3873.86, 3729.92, 3579.06, 3401.33, 3146.73, 3037.64, 3036.41, 2996.52, 2946.23, 2904.79, 2660.03, 2536.06, 2314.30, 1948.99, 1810.66, 1757.68, 1661.31, 518.44, 1440.92, 1363.44, 1215.85, 1179.70, 874.86, 753.70, 602.31, 564.49, 483.68. ¹H NMR (400 MHz, DMSO): $\delta = 8.01$ -7.83 (8H, m), 7.69-7.45 (8H, m), 7.37-7.28 (2H, m), 5.70 (2H, s), 5.58 (2H, d), 5.06 (2H, d, J= 10.4 Hz), 3.84 (2H, s), 3.10 (2H, d, J= 6.8 Hz), 2.91 (2H, s), 1.03-0.95

(3H, m). ¹³C NMR (100 MHz, DMSO): $\delta = 165.05$, 149.81, 137.42, 135.58, 135.21, 133.20, 133.08, 132.72, 130.95, 130.44, 130.39, 129.48, 129.35, 128.27, 127.31, 127.23, 127.12, 126.92, 126.77, 125.60, 125.49, 124.43, 124.01, 122.23, 119.45, 117.95, 114.26, 51.35, 49.80, 21.66, 16.81, 11.73, 11.61. HRMS (ESI-TOF) *m/z* Calcd for C₃₅H₃₃BrN₄O₃S [M+1]⁺ 589.2267. found 589.2267.

1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-3-(2-oxo-2-phenylethyl)-1*H*benzo[*d*]imidazol-3-ium bromide

Yield 86%. Yellow solid. Mp 200-201 °C. IR v_{max} (cm⁻¹): 3611.88, 3399.75, 3014.40, 2967.24, 2920.78, 2315.42, 1816.28, 1698.03, 1657.45, 1566.02, 1483.95, 1441.11, 1372.90, 1299.79, 1228.24, 1181.92, 1152.37, 1088.37, 992.59, 960.65, 893.04, 755.05, 683.31, 602.66, 588.05, 565.04. ¹H NMR (400 MHz, DMSO): $\delta = 8.05$ -7.8 (9H,m), 7.57 (6H, t), 7.46 (2H, s), 7.36-7.28 (2H,m), 5.96 (4H, s), 5.18-5.08 (2H, m), 3.97 (1H, s), 3.31 (1H, d, J=7.6 Hz), 2.78 (2H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 164.59$, 138.32, 136.19, 134.93, 134.78, 133.72, 133.57, 131.36, 130.77, 130.62, 130.24, 130.10, 129.89, 129.57, 128.52, 128.29, 127.68, 127.58, 127.45, 127.09, 126.84, 125.84, 125.50, 124.42, 119.16, 117.64, 114.64, 114.51, 114.14, 51.51, 49.32, 49.11, 49.01, 48.90, 48.82, 48.69, 48.47, 22.30, 21.31. HRMS (ESI-TOF) *m/z* Calcd for C₃₄H₂₉BrN₄O₄S [M-Br]⁺ 639.1904. found 639.1903.

Yield 75%. Yellow solid. Mp 197-198 °C. IR v_{max} (cm⁻¹): 3874.44, 3729.21, 3390.00, 3052.81, 3015,65, 2967.72, 2922.05, 2672.15, 2587.67, 2314.31, 1953.03, 1920.51,

1810.95, 1698.58, 1656.15, 1575.20, 1484.00, 1440.11, 1370.22, 1228.38, 1181.09, 1080.47, 993.52, 894.09, 823.86, 755.78, 690.05, 603.01, 587.87, 564.12. ¹H NMR (400 MHz, DMSO): $\delta = 9.64$ (1H, t), 8.11-8.03 (6H, m), 7.93-7.88 (3H, m), 7.71-7.56 (6H, m), 7.38-7.32 (2H, m), 6.47 (2H, s), 5.98 (2H, s), 5.13 (2H, d), 3.95 (2H, s), 3.38 (3H, d, J= 11.6 Hz), 2.98 (2H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 164.77$, 145.04, 137.49, 135.60, 135.24, 133.34, 132.62, 132.09, 131.98, 130.97, 130.84, 130.44, 129.48, 129.17, 127.15, 126.78, 125.47, 124.41, 119.47, 117.95, 114.49, 114.42, 114.23, 79.79, 79.46, 79.13, 67.48, 60.21, 25.59, 21.75, 14.55. HRMS (ESI-TOF) *m/z* Calcd for C₃₄H₂₈Br₂N₄O₄S [M-Br]⁺ 667.1009. found 667.1010. Anal. Cacld for C₃₄H₂₈Br₂N₄O₄S: C 54.56, H 3.77, N 7.49; Found: C 54.05, H 3.85, N 7.60.

