Electronic supplementary information for

I₂–TBHP-catalyzed one-pot highly efficient synthesis of 4,3-fused 1,2,4triazoles from *N*-tosylhydrazones and aromatic *N*-heterocycles *via* intermolecular formal 1,3-dipolar cycloaddition

Surendra Babu Inturi,^{a,b} Biswajit Kalita*^a and A. Jafar Ahamed*^b

^aMedicinal Chemistry Division, Jubilant Biosys Ltd, #96, Industrial Suburb, 2nd Stage,

Yeshwanthpur, Bangalore 560022, Karnataka, India.

^bPost Graduate and Research Department of Chemistry, Jamal Mohamed College (Autonomous),

affiliated to Bharathidasan University, Tiruchirappalli - 620020, Tamil Nadu, India.

*Corresponding authors. Tel.: +91-80-6662-8645. E-mail address: biswajit_kalita@jubilantbiosys.com E-mail address: agjafar@yahoo.co.in

Table of contents

General experimental methods	S2
Optimization of reaction conditions	S3-S4
General procedure for the preparation of N-tosylhydrazones	S5
Characterization data of new N-tosylhydrazones	S5-S6
Experimental procedure for compounds 3a-r, 5a-j & 6a-u	S7
Experimental procedure for compounds 6v-x	S7
Characterization data of all synthesized compounds	S8-S30
References	S30
Crystal preparations and X-ray crystal structures of compounds 3h & 6k	S31-S32

1. General experimental methods:

All reagents were purchased from commercial suppliers and used without further purification. Solvents were used without drying. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 100.5 MHz on Varian NMR spectrometer with CDCl₃ (or) DMSO- d_6 as solvent. Chemical shifts were reported in δ ppm using tetramethylsilane (δ 0.00 ppm) as the internal standard when using CDCl3 as solvent in ¹H NMR and residual solvent protons as internal standard (δ 2.48 ppm for DMSO- d_6 in ¹H-NMR, δ 77.0 ppm for CDCl₃ and δ 40.0 ppm for DMSO- d_6 in ¹³C-NMR). Coupling constants (J) were reported in Hz and refer to apparent peak multiplications. The peak splitting patterns were indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; td, triplet of doublets; quint, quintet; sext, sextet; bs, broad singlet. High resolution mass spectra were obtained on WATERS Q-TOF Premier-HAB213 spectrometer in ESI mode. Melting points were recorded using Buchi melting point apparatus and temperatures were uncorrected. Thin layer chromatography was performed on aluminium plates coated with silica gel 60 with F₂₅₄ indicator. The *N*-tosylhydrazones **1** were synthesized according to the reported procedure.¹

Table S1: Optimization of reaction conditions.^a

Reaction conditions: ^{*a*} **1** (0.5 mmol), **2g** (1.0 mmol), catalyst (20 mol%), oxidant (1.0 mmol) in CH₂Cl₂ (3.0 mL), RT (24–25 °C), open air. ^{*b*} Isolated yields. ^{*c*} I₂ (0.5 mmol). ^{*d*} I₂ (0.5 mmol), base (0.5 mmol). ^{*e*} TBHP (70% aqueous). ^{*f*} I₂ (10 mol%). ^{*g*} I₂ (40 mol%). ^{*h*} At 40 °C. ^{*i*} **2g** (0.7 mmol). ^{*j*} TBHP (5–6 M in decane). ^{*k*} BPO (benzoyl peroxide).

We initially began investigation reaction between N'-benzylidene-4our methylbenzenesulfonohydrazide 1 and 3-methylpyridine 2g using I₂ (1 equiv) in DCM at room temperature (Table S1, entry 1). To our delight, the desired compound **3g** was obtained in 11% yield over a period of 16 h with complete regioselectivity (confirmed by ¹H NMR) along with the recovery of the un-reacted starting materials as indicated by TLC. The optimization results are summarized in Table S1. Our study began by screening of external base (1 equiv, such as $C_{2}CO_{3}$, DBU and $K_{2}CO_{3}$), however none of them improved the yields significantly (Table S1, entries 2-4). Next, we sought to test the feasibility of the reaction with various oxidants and catalytic I_2 (20 mol%). It was noteworthy to metion that the desired product 3g was achieved in 85% yield in 6 h using 2 equiv of tert-butyl hydroperoxide [TBHP (5-6 M) in decane] in DCM at room temperature (Table S1, entry 11). The reaction failed to proceed in absence of I_2 or TBHP over a period of 16 h (Table S1, entries 12 and 13) suggesting the crucial roles of both I₂ and TBHP together for the formation of 3g. The reaction proceeded less efficiently in other iodine sources such as PhI, NaI, KI, NIS and TBAI even after prolonging the reaction time (Table S1, entries 14–18). Moreover, from the solvent screening results, DCM proved to be the best choice (Table S1, entries 19–22). In order to optimize the I₂ loading, it was found that either lowering the I₂ loading to 10 mol% or increasing to 40 mol% did not improve the yield of 3g (Table S1, entries 23 and 24). Finally, the effect of temperature was examined and it was found that increasing the temperature up to 40 °C lowered the yield of 3g (Table S1, entry 25). A reduction in yield of 3g was observed while lowering the amount of 2g to 1.4 equiv even after increasing the reaction time up to 10 h (Table S1, entry 26). Thus, the optimized catalytic system was established as: 1 (1 equiv), 2g (2 equiv), I₂ (20 mol%), TBHP (2 equiv) in DCM at room temperature (Table S1, entry 11).