Yield 89%. Yellow solid. Mp 209-210 °C. IR v_{max} (cm⁻¹): 3397.65, 3126.41, 3010.29, 2973.73, 2933.01, 2846.23, 1811.70, 1697.41, 1656.47, 1606.07, 1564.15, 1519.44, 1440.62, 1419.28, 1375.46, 1259.06, 1232.07, 1180.69, 1086.02, 1031.74, 895.31, 845.57, 756.66, 566.52. ¹H NMR (400 MHz, DMSO): $\delta = 9.65$ (1H, d), 8.13-8.03 (6H, m), 7.89 (1H, d, J= 7.6 Hz), 7.73-7.54 (6H, m), 7.40-7.30 (2H, m), 7.20 (2H, d, J= 8.8 Hz), 6.45 (2H, s), 6.02 (2H, d), 5.14 (2H, d), 3.94 (3H, d), 2.99 (2H, s), 2.08 (2H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 189.83$, 164.80, 164.68, 145.09, 137.44, 135.64, 135.57, 135.27, 132.22, 132.09, 132.01, 131.36, 130.97, 130.77, 130.46, 129.49, 127.14, 127.07, 126.79, 125.49, 124.43, 119.49, 117.97, 114.80, 114.48, 114.36, 114.23, 56.29, 53.43, 48.78, 31.17, 21.75. HRMS (ESI-TOF) *m/z* Calcd for C₃₅H₃₁BrN₄O₅S [M-Br]⁺ 619.2009. found 619.2008. Anal. Cacld for C₃₅H₃₁BrN₄O₅S: C 60.09, H 4.47, N 8.01; Found: C 60.08, H 4.34, N 8.20.

3-(2-(naphthalen-2-yl)-2-oxoethyl)-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-benzo[*d*]imidazol-3-ium bromide

Yield 77%. Yellow solid. Mp 214-215 °C. IR ν_{max} (cm⁻¹): 3729.41, 3378.09, 3062.82, 3051.26, 3019.38, 2980.10, 2928.76, 2667.24, 2386.34, 2313.55, 1926.53, 1809.47, 1696.56, 1658.33, 1621.81, 1563.70, 1482.29, 1439.78, 1367.69, 1224.74, 1179.81, 1087.08, 995.03, 754.82, 690.01, 604.36, 587.74, 566.11. ¹H NMR (400 MHz, DMSO): $\delta = 9.68$ (1H, d), 8.93 (1H, s), 8.25-8.03 (8H, m), 7.90-7.54 (10H, m), 7.40-7.30 (2H, m), 6.36 (2H, s), 6.03 (2H, d), 5.14 (2H, d), 3.93 (2H, d), 2.99 (2H,s). ¹³C NMR (100 MHz, DMSO): $\delta = 191.98$, 165.27, 137.95, 136.52, 136.06, 135.73, 132.97, 132.61, 132.53, 132.05, 131.45, 130.93, 129.96, 129.68, 128.86, 128.39, 127.62, 127.26, 125.96, 124.89, 124.31, 119.96, 118.43, 114.98, 114.71, 54.34, 49.28, 22.22. HRMS (ESI-TOF) *m/z* Calcd for C₃₈H₃₁BrN₄O₄S [M-Br]⁺ 639.2060. found 639.2058. Anal. Cacld for C₃₅H₃₁BrN₄O₅S: C 60.09, H 4.47, N 8.01; Found: C 60.08, H 4.34, N 8.20.

3-(4-methylbenzyl)-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethyl)-1*H*benzo[*d*]imidazol-3-ium bromide

Yield 84%. Yellow solid. Mp 290-291 °C. IR v_{max} (cm⁻¹): 3874.15, 3832.88, 3729.67, 3393.33, 3134.04, 3077.05, 3066.32, 3021.59, 2924.11, 2410.07, 2314.50, 2009.68, 1907.43, 1819.17, 1782.54, 1664.02, 1567.21, 1439.56, 1421.17, 1369.17, 1351.67, 1297.92, 1265.57, 1228.37, 1177.30, 1163.18, 1086.99, 962.87, 784.34, 728.86, 683.47, 605.03, 565.05. ¹H NMR (400 MHz, DMSO): $\delta = 9.81$ (1H, s), 8.04 (4H, t), 7.88 (1H, d), 7.34-7.24 (12H, m), 5.96-5.83 (4H, m), 5.12 (2H, d), 3.91 (2H, d), 2.97 (2H, s), 2.29 (3H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 164.88$, 144.00, 138.81, 137.44, 135.58, 135.24, 132.65, 131.27, 130.98, 130.88, 130.43, 130.09, 129.47,

128.87, 128.79, 127.24, 126.80, 125.48, 124.42, 119.48, 117.95, 114.55, 114.37, 114.23, 50.22, 48.65, 21.75, 21.19. HRMS (ESI-TOF) *m/z* Calcd for C₃₄H₃₁BrN₄O₃S [M-Br]⁺ 575.2111. found 575.2113. Anal. Cacld for C₃₄H₃₁BrN₄O₃S: C 62.29, H 4.77, N 8.55; Found: C 62.05, H 4.37, N 8.62.

Yield 86%. Yellow solid. Mp 272-273 °C. IR v_{max} (cm⁻¹): 3873.55, 3832.65, 3729.61, 3105.66, 3026.50, 2982.57, 2907.93, 2846.96, 2750.14, 2670.88, 2601.40, 2452.74, 2390.21, 2314.20, 1997.64, 1921.28, 1796.87, 1650.10, 1610.43, 1560.29, 1521.44, 1417.55, 1377.58, 1352.51, 1226.03, 1178.17, 1156.04, 965.82, 855.20, 800.33, 754.71, 715.41, 681.23, 601.98, 562.41. ¹H NMR (400 MHz, DMSO): δ = 7.94-7.88 (1H, m), 7.81-7.76 (4H, m), 7.63-7.29 (8H, m), 7.27-7.19 (2H, m), 5.92 (2H, s), 5.09 (2H, s), 4.56 (2H, s), 3.91 (2H, t, J=11.6 Hz), 2.91 (2H, s). ¹³C NMR (100 MHz, DMSO): δ = 166.55, 150.48, 142.82, 142.78, 139.94, 138.12, 136.60, 136.47, 134.78, 133.06, 132.54, 131.78, 131.69, 131.55, 131.26, 131.20, 129.51, 129.46, 129.36, 128.74, 128.54, 127.17, 127.05, 126.27, 126.10, 120.89, 120.80, 119.81, 116.25, 116.14, 115.96, 115.63, 23.53. HRMS (ESI-TOF) *m/z* Calcd for C₃₃H₂₈BrN₅O₅S [M-Br]⁺ 606.1805. found 606.1803.

3-(naphthalen-2-ylmethyl)-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethyl)-1*H*benzo[*d*]imidazol-3-ium bromide

Yield 72%. Yellow solid. Mp 136-137 °C. IR v_{max} (cm⁻¹): 3874.14, 3832.84, 3729.56, 3601.40, 3388.56, 3132.48, 2976.93, 2902.35, 2386.58, 2314.99, 2255.34, 2187.56, 1915.46, 1817.10, 1795.15, 1700.69, 1660.57, 1563.29, 1439.36, 1368.17, 1226.34, 1179.47, 1084.82, 957.64, 752.69, 718.07, 681.37, 602.30, 588.21, 563.07. ¹H NMR

(400 MHz, DMSO): $\delta = 10.41$ (1H, s), 8.00-7.95 (5H, m), 7.78 (2H, s), 7.50-7.18 (13H, m), 6.35 (2H, d), 6.11 (2H, s), 3.81 (2H, d), 2.94-2.85 (2H, m). ¹³C NMR (100 MHz, DMSO): $\delta = 189.92$, 163.84, 162.53, 143.92, 137.92, 135.88, 134.73, 133.95, 133.29, 131.93, 131.33, 129.83, 129.72, 129.46, 129.21, 129.08, 128.55, 127.19, 127.08, 126.99, 126.82, 126.34, 124.97, 124.81, 123.79, 118.81, 118.68, 117.33, 114.38, 114.05, 113.88, 113.17, 112.96, 53.59, 49.45, 49.13, 43.97, 42.68, 42.17, 39.71, 36.46, 31.41, 30.91, 22.10, 20.59. HRMS (ESI-TOF) *m/z* Calcd for $C_{37}H_{31}BrN_4O_3S [M-Br]^+ 611.2073$.