2. General procedure for the preparation of *N*-tosylhydrazones:¹

To a stirred solution of TsNHNH₂ (5 mmol) in methanol (5 mL) was heated to 60 °C until the TsNHNH₂ was completely dissolved. Then carbonyl compounds (5 mmol) were dropped to the mixture slowly (solid reagents were added as a methanol solution or portion wise). After approximately 30 min the mixture was cooled to 0 °C and the precipitated products was removed by filtration. The precipitates were washed by petroleum ether then were dried under vacuum to afford the pure products.

3. Characterization data of new N-tosylhydrazones:

4-methyl-N'-(pyrazin-2-ylmethylene)benzenesulfonohydrazide (11)

Brown solid; Yield: 90%; M.p.: 169-170 °C; $R_f = 0.62$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 11.95 (s, 1H), 8.90 (s, 1H), 8.59 – 8.58 (m, 2H), 7.90 (s, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 148.3, 145.1, 144.8, 144.7, 144.2, 142.0, 136.3, 130.2, 127.6, 21.4. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₂N₄NaO₂S 299.0579; found, 299.0579.

4-methyl-N'-((1-methyl-1H-pyrazol-3-yl)methylene)benzenesulfonohydrazide (1m)

White solid; Yield: 89%; M.p.: 149-151 °C; $R_f = 0.5$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 11.25 (s, 1H), 7.83 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 1.6 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 6.39 (d, J = 1.2 Hz, 1H), 3.79 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 147.0, 143.8, 142.3, 136.6, 132.8, 130.0, 127.6, 103.2, 39.1, 21.4. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₄N₄NaO₂S, 301.0735; found, 301.0737.

4-methyl-N'-((tetrahydro-2H-pyran-4-yl)methylene)benzenesulfonohydrazide (1s)

White solid; Yield: 86%; M.p.: 119-121 °C; $R_f = 0.72$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 10.84 (s, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 4.4 Hz, 1H), 3.73 - 3.70 (m, 2H), 3.28 - 3.27 (m, 0.5H), 3.23 - 3.22 (m, 1.5H), 2.36 (s, 3H), 2.33 - 2.29 (m, 1H), 1.51 - 1.48 (m, 2H), 1.33 - 1.23 (m, 2H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 154.2, 143.6, 136.6, 129.9, 127.6, 66.5, 37.4, 29.6, 21.4. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₃H₁₈N₂NaO₃S, 305.0936; found, 305.0938.

4. Experimental procedure for compounds 3a-r, 5a-j & 6a-u:

To a stirred solution of N-sulfonylhydrazones (0.5 mmol, 1 equiv) and aromatic *N*-heterocycles (1.0 mmol, 2 equiv) in DCM (3.0 mL) was added 5 6 M solution of TBHP in decane (1.0 mmol, 2 equiv) and iodine (20 mol %). The reaction mixture was stirred at room temperature as monitored by TLC. After completion, the reaction mixture was quenched with 10% aqueous $Na_2S_2O_3$ solution (2.5 mL) and extracted with DCM (2x10 mL), the combined organic layers were dried over Na_2SO_4 , filtered, and evaporated under vacuum. The crude products were purified by flash column chromatography on silica gel using ethyl acetate (EtOAc) and hexane to give the fused triazoles **3a-l, 3o-q, 5a-j & 6a-u**.

5. Experimental procedure for compounds 6v-x:

To a stirred solution of TsNHNH₂ (0.5 mmol) in dichloromethane (3 mL) was added carbonyl compounds (0.5 mmol) at room temperature. This reaction mixture was stirred at room temperature for 1 hour. After this time, was added 3-methylpyridine (1.0 mmol, 2 equiv) followed by added 5 6 M solution of TBHP in decane (1.0 mmol, 2 equiv) and iodine (20 mol %) to the above reaction mixture. The reaction mixture was stirred at room temperature for 2 hours as monitored by TLC. After completion, the reaction mixture was quenched with 10% aqueous Na₂S₂O₃ solution (2.5 mL) and extracted with DCM (2x10 mL), the combined organic layers were dried over Na₂SO₄, filtered, and evaporated under vacuum. The crude products were purified by flash column chromatography on silica gel using ethyl acetate and hexane to give the fused triazoles **6v-x**.

6. Characterization data of all synthesized compounds:

3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridine (3a)

White solid; Yield: 85%; M.p.: 175-176 °C (lit: 172-174 °C,² 172 °C,³ 172-173 °C⁴); $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, J = 7.2 Hz, 1H), 7.84 – 7.83 (m, 3H), 7.61 – 7.53 (m, 3H), 7.30 – 7.28 (m, 1H), 6.86 (t, J = 6.8 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 150.5, 146.7, 130.1, 129.2, 128.2, 126.9, 126.6, 122.5, 116.8, 114.1. ESI-MS [M+H]⁺ m/z 196.1.

7-ethyl-3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridine (3b)

White solid; Yield: 87%; M.p.: 74-75 °C; $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 6.8 Hz, 2H), 7.59 – 7.51 (m, 4H), 6.71 (d, J = 6.4 Hz, 1H), 2.73 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 151.2, 146.2, 144.1, 129.9, 129.2, 128.1, 126.8, 121.8, 116.2, 112.9, 28.3, 13.8. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₃N₃Na₂ 246.1007; found, 246.1006.

3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridine-7-carbaldehyde (3c)

White solid; Yield: 89%; M.p.: 182-184 °C; $R_f = 0.37$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.35 – 8.33 (m, 2H), 7.87 – 7.84 (m, 2H), 7.63 – 7.61 (m, 3H), 7.36 (d, J = 8.0 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 189.0, 150.0, 148.1, 134.7, 130.8, 129.5, 128.3, 125.8, 123.7, 123.5, 110.1. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₀N₃O, 224.0824; found, 224.0825.

1-(3-phenyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)ethanone (3d)

White solid; Yield: 92%; M.p.: 253-254 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.61 – 8.57 (m, 2H), 7.92 – 7.90 (m, 2H), 7.64 – 7.58 (m, 3H), 7.31 (d, J = 7.6 Hz, 1H), 2.67 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 196.6, 150.3, 147.4, 135.4, 130.7, 129.7, 128.6, 126.6, 124.4, 118.8, 111.8, 26.7. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₄H₁₂N₃O 238.0980; found, 238.0987.

3-phenyl-7-(trifluoromethyl)-[1,2,4]triazolo[4,3-*a*]pyridine (3e)

White solid; Yield: 46%; M.p.: 225-226 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, J = 7.6 Hz, 1H), 8.16 (s, 1H), 7.84 (d, J = 5.6 Hz, 2H), 7.62 – 7.61 (m, 3H), 7.01 (d, J = 7.2 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 148.9, 147.7, 130.8, 129.5, 129.2 (q, $J_{C-F} = 34.4$ Hz), 128.3, 125.8, 123.9, 122.5 (q, $J_{C-F} = 273.3$ Hz), 115.4 (q, $J_{C-F} = 5.0$ Hz), 110.1 (d, $J_{C-F} = 2.3$ Hz). HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₃H₈F₃N₃Na, 286.0568; found, 286.0565.

3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridine-7-carbonitrile (3f)

Brown solid; Yield: 41%; M.p.: 225-226 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 7.2 Hz, 1H), 8.26 (s, 1H), 7.83 – 7.82 (m, 2H), 7.62 – 7.61 (m, 3H), 6.97 (d, J = 7.2 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 148.6, 148.1, 131.0, 129.5, 128.3, 125.4, 124.0, 123.9, 116.3, 113.8, 110.7. HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₃H₉N₄, 221.0827; found, 221.0826.

6-methyl-3-phenyl-[1,2,4]triazolo[4,3-a]pyridine (3g)⁵

White solid; Yield: 85%; M.p.: 155-156 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 10.0 Hz, 1H), 7.60 – 7.52 (m, 3H), 7.13 (d, J = 9.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.9, 146.3, 130.4, 129.9, 129.2, 128.2, 126.9, 124.0, 119.5, 115.9, 18.2. ESI-MS [M+H]⁺ m/z 210.1.

6-fluoro-3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridine (3h)

White solid; Yield: 65%; M.p.: 162-163 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.85 – 7.80 (m, 3H), 7.62 – 7.54 (m, 3H), 7.23 – 7.21 (m, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 154.0 (d, $J_{C-F} = 242.9$ Hz), 148.6, 147.7, 130.4, 129.4, 128.0, 126.2, 120.2 (d, $J_{C-F} = 27.2$ Hz), 117.7 (d, $J_{C-F} = 9.3$ Hz), 109.0 (d, $J_{C-F} = 41.2$ Hz). HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₂H₉FN₃, 214.0781; found, 214.0780.

6-chloro-3-phenyl-[1,2,4]triazolo[4,3-a]pyridine (3i)

White solid; Yield: 68%; M.p.: 154-156 °C (lit: 154-156 °C²); $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.67 (s, 1H), 7.92 – 7.90 (m, 3H), 7.61 – 7.57 (m, 3H), 7.47 (d, J = 9.6 Hz, 1H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.1, 146.8, 130.6, 129.7, 129.4, 128.6, 126.5, 122.3, 121.9, 117.0. ESI-MS [M+H]⁺ m/z 230.1.

6-bromo-3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridine (3j)

White solid; Yield: 71%; M.p.: 171-173 °C (lit: 174-175 °C⁶); $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H), 7.81 (d, J = 6.0 Hz, 2H), 7.73 (d, J = 9.6 Hz, 1H), 7.63 – 7.56 (m, 3H), 7.33 (d, J = 9.6 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.0, 146.6, 130.7, 130.5, 129.4, 128.2, 126.0, 122.5, 117.4, 109.4. ESI-MS [M+H]⁺ m/z 274.0.

methyl 3-phenyl-[1,2,4]triazolo[4,3-a]pyridine-6-carboxylate (3k)

White solid; Yield: 68%; M.p.: 155-157 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.99 (s, 1H), 7.85 – 7.79 (m, 4H), 7.65 – 7.58 (m, 3H), 3.96 (s, 3H); ¹³C NMR

(100.5 MHz, CDCl₃): δ 164.3, 150.4, 147.8, 130.6, 129.5, 128.4, 127.1, 126.4, 125.9, 118.6, 116.2, 52.7. HRMS–ESI (*m/z*): [M+Na]⁺ calcd for C₁₄H₁₁N₃NaO₂ 276.0749; found, 276.0750.