Yield 91%. Yellow solid. Mp 239-240 °C. IR v_{max} (cm⁻¹): 3729.60, 3390.26, 3121.27, 3055.00, 3007.50, 2974.01, 2901.43, 2410.55, 2314.60, 1961.08, 1913.30, 1791.30, 1703.27, 1700.74, 1658.66, 1564.82, 1443.25, 1378.63, 1223.38, 1180.06, 962.61, 880.94, 796.83, 756.58, 692.09, 605.72, 563.76. ¹H NMR (400 MHz, DMSO): $\delta = 8.12$ -7.95 (3H, m), 7.85-7.75 (2H, m), 7.68-7.55 (7H, m), 7.50-7.30 (5H, m), 5.17 (2H, s), 4.01 (2H, t, J= 11.6 Hz), 3.34 (3H, s), 3.01 (2H, s), 2.44 (6H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 192.71$, 166.73, 140.03, 139.66, 138.32, 136.67, 136.39, 136.22, 136.08, 132.75, 132.61, 132.39, 131.62, 131.59, 131.46, 131.08, 130.40, 128.64, 128.45, 126.89, 125.99, 120.72, 120.61, 119.83, 116.26, 115.08, 114.93, 23.52, 21.36, 21.33. HRMS (ESI-TOF) *m/z* Calcd for C₃₆H₃₃BrN₄O₄S [M-Br]⁺ 617.2217. found 617.2216.

Yield 88%. Yellow solid. Mp 250-252 °C. IR v_{max} (cm⁻¹): 3729.23, 3397.11, 3127.34, 3055.27, 2943.04, 2784.12, 2580.89, 2314.22, 1913.09, 1794.21, 1702.52, 1661.33, 1575.12, 1484.52, 1441.25, 1226.07, 1179.79, 1007.36, 963.16, 828.57, 755.75, 606.68, 564.11. ¹H NMR (400 MHz, DMSO): $\delta = 9.47$ (1H, s), 8.05 (4H, t), 7.92-7.84 (5H, m), 7.73-7.40 (4H, m), 7.38-7.30 (2H, m), 6.41 (2H, s), 5.94 (2H, d), 5.12 (2H, d), 3.91 (2H, t), 2.98 (2H, s), 2.41 (6H,d). ¹³C NMR (100 MHz, DMSO): $\delta = 191.04$, 164.84, 143.77, 137.46, 137.37, 136.85, 136.57, 135.25, 133.34, 132.60, 130.98, 130.83, 130.62, 130.48, 130.45, 129.47, 129.13, 127.16, 126.79, 125.47, 124.42, 119.48, 118.69, 117.95, 114.23, 113.84, 79.80, 79.46, 79.13, 53.70, 31.17, 21.74, 20.45. HRMS (ESI-TOF) *m/z* Calcd for C₃₆H₃₂Br₂N₄O₄S [M-Br]⁺ 695.1322. found 695.1324.

3-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6dimethyl-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-benzo[*d*]imidazol-3-ium bromide

Yield 90%. Yellow solid. Mp 244-245 °C. IR v_{max} (cm⁻¹): 3407.32, 3128.16, 3054.10, 2914.73, 2784.27, 1663.66, 1604.87, 1664.90, 1372.20, 1235.23, 1179.39, 1022.82, 963.70, 838.29, 756.09, 604.34, 563.77. ¹H NMR (400 MHz, DMSO): $\delta = 9.55$ (1H, d), 8.08 (2H, d, J= 8.8 Hz), 8.06-7.86 (5H, m), 7.68-7.56 (4H, m), 7.39-7.29 (2H, m), 7.19 (2H, d, J= 8.4 Hz), 6.41 (2H, s), 5.98 (2H, d), 5.13 (2H, d), 3.93 (5H, t), 2.98 (2H, s), 2.40 (6H, t). ¹³C NMR (100 MHz, DMSO): $\delta = 189.88$, 164.89, 164.65, 143.84, 137.47, 136.79, 136.75, 135.59, 135.24, 131.34, 131.00, 130.64, 130.53, 130.45,

129.49, 127.19, 127.11, 126.78, 125.46, 124.42, 119.48, 117.98, 114.77, 114.22, 113.79, 56.28, 53.33, 48.64, 21.76, 20.44, 20.41. HRMS (ESI-TOF) m/z Calcd for C₃₇H₃₅BrN₄O₅S [M+1]⁺ 647.2322. found 647.2324.