3-phenyl-[1,2,4]triazolo[4,3-*a*]pyridin-6-yl acetate (3l)

Colorless oil; Yield: 73%; $R_f = 0.35$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.83 – 7.81 (m, 3H), 7.60 – 7.55 (m, 3H), 7.12 (dd, J = 10, 1.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 168.7, 148.9, 147.5, 140.7, 130.3, 129.3, 128.1, 126.3, 124.6, 116.7, 115.0, 20.8. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₁N₃NaO₂, 276.0749; found, 276.0750.

3-phenyl-[1,2,4]triazolo[4,3-b]pyridazine (3o)⁷

Brown solid; Yield: 73%; M.p.: 152-153 °C; $R_f = 0.3$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.49 – 8.45 (m, 3H), 8.20 (d, J = 9.2 Hz, 1H), 7.58 – 7.50 (m, 3H), 7.14 (dd, J = 9.2, 4.0 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 148.1, 145.0, 144.8, 130.2, 128.6, 127.7, 126.1, 125.4, 119.2. ESI-MS [M+H]⁺ m/z 197.1.

6-methyl-3-phenyl-[1,2,4]triazolo[4,3-*b*]pyridazine (3p)

Brown solid; Yield: 69%; M.p.: 154-155 °C; $R_f = 0.3$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.52 – 8.49 (m, 2H), 8.06 (d, J = 9.6 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.01 (d, J = 9.6 Hz, 1H), 2.66 (s, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 154.4, 147.7, 144.2, 130.0, 128.5, 127.6, 126.4, 124.6, 121.6, 21.9. HRMS–ESI (*m/z*): [M+Na]⁺ calcd for C₁₂H₁₀N₄Na, 233.0803; found, 233.0804.

3-phenylthiazolo[2,3-c][1,2,4]triazole (3q)

Brown solid; Yield: 32%; M.p.: 159-160 °C; $R_f = 0.28$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.26 (d, J = 4.0 Hz, 1H), 7.94 (d, J = 6.8 Hz, 2H), 7.56 – 7.52 (m, 4H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 158.5, 146.8, 130.2, 129.6, 127.0, 126.6, 119.5, 118.3. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₀H₇N₃NaS 224.0258; found, 224.0261.

1-phenyl-[1,2,4]triazolo[4,3-*a*]quinoline (5a)

White solid; Yield: 80%; M.p.: 136-138 °C (lit: 135-137 °C²); $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 7.97 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 9.2 Hz, 1H), 7.73 – 7.61 (m, 6H), 7.48 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H) ; ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.5, 148.8, 131.8, 130.9, 130.3, 130.1, 130.0, 129.5, 129.4, 126.5, 124.6, 116.3, 115.0. ESI-MS [M+H]⁺ m/z 246.1.

5-methyl-1-phenyl-[1,2,4]triazolo[4,3-*a*]quinoline (5b)

White solid; Yield: 90%; M.p.: 153-154 °C (lit: 152-153 °C⁸); *R_f* = 0.42 (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO-*d₆*): δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.70 – 7.62 (m, 6H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.46 – 7.40 (m, 2H), 2.60 (s, 3H); ¹³C NMR (100.5 MHz, DMSO-*d₆*): δ 149.2, 148.4, 137.2, 131.6, 130.9, 130.3, 130.2, 129.5, 129.3, 126.7, 126.4, 124.9, 116.5, 113.7, 19.3. ESI-MS [M+H]⁺ *m/z* 260.1.

methyl 1-phenyl-[1,2,4]triazolo[4,3-*a*]quinoline-5-carboxylate (5c)

White solid; Yield: 56%; M.p.: 191-193 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.82 (d, J = 8.4 Hz, 1H), 8.40 (s, 1H), 7.70 – 7.59 (m, 6H), 7.52 (t, J = 7.8 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 4.05 (s, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 165.5, 149.8, 148.5, 131.9, 130.7, 129.8, 129.7, 129.2, 129.1, 129.0, 128.6, 128.1, 126.6, 121.7, 119.8, 116.9, 52.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₈H₁₄N₃O₂ 304.1086; found, 304.1082.

4-methyl-1-phenyl-[1,2,4]triazolo[4,3-a]quinoline (5d)

White solid; Yield: 96%; M.p.: 179-180 °C; $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 7.89 (d, J = 7.6 Hz, 1H), 7.71 – 7.62 (m, 5H), 7.60 (s, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.37 – 7.29 (m, 2H), 2.59 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.2, 149.3, 130.9, 130.9, 130.3, 130.1, 129.5, 129.1, 128.3, 127.5, 126.4, 125.0, 124.5, 116.1, 16.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₇H₁₄N₃ 260.1188; found, 260.1186.

6-bromo-1-phenyl-[1,2,4]triazolo[4,3-*a*]quinoline (5e)

Brown solid; Yield: 57%; M.p.: 171-172 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 9.6 Hz, 1H), 7.77 (d, J = 9.6 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.67 – 7.51 (m, 6H), 7.16 (t, J = 8.2 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.5, 149.1, 132.9,

130.6, 130.3, 129.8, 129.3, 129.2, 129.1, 128.5, 123.9, 123.8, 116.4, 116.2. HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₆H₁₁BrN₃, 324.0136; found, 324.0139.

7-methyl-1-phenyl-[1,2,4]triazolo[4,3-*a*]quinoline (5f)

White solid; Yield: 86%; M.p.: 179-181 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.65 (m, 3H), 7.62 – 7.57 (m, 4H), 7.50 (d, J = 10.0 Hz, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.8, 148.8, 136.0, 130.4, 130.0, 129.9, 129.8, 129.6, 129.5, 129.0, 129.0, 124.6, 116.5, 114.9, 20.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₇H₁₄N₃, 260.1188; found, 260.1186.

3-phenyl-[1,2,4]triazolo[3,4-a]isoquinoline (5g)

White solid; Yield: 87%; M.p.: 189-190 °C (lit: 181-183 °C²); $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.80 (d, J = 7.2 Hz, 1H), 7.99 (d, J = 6.8 Hz, 1H), 7.85 (d, J = 6.8Hz, 2H), 7.75 – 7.67 (m, 3H), 7.62 – 7.56 (m, 3H), 7.08 (d, J = 7.6 Hz, 1H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.2, 148.5, 130.2, 130.0, 129.7, 129.2, 129.1, 128.5, 127.0, 126.7, 124.1, 121.7, 119.5, 115.4. ESI-MS [M+H]⁺ *m/z* 246.1.

6-bromo-3-phenyl-[1,2,4]triazolo[3,4-*a*]isoquinoline (5h)

White solid; Yield: 88%; M.p.: 158-160 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.64 (d, J = 7.2 Hz, 1H), 8.53 (s, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.93 – 7.85 (m, 4H), 7.65 – 7.63 (m, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 148.3, 148.1, 131.5, 130.8, 130.7, 129.7, 128.9, 128.4, 127.0, 126.4, 123.9, 122.3, 121.1, 110.5. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₁BrN₃, 324.0136; found, 324.0139.

7-bromo-3-phenyl-[1,2,4]triazolo[3,4-a]isoquinoline (5i)

White solid; Yield: 84%; M.p.: 211-212 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.85 (dd, J = 8.0, 1.6 Hz, 2H), 7.64 – 7.51 (m, 5H); ¹³C NMR (100.5 MHz, CDCl₃): δ 148.6, 133.9, 130.4, 129.8, 129.3, 129.0, 128.5, 126.3, 123.5, 123.3, 121.9, 120.6, 114.1. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₁BrN₃, 324.0136; found, 324.0139.

7-nitro-3-phenyl-[1,2,4]triazolo[3,4-*a*]isoquinoline (5j)

Yellow solid; Yield: 65%; M.p.: 237-238 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 9.15 (d, J = 8.0 Hz, 1H), 8.40 (dd, J = 8.0, 0.8 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.87 – 7.82 (m, 3H), 7.66 – 7.59 (m, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.1, 147.9, 145.8, 130.8, 129.7, 129.4, 128.6, 128.5, 126.7, 125.8, 123.6, 122.9, 122.7, 109.6. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₁N₄O₂ 291.0882; found, 291.0881.

3-(4-fluorophenyl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6a)

White solid; Yield: 82%; M.p.: 147-148 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.31 (s, 1H), 7.93 (dd, J = 8.4, 2.8 Hz, 2H), 7.75 (d, J = 10.0 Hz, 1H), 7.44 (t, J = 9.0 Hz, 2H), 7.28 (d, J = 9.2 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 163.3 (d, $J_{C-F} = 247.5$ Hz), 149.7, 145.2, 131.5, 131.0 (d, $J_{C-F} = 8.6$ Hz), 124.4, 123.7, 120.9, 116.7 (d, $J_{C-F} = 21.8$ Hz), 115.3, 17.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₁FN₃, 228.0937; found, 228.0938.

3-(4-chlorophenyl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6b)

White solid; Yield: 84%; M.p.: 182-183 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.35 (s, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 9.2 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 9.6 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.9, 145.0, 134.9, 131.6, 130.2, 129.7, 126.0, 124.6, 121.0, 115.4, 17.9. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₁ClN₃ 244.0642; found, 244.0647.

3-(4-methoxyphenyl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6c)

White solid; Yield: 90%; M.p.: 162-163 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.26 (s, 1H), 7.80 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 9.2 Hz, 1H), 7.25 (d, J = 9.6 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 3.84 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 160.8, 149.5, 145.9, 131.2, 130.0, 124.1, 120.8, 119.4, 115.3, 115.0, 55.8, 17.9. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₄H₁₄N₃O, 240.1137; found, 240.1132.

methyl 4-(6-methyl-[1,2,4]triazolo[4,3-*a*]pyridin-3-yl)benzoate (6d)

White solid; Yield: 74%; M.p.: 207-208 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.45 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H), 7.79 (d, J =

9.2 Hz, 1H), 7.33 (d, J = 9.2 Hz, 1H), 3.90 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100.5 MHz, DMSO-*d*₆): δ 166.1, 150.1, 145.1, 131.8, 131.5, 130.7, 130.3, 128.5, 124.9, 121.2, 115.4, 52.8, 17.9.
HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₁₅H₁₄N₃O₂, 268.1086; found, 268.1086.