5,6-dimethyl-3-(2-(naphthalen-2-yl)-2-oxoethyl)-1-(2-oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethyl)-1*H*-benzo[*d*]imidazol-3-ium bromide

Yield 91%. Yellow solid. Mp 234-235 °C. IR v_{max} (cm⁻¹): 3410.12, 3127.23, 3053.62, 2935.80, 2789.85, 1661.25, 1564.31, 1441.81, 1371.01, 1224.05, 1180.64, 967.38, 755.51, 685.00, 604.64, 563.63, 480.64. ¹H NMR (400 MHz, DMSO): $\delta = 9.58$ (1H, d), 8.94 (1H, s), 8.24 (1H, d, J= 8 Hz), 8.16 (1H, d, J= 8 Hz), 7.93-7.87 (6H, m), 7.76-7.55 (6H, m), 7.40-7.30 (2H, m), 6.59 (2H, s), 5.99 (2H, d), 5.18 (2H, d), 3.94 (2H, t), 2.99 (2H, s), 2.42 (6H, t). ¹³C NMR (100 MHz, DMSO): $\delta = 191.55$, 164.89, 143.88, 137.50, 136.87, 136.82, 136.03, 135.60, 135.24, 132.51, 131.60, 131.32, 131.01, 130.78, 130.68, 130.57, 130.45, 130.16, 129.82, 129.49, 129.16, 128.38, 127.89, 127.17, 126.79, 125.47, 124.41, 123.85, 119.48, 117.97, 114.23, 113.86, 79.82, 79.49, 79.16, 53.77, 21.76, 20.46, 20.43. HRMS (ESI-TOF) *m/z* Calcd for C₄₀H₃₅BrN₄O₄S [M-Br]⁺ 746.1562. found 667.2373.

5,6-dimethyl-3-(4-methylbenzyl)-1-(2oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-benzo[*d*]imidazol-3-ium bromide

Yield 79%. Yellow solid. Mp 270-271 °C. IR v_{max} (cm⁻¹): 3874.20, 3833.29, 3729.85, 3394.55, 3121.05, 2975.91, 2909.85, 2387.24, 2314.68, 2106.64, 2387.24, 2314.68, 2106.64, 1660.44, 1560.72, 1375.10, 1221.15, 1178.77, 876.89, 754.56, 683.75, 605.84. ¹H NMR (400 MHz, DMSO): $\delta = 9.74$ (1H, s), 8.07-8.05 (2H, d), 7.92-7.86

(4H, m), 7.71-7.56 (4H, m), 7.43-7.34 (4H, m), 7.28-7.26 (2H, d), 5.92-5.87 (2H, d), 5.80-5.78 (2H, d), 5.19-5.07 (2H, d), 3.96-3.90 (4H, m), 2.42-2.41 (6H, d), 2.32 (3H, s). ¹³C NMR (120 MHz, DMSO): $\delta = 164.51$, 142.35, 138.29, 137.00, 136.61, 136.41, 135.13, 134.83, 131.06, 130.72, 130.56, 130.06, 130.01, 129.65, 129.62, 129.04, 128.97, 128.26, 128.17, 126.72, 126.38, 125.08, 124.02, 119.05, 117.53, 113.80, 113.48, 113.28, 49.55, 48.04, 41.66, 41.40, 40.03, 39.92, 39.78, 39.64, 39.50, 39.36, 39.22, 39.08, 21.30, 20.75, 20.07, 20.02. HRMS (ESI-TOF) *m/z* Calcd for C₃₆H₃₅BrN₄O₃S [M+1]⁺ 603.2411. found 603.2411.