6-methyl-3-(4-nitrophenyl)-[1,2,4]triazolo[4,3-a]pyridine (6e)

Yellow solid; Yield: 62%; M.p.: 256-257 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.50 (s, 1H), 8.41 (d, J = 8.0 Hz, 2H), 8.22 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 9.2 Hz, 1H), 7.36 (d, J = 10.0 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.3, 148.1, 144.4, 133.3, 132.1, 129.3, 125.2, 124.7, 121.4, 115.4, 17.9. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₁N₄O₂, 255.0882; found, 255.0887.

6-methyl-3-(m-tolyl)-[1,2,4]triazolo[4,3-a]pyridine (6f)

Colorless oil; Yield: 87%; $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.33 (s, 1H), 7.75 (d, J = 9.6 Hz, 1H), 7.67 – 7.65 (m, 2H), 7.49 (t, J = 7.6 Hz, 1H), 7.38 (d, J =7.2 Hz, 1H), 7.28 (d, J = 9.6 Hz, 1H), 2.43 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.7, 146.0, 139.0, 131.4, 130.9, 129.5, 128.9, 127.1, 125.5, 124.4, 120.9, 115.4, 21.4, 17.9. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₃N₃Na, 246.1007; found, 246.1009.

6-methyl-3-(3-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-*a*]pyridine (6g)

White solid; Yield: 75%; M.p.: 145-146 °C; $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.38 (s, 1H), 8.22 – 8.19 (m, 2H), 7.93 (d, J = 7.6 Hz, 1H), 7.85 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 10.0 Hz, 1H), 7.32 (d, J = 9.2 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.0, 144.8, 132.2, 131.9, 130.8, 130.4 (q, $J_{C-F} = 31.9$ Hz), 128.3, 126.7 (d, $J_{C-F} = 3.1$ Hz), 125.2 (d, $J_{C-F} = 3.9$ Hz), 124.7, 124.3 (q, $J_{C-F} = 272.5$ Hz), 121.1, 115.3, 17.9. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₄H₁₁F₃N₃ 278.0905; found, 278.0904.

3-(6-methyl-[1,2,4]triazolo[4,3-*a*]pyridin-3-yl)benzonitrile (6h)

White solid; Yield: 73%; M.p.: 212-213 °C; $R_f = 0.4$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.47 (s, 1H), 8.35 (s, 1H), 8.23 (d, J = 7.6 Hz, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.33 (d, J = 9.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.0, 144.4, 133.7, 133.2, 131.9, 131.6, 130.8, 128.4, 124.8, 121.3, 118.7, 115.3, 112.8, 17.8. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₀N₄Na 257.0803; found, 257.0805.

6-methyl-3-(o-tolyl)-[1,2,4]triazolo[4,3-a]pyridine (6i)

Colorless oil; Yield: 92%; $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 7.81 (s, 1H), 7.75 (d, J = 9.6 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.40 (t, J = 7.0 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 2.24 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.0, 145.5, 138.4, 131.5, 131.3, 130.7, 126.7, 126.4, 124.3, 120.6, 115.3, 19.8, 17.7. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₃N₃Na, 246.1007; found, 246.1008.

3-(2-fluorophenyl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6j)

White solid; Yield: 87%; M.p.: 124-125 °C; $R_f = 0.42$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.02 (s, 1H), 7.80 – 7.74 (m, 2H), 7.72 – 7.67 (m, 1H), 7.52 – 7.43 (m, 2H), 7.32 (d, J = 9.2 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 160.0 (d, $J_{C-F} = 249.1$ Hz), 149.7, 141.8, 133.2 (d, $J_{C-F} = 7.7$ Hz), 132.4, 131.8, 125.7, 124.5, 121.3, 116.9 (d, $J_{C-F} = 21.0$ Hz), 115.2, 114.9 (d, $J_{C-F} = 14.7$ Hz), 17.7. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₁FN₃, 228.0937; found, 228.0938.

6-methyl-3-(pyridin-2-yl)-[1,2,4]triazolo[4,3-*a*]pyridine (6k)

White solid; Yield: 80%; M.p.: 174-175 °C; $R_f = 0.32$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 9.48 (s, 1H), 8.79 – 8.78 (m, 1H), 8.36 (d, J = 8.0 Hz, 1H), 8.02 (t, J = 7.6 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.51 (t, J = 6.2 Hz, 1H), 7.38 (d, J = 9.2 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.3, 149.4, 148.2, 143.7, 138.0, 132.0, 124.7, 124.3, 123.8, 122.3, 115.2, 18.2. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₂H₁₁N₄, 211.0984; found, 211.0986.