5,6-dimethyl-3-(4-nitrobenzyl)-1-(2oxo-2-(9-(phenylsulfonyl)-1,3,4,9tetrahydro-2*H*-pyrido[3,4-*b*]indol-2yl)ethyl)-1*H*-benzo[*d*]imidazol-3ium bromide

Yield 89%. Yellow solid. Mp 227-228 °C. IR v_{max} (cm⁻¹): 3730.28, 3412.09, 3113.71, 2987.60, 2911.69, 2857.06, 2314.26, 2105.73, 1798.10, 1656.98, 1611.81, 1562.75, 1522.33, 1442.12, 1346.80, 1224.56, 1179.08, 962.41, 797.89, 754.36, 714.45, 605.32, 562.32. ¹H NMR (400 MHz, DMSO): $\delta = 9.83$ (1H, s), 8.29 (2H, d, J= 8.4 Hz), 8.01 (4H, t), 7.89-7.78 (1H, m), 7.72-7.53 (6H, m), 7.39-7.29 (2H, m), 6.03 (2H, s), 5.91 (2H, d), 5.11 (2H, d), 3.92 (2H, t), 2.97 (2H, s), 2.44 (6H, d). ¹³C NMR (100 MHz, DMSO): $\delta = 164.88$, 148.05, 143.41, 142.02, 137.46, 137.18, 137.08, 135.57, 135.23, 131.14, 130.96, 130.43, 129.63, 129.56, 129.45, 129.35, 127.15, 126.79, 125.47, 124.56, 124.42, 119.48, 117.94, 114.21, 114.10, 113.55, 49.33, 48.61, 21.75, 20.46. HRMS (ESI-TOF) *m/z* Calcd for C₃₅H₃₂BrN₅O₅S [M+1]⁺ 606.2157. found 606.2157.

5,6-dimethyl-3-(naphthalen-2-ylmethyl)-1-(2oxo-2-(9-(phenylsulfonyl)-1,3,4,9-tetrahydro-2*H*-pyrido[3,4-*b*]indol-2-yl)ethyl)-1*H*benzo[*d*]imidazol-3-ium bromide Yield 82%. Yellow solid. Mp 252-254 °C. IR v_{max} (cm⁻¹): 3421.91, 3122.92, 2973.32, 2927.60, 1659.90, 1562.65, 1441.69, 1369.75, 1224.68, 1179.96, 963.00, 754.51. ¹H NMR (400 MHz, DMSO): $\delta = 9.73$ (1H, s), 8.06-7.84 (9H, m), 7.66-7.53 (7H, m), 7.39-7.29 (2H, m), 5.99 (2H, s), 5.87 (2H, d), 5.10 (2H, d), 3.90 (2H, d), 2.95 (2H, s), 2.37 (6H, s). ¹³C NMR (100 MHz, DMSO): $\delta = 164.95$, 143.05, 137.42, 137.05, 136.89, 135.54, 135.24, 133.17, 131.98, 131.18, 130.98, 130.42, 129.54, 129.45, 129.36, 128.32, 128.19, 127.89, 127.74, 127.28, 127.14, 126.79, 125.98, 125.48, 124.42, 119.46, 117.94, 114.22, 113.97, 113.71, 79.80, 79.68, 79.47, 79.14, 60.23, 50.34, 21.72, 20.49, 20.46, 14.55. HRMS (ESI-TOF) *m*/*z* Calcd for C₃₉H₃₅BrN₄O₃S [M+1]⁺ 639.2424. found 639.2427.
3. Biological Assay Procedures and Results

3.1 Cytotoxicity assay

The assay was in five kinds of cell lines (HL-60, SMMC-7721, A549, MCF-7 and SW480). Cells were cultured at 37 °C under a humidified atmosphere of 5% CO₂ in RPMI 1640 medium supplemented with 10% fetal serum and dispersed in replicate 96-well plates. Compounds were then added. After 48 h exposure to the compounds, cells viability were determined by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] (MTT) cytotoxicity assay by measuring the absorbance at 570 nm with a microplate spectrophotometer. Each test was performed in triplicate.

3.2 Cytotoxic activities of hybrid compounds 17–54 invitro^b (IC₅₀, µM^a)

Entry	Compound No.	HL-60	SMMC-7721	A-549	MCF-7	SW480
1	17	>40	>40	>40	>40	>40
2	18	>40	>40	>40	>40	>40
3	19	17.81	>40	28.16	21.00	29.80
4	20	36.73	>40	>40	>40	>40
5	21	>40	>40	>40	>40	>40
6	22	>40	>40	>40	>40	>40
7	23	>40	>40	>40	>40	>40
8	24	>40	>40	>40	>40	>40
9	25	>40	>40	>40	>40	>40
10	26	21.81	27.59	>40	20.47	32.35
11	27	11.09	19.80	>40	17.56	16.69
12	28	10.68	30.39	>40	19.51	>40
13	29	>40	>40	>40	>40	>40
14	30	3.54	13.23	18.02	12.24	17.46
15	31	>40	>40	>40	>40	>40
16	32	3.32	12.11	14.21	3.74	11.80
17	33	>40	>40	>40	>40	>40
18	34	11.87	16.77	>40	8.28	35.62
19	35	2.47	10.67	13.39	10.44	10.14
20	36	2.56	12.48	22.13	3.37	11.84
21	37	2.77	12.81	14.46	2.61	12.81
22	38	14.39	24.60	21.41	16.44	13.60
23	39	10.61	17.28	31.23	16.59	11.81
24	40	3.97	14.95	18.27	11.34	13.58
25	41	3.24	15.03	8.78	8.05	11.01
26	42	3.04	14.78	17.01	7.68	11.70
27	43	13.58	23.35	35.36	17.42	12.44
28	44	4.34	14.74	17.28	10.33	11.76
29	45	10.18	14.50	22.75	11.26	13.19
30	46	3.75	15.30	>40	4.97	10.47
31	47	3.39	13.18	23.70	8.23	16.37
32	48	3.08	14.77	>40	3.90	16.17
33	49	4.30	15.13	29.52	10.17	14.20
34	50	12.81	33.19	>40	10.81	>40
35	51	2.61	14.15	17.13	2.79	9.46
36	DDP (MW 300)	2.27	9.98	8.25	14.69	15.11
37	Taxol	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008

Table 2 Cytotoxic activities of hybrid compounds 17-54 in vitro^b (IC₅₀, μM^a)

^a Cytotoxicity as IC₅₀ for each cell line, is the concentration of compound which reduced by 50% the optical density of treated cells with respect to untreated cells using the MTT assay.

^b Data represent the mean values of three independent determinations.

3.3 Cytotoxicity of the representative compound 51 against human normal lung epithelial cell line (BEAS-2B)

By comparing the IC_{50} values of the tested compounds towards cancer cell lines with those towards the normal lung epithelial cells BEAS-2B.

Table 3 Cytotoxicity of compound 15 against A549 and BEAS-2B cells in vitro (IC $_{50}$, μ M)

Entry	Compound no.	BEAS-2B	A549
1	51	>40	17.13
2	DDP	9.12	8.25

4. Cell apoptosis and cell cycle analysis

4.1 Cell apoptosis analysis

Cell apoptosis was analyzed using the Annexin V-FITC/PI Apoptosis kit (BD Biosciences, Franklin Lakes, NJ) according to the manufacturer's protocols. Cells were seeded in 6-well plates at a density of 1.2×10^6 cells/well. After 48 h of compound treatment at the indicated concentrations, cells were collected and then washed twice with cold PBS, and then resuspended in a binding buffer containing Annexin V-FITC and propidium iodine (PI). After incubation for 15 min at room temperature in the dark, the fluorescent intensity was measured using a FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ).

Fig. 1 Compound 51 caused significant apoptosis of SMMC-7721 cells. (A) Cells were treated with 4, 8 and 16 μ M compound 51 for 48 h. Cell apoptosis was determined by Annexin V-FITC/PI double-staining assay. (B) The quantification of cell apoptosis. Data represents the mean ± S.D. of three independent experiments.

4.2 Cell cycle analysis

To analyze the DNA content by flow cytometry, cells were collected and washed twice with PBS. Cells were fixed with 70% ethanol overnight. Fixed cells were washed with PBS, and then stained with a 50 μ g/ml propidium iodide (PI) solution containing 50 μ g/ml RNase A for 30 min at room temperature. Fluorescence intensity was analyzed by FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA). The percentages of the cells distributed in different phases of the cell cycle were determined using ModFIT LT 2.0.

Treatment	Cells (%)				
	G0/G1	S	G2/M		
DMSO	49.1±2.7	40.2±2.9	8.8±0.2		
Compound 25 (1 μ M)	52.9±1.3	29.7±0.7	12.1±1.8		
Compound 25 (3 μ M)	57.4±1.7	24.7±1.1	11.1±0.4		
Compound 25 (9 µM)	66.7±2.3	12.5±1.2	15.1±1.3		

Fig. 2 Compound 51 induces S phase arrest in SMMC-7721 cells. (A) Cells were treated with 1, 2 and 4 μ M of compound 51 for 24 h. Cell cycle was determined by PI staining and cell cytometry. (B) The percentages of cells in different phases were quantified. At least three independent experiments were performed and data of one representative experiment is shown.