6-methyl-3-(pyrazin-2-yl)-[1,2,4]triazolo[4,3-*a*]pyridine (6l)

White solid; Yield: 85%; M.p.: 184-185 °C; $R_f = 0.32$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 9.54 (s, 1H), 9.30 (s, 1H), 8.82 (s, 1H), 8.73 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 9.6 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.5, 144.4, 144.0, 143.8, 143.5, 141.9, 132.5, 125.4, 123.5, 115.4, 18.2. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₁H₉N₅Na, 234.0756; found, 234.0756.

6-methyl-3-(1-methyl-1H-pyrazol-3-yl)-[1,2,4]triazolo[4,3-*a*]pyridine (6m)

White solid; Yield: 75%; M.p.: 167-169 °C; $R_f = 0.3$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.97 (s, 1H), 7.93 (s, 1H), 7.75 (d, J = 9.2 Hz, 1H), 7.30 (d, J = 9.6 Hz, 1H), 6.91 (s, 1H), 4.01 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.2, 140.7, 140.7, 132.9, 131.4, 124.3, 122.6, 115.1, 105.3, 39.4, 18.1. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₁N₅Na 236.0912; found, 236.0918.

3-(furan-3-yl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6n)

White solid; Yield: 77%; M.p.: 186-187 °C; $R_f = 0.36$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.64 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.74 (d, J = 9.6 Hz, 1H), 7.28 (d, J = 9.6 Hz, 1H), 7.13 (s, 1H), 2.34 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.4, 144.9, 141.6, 140.1, 131.2, 124.6, 121.4, 115.3, 113.4, 109.9, 17.8. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₁H₉N₃NaO, 222.0643; found, 222.0641.

6-methyl-3-(thiophen-3-yl)-[1,2,4]triazolo[4,3-*a*]pyridine (60)

White solid; Yield: 83%; M.p.: 199-200 °C; $R_f = 0.36$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.44 (s, 1H), 8.33 (d, J = 1.2 Hz, 1H), 7.82 (dd, J = 4.8, 2.0 Hz, 1H), 7.76 – 7.72 (m, 2H), 7.28 (d, J = 9.2 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.4, 142.6, 131.3, 128.0, 127.7, 127.5, 125.3, 124.6, 121.3, 115.3, 17.9. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₀N₃S, 216.0595; found, 216.0596.

3-isopropyl-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6p)

White solid; Yield: 50%; M.p.: 111-113 °C; $R_f = 0.2$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.23 (s, 1H), 7.60 (d, J = 9.2 Hz, 1H), 7.17 (d, J = 9.6 Hz, 1H), 3.47 (heptet, J = 6.8 Hz, 1H), 2.28 (s, 3H), 1.36 (d, J = 6.8 Hz, 6H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.9, 148.9, 130.7, 123.0, 120.8, 115.1, 24.5, 20.6, 17.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₀H₁₄N₃, 176.1188; found, 176.1182.

3-(tert-butyl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6q)

White solid; Yield: 60%; M.p.: 102-103 °C; $R_f = 0.2$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.38 (s, 1H), 7.62 (d, J = 9.6 Hz, 1H), 7.15 (d, J = 9.2 Hz, 1H), 2.30 (s, 3H), 1.49 (s, 9H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 152.4, 150.0, 130.3, 123.1, 122.2, 115.6, 32.5, 27.9, 17.8. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₅N₃Na 212.1164; found, 212.1166.

3-cyclohexyl-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6r)

White solid; Yield: 47%; M.p.: 133-135 °C; $R_f = 0.24$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.26 (s, 1H), 7.59 (d, J = 9.2 Hz, 1H), 7.16 (d, J = 9.6 Hz, 1H), 3.20 – 3.14 (m, 1H), 2.27 (s, 3H), 1.99 – 1.96 (m, 2H), 1.83 – 1.79 (m, 2H), 1.74 – 1.70 (m, 1H), 1.67 – 1.57 (m, 2H), 1.50 – 1.41 (m, 2H), 1.35 – 1.29 (m, 1H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 150.2, 148.7, 130.6, 122.9, 120.8, 115.1, 33.5, 30.6, 25.9, 25.9, 17.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈N₃ 216.1501; found, 216.1507.

6-methyl-3-(tetrahydro-2*H*-pyran-4-yl)-[1,2,4]triazolo[4,3-*a*]pyridine (6s)

White solid; Yield: 40%; M.p.: 165-167 °C; $R_f = 0.22$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.33 (s, 1H), 7.62 (d, J = 9.2 Hz, 1H), 7.19 (d, J = 9.2 Hz, 1H), 3.95 (d, J =

10.8 Hz, 2H), 3.52 (td, *J* = 11.3, 2.3 Hz, 2H), 3.48 – 3.32 (m, 1H), 2.28 (s, 3H), 1.93 – 1.80 (m, 4H); ¹³C NMR (100.5 MHz, DMSO-*d*₆): δ 149.1, 148.7, 131.0, 123.1, 120.9, 115.0, 67.0, 30.8, 30.3, 17.8. HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₂H₁₆N₃O₂ 218.1293; found, 218.1296.