5. ¹H-NMR and ¹³C-NMR Spectral of New Compounds

Compound 4 ¹H-NMR 400M CDCl₃

Compound 6¹H-NMR 400M CDCl₃

Compound 6¹³C-NMR 100M CDCl₃

Compound 7¹H-NMR 400M CDCl₃

Compound 10 ¹H-NMR 400M CDCl₃

Compound 8 ¹³C-NMR 100M CDCl₃

Compound 11b ¹H-NMR 400M CDCl₃

Compound 11b ¹³C-NMR 100M CDCl₃

Compound 17 ¹H-NMR 400M DMSO

Compound 17 ¹³C-NMR 100M DMSO

Compound 19 ¹H-NMR 400M DMSO

190 180 170 160 150 140 130 120 110 100 90

70

60 50

80

10 ppm

20

40 30

Compound 20 ¹H-NMR 400M DMSO

Compound 20 ¹³C-NMR 100M DMSO

Compound 21 ¹H-NMR 400M DMSO

Compound 21 ¹³C-NMR 100M DMSO

Compound 22 ¹H-NMR 400M DMSO

Compound 22 ¹³C-NMR 100M DMSO

Compound 23 ¹H-NMR 400M DMSO

Compound 23 ¹³C-NMR 100M DMSO

Compound **24** ¹H-NMR 400M DMSO

Compound 24 ¹³C-NMR 100M DMSO

Compound 25 ¹H-NMR 400M DMSO

Compound 25 ¹³C-NMR 100M DMSO

Compound 26 ¹H-NMR 400M DMSO

Compound 26 ¹³C-NMR 100M DMSO

Compound 27 ¹H-NMR 400M DMSO

Compound 27 ¹³C-NMR 100M DMSO

Compound 28 ¹H-NMR 400M DMSO

Compound 28 ¹³C-NMR 100M DMSO

Compound 29 ¹H-NMR 400M DMSO

Compound 29 ¹³C-NMR 100M DMSO

Compound 31 ¹³C-NMR 100M DMSO

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Compound 32 ¹H-NMR 400M DMSO

Compound 32 ¹³C-NMR 100M DMSO

Compound **33** ¹H-NMR 400M DMSO

Compound 33 ¹³C-NMR 100M DMSO

Compound 34 ¹H-NMR 400M DMSO

Compound 34 ¹³C-NMR 100M DMSO

Compound 35 ¹H-NMR 400M DMSO

Compound 35 ¹³C-NMR 100M DMSO

Compound 36 ¹H-NMR 400M DMSO

Compound 36 ¹³C-NMR 100M DMSO

Compound **37** ¹H-NMR 400M DMSO

Compound 38 ¹H-NMR 400M DMSO

Compound 38 ¹³C-NMR 100M DMSO

Compound **39** ¹H-NMR 400M DMSO

Compound **39** ¹³C-NMR 100M DMSO

Compound 40 ¹H-NMR 400M DMSO

S70

70 60 50 40 30

20

10 ppm

80

200 190 180 170 160 150 140 130 120 110 100 90

Compound 41 ¹H-NMR 400M DMSO

Compound 41 ¹³C-NMR 100M DMSO

Compound 42 ¹H-NMR 400M DMSO

Compound 42 ¹³C-NMR 100M DMSO

Compound 43 ¹H-NMR 400M DMSO

Compound 43 ¹³C-NMR 100M DMSO

Compound 44 ¹H-NMR 400M DMSO

Compound 44 ¹³C-NMR 100M DMSO

Compound 45 ¹H-NMR 400M DMSO

Compound 45 ¹³C-NMR 100M DMSO

Compound 46 ¹³C-NMR 100M DMSO

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Compound **47** ¹H-NMR 400M DMSO

60 50

40 30

70

20

10 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80

Compound 48 ¹H-NMR 400M DMSO

Compound 48 ¹³C-NMR 100M DMSO

Compound 49 ¹H-NMR 400M DMSO

Compound 49 ¹³C-NMR 120M DMSO

Compound 50 ¹H-NMR 400M DMSO

Compound 50 ¹³C-NMR 100M DMSO

Compound **51** ¹H-NMR 400M DMSO