3-benzyl-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6t)

White solid; Yield: 30%; M.p.: 158-160 °C; $R_f = 0.28$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.16 (s, 1H), 7.63 (d, J = 9.2 Hz, 1H), 7.31 – 7.26 (m, 4H), 7.22 – 7.17 (m, 2H), 4.48 (s, 2H), 2.23 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 148.9, 145.6, 136.4, 131.1, 129.0, 128.9, 127.2, 123.4, 120.7, 115.0, 30.0, 17.8. HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₄H₁₄N₃ 224.1188; found, 224.1189.

3-(benzo[d][1,3]dioxol-5-yl)-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6u)

White solid; Yield: 82%; M.p.: 158-160 °C; $R_f = 0.38$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, DMSO- d_6): δ 8.27 (s, 1H), 7.72 (d, J = 9.6 Hz, 1H), 7.39 (s, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 9.2 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.14 (s, 2H), 2.28 (s, 3H); ¹³C NMR (100.5 MHz, DMSO- d_6): δ 149.6, 149.0, 148.3, 145.8, 131.3, 124.2, 122.9, 120.9, 120.7, 115.3, 109.4,

108.8, 102.1, 17.8. HRMS–ESI (*m/z*): $[M+H]^+$ calcd for C₁₄H₁₂N₃O₂, 254.0930; found, 254.0932.

3-ethyl-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6v)

White solid; Yield: 45%; M.p.: 76-78 °C; *R_f* = 0.22 (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 7.57 (d, *J* = 9.2 Hz, 1H), 7.02 (d, *J* = 9.2 Hz, 1H), 3.01 (q, *J* = 7.6 Hz, 2H), 2.29 (s, 3H), 1.44 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.2, 147.2, 129.9, 123.2, 118.8, 115.7, 18.1, 10.8. HRMS–ESI (*m/z*): [M+Na]⁺ calcd for C₉H₁₁N₃Na, 184.0851; found, 184.0850.

3-butyl-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6w)

Colorless oil; Yield: 52%; $R_f = 0.22$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 7.57 (d, J = 10 Hz, 1H), 7.02 (d, J = 9.2 Hz, 1H), 2.99 (t, J = 7.8 Hz, 2H), 2.30 (s, 3H), 1.83 (quint, J = 7.2 Hz, 2H), 1.43 (sext, J = 7.2 Hz, 2H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.1, 146.4, 129.9, 123.2, 118.9, 115.7, 28.5, 24.2, 22.3, 18.1, 13.6. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₅N₃Na, 212.1164; found, 212.1164.

3-hexyl-6-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (6x)

Colorless oil; Yield: 59%; $R_f = 0.22$ (EtOAc/hexane = 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.62 (m, 2H), 7.06 (d, J = 10 Hz, 1H), 3.03 (t, J = 7.2 Hz, 2H), 2.34 (s, 3H), 1.89 (quint, J = 7.2 Hz, 2H), 1.47 – 1.42 (m, 2H), 1.34 – 1.33 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (100.5 MHz, CDCl₃): δ 149.2, 146.4, 129.8, 123.2, 118.9, 115.8, 31.3, 28.9, 26.4, 24.6, 22.4, 18.1, 13.9. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₃H₁₉N₃Na, 240.1477; found, 240.1479.

References:

- (1) J. Robin Fulton, V. K. Aggarwal and J. de Vicente, Eur. J. Org. Chem., 2005, 8, 1479.
- (2) O. R. Thiel, M. M. Achmatowicz, A. Reichelt and R. D. Larsen, *Angew. Chem., Int. Ed.*, 2010, **49**, 8395.
- (3) S. Ito, Y. Tanaka, A. Kakehi and H. Miyazawa, Bull. Chem. Soc. Jap., 1977, 50, 2969.
- (4) K. T. Potts and H. R. Burton, J. Org. Chem., 1966, 31, 3522.
- (5) Y. Wang, K. Sarris, D. R. Sauer and S. W. Djuric, Tetrahedron Lett., 2007, 48, 2237.
- (6) M. A. Schmidt and X. Qian, Tetrahedron Lett., 2013, 54, 5721.
- (7) Cantegril, Richard et al Eur. Pat. Appl., 483027, 29 Apr 1992.
- (8) A. K. Sadana, Y. Mirza, K. R. Aneja and O. Prakash, Eur. J. Med. Chem., 2003, 38, 533.

Crystal preparation and X-ray crystal structure of compound 3h.

Compound **3h** (2.5 mg) was dissolved in a mixture of 0.8 mL/0.2 mL of Methanol/Dichloromethane, and it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 2 days at room temperature (~ 25 °C). Structure of **3h** was identified by X-ray diffraction analysis (see Figure S1).

Figure S1. ORTEP X-Ray crystal Structure display of **3h** (CCDC No. 1487670); ellipsoids drawn at 50% probability level

Crystal preparation and X-ray crystal structure of compound 6k.

Compound **6k** (2.5 mg) was dissolved in a mixture of 0.8 mL/0.2 mL of Methanol/Dichloromethane, and it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 2 days at room temperature (~ 25 °C). Structure of **6k** was identified by X-ray diffraction analysis (see Figure S2).

Figure S2. ORTEP X-Ray crystal Structure display of **6k** (CCDC No. 1487669); ellipsoids drawn at 50% probability level