Formal Deoxygenative Hydrofluorination of Aromatic Aldehydes by (Difluoroiodo)toluene

Kaivalya G. Kulkarni, Boris Miokovic, Matthew Sauder and Graham K. Murphy*

Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON, Canada, N2L3G1

graham.murphy@uwaterloo.ca

Supporting Information

Table of Contents

Experimental Details and Characterization Data	1
General details:	1
General procedure for hydrazone synthesis:	2
General procedure for benzyl fluoride synthesis:	3
References:	5
¹ H, ¹³ C and ¹⁹ F NMR spectra of new compounds	6

Experimental Details and Characterization Data

General details:

Reactions were carried out in oven-dried glassware under a positive nitrogen atmosphere, or in 4 mL PFA vials purchased from Elemental Scientific. Transfer of anhydrous solvents and reagents was accomplished with oven-dried syringes. Solvents were dried and purified using a JC Meyer solvent purification system, and were used without further purification. Thin layer chromatography was performed on glass plates pre-coated with 0.25 mm Kieselgel 60 F254 (Silicycle). Flash chromatography columns were packed with 230-400 mesh silica gel (Silicycle). Proton NMR spectra (¹H NMR) were recorded at 300 or 500 MHz, and are reported (ppm) relative to the residual chloroform peak (7.26 ppm) or dimethylsulfoxide peak (2.50 ppm), and coupling constants (J) are reported in hertz (Hz). Carbon NMR spectra (¹³C NMR) were recorded at 125 or 75 MHz and are reported (ppm) relative to the center line of the triplet from chloroform-d (77.16 ppm). Positive ion electrospray (ESI) and Direct Analysis in Real Time (DART) experiments were performed with a ThermoFisher Scientific Q-Exactive hybrid mass spectrometer. Accurate mass determinations were performed at a mass resolution of 70,000. For ESI, samples were infused at 5mL/min in 1:1 CH₃OH/H₂O+0.1% formic acid. Low-resolution mass determinations were carried out on an Agilent 5975B GCMS system.

General procedure for hydrazone synthesis:

Hydrazones (**13a-o**) were prepared as described in the literature.¹⁻³ The aldehyde (20mmol) was added to a solution of $H_2NNH_2 \cdot H_2O$ (200 mmol, 10 equiv) in ethyl alcohol (20 mL). The reaction mixture was stirred at room temperature for 3 h (unless otherwise mentioned), then the resulting mixture was poured over ice to obtain a precipitate. Suction filtration gave a solid that was air-dried and used in benzylic fluorination reactions without further purification. The hydrazones were identified by comparison of the spectral data and the melting point described in the literature.

4-nitrobenzylidene hydrazone (13a) Reaction heated at 50 °C for 1h. Obtained as a yellow solid. Yield 88%, mp 134-136 °C (lit.² 134 °C).

3-nitrobenzylidene hydrazone (13b) Reaction heated at 50 °C for 1h. Obtained as yellow solid. Yield 87%, mp 107-108 °C (lit.⁴ 107 °C).

2-nitrobenzylidene hydrazone (13c) Obtained as a yellow solid. Yield 88%, mp 150-152 °C (lit.⁵ 152-153 °C).

4-methyl-3-nitrobenzylidene hydrazone (13d) Obtained as yellow solid. Yield 91%, mp 186-188 °C; IR (neat); 2979, 1626, 1531, 1447, 1380, 1337, 1292, 1200, 956 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 5.74 (br s, 2H); 7.30 (d, J = 7.9 Hz, 1H); 7.68 (d J = 7.9 Hz, 1H); 7.71 (s, 1H); 8.08 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 20.3; 122.0; 129.8; 133.0; 133.3; 134.8; 139.6; 149.4; HRMS (ESI): calcd for C₈H₉N₃O₂ [M + H]⁺: 180.0767 found 180.0767.

4-bromo-3-nitrobenzylidene hydrazone (13e) Obtained as orange solid. Yield 82%; mp 108-110 °C; IR (neat): 3393, 3286, 1622, 1586, 1528, 1349, 1290, 1219, 955 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 5.84 (br s, 2H); 7.58 (d, J = 8.1Hz, 1H); 7.67 (s, 1H); 7.69 (d, J = 8.3 Hz, 1H); 7.99 (s 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 113.3; 122.5; 129.9; 135.1; 136.3; 137.9; 150.1; HRMS (ESI): calcd for C₇H₇BrN₃O₂ [M + H]⁺: 243.9716 found 243.9716.

4-carbmethoxybenzylidene hydrazone (13f) Obtained as white solid. Yield 78%, mp 97-98 °C (lit.³ 96-97 °C).

4-cyanobenzylidene hydrazone (13g) Obtained as white solid. Yield 89%, mp 64-66 °C (lit.⁴ 66-67 °C).

3-cyanobenzylidene hydrazone (13h) Obtained as white crystals. Yield 77%, mp 80-82 °C (lit.² 83-84 °C).

4-tosyloxybenzylidene hydrazone (13i) Obtained as brown solid. Yield 92%, mp 172-174°C; IR (neat): 3421, 3300, 2906, 1596, 1498, 1334, 1194, 1180, 1090, 917 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 2.46 (s, 3H); 5.59 (br s, 2H); 6.97 (d, J = 8.6 Hz, 2H); 7.32 (d, J = 8.1 Hz, 2H); 7.46 (d, J = 8.6 Hz, 2H); 7.7 (d, J = 8.3 Hz, 2H); 7.72 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 21.7; 122.6; 122.9; 127.2; 128.5; 129.8; 129.9; 132.3; 134.2; 141.1; 145.4; 149.6; HRMS (ESI): C₁₄H₁₅N₂O₃S [M + H]⁺: 291.0796 found 291.0796.

4-phenylbenzylidene hydrazone (13j) Obtained as yellow solid. Yield 95%; IR (neat): 3348, 3182, 2914, 1620, 1555, 1484, 1402, 1252, 1076925, 832 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 5.59 (br s, 1H); 7.38 (t, *J* = 7.5 Hz, 1H); 7.48 (t, *J* = 7.5 Hz, 2H); 7.63 (q, *J* = 14.4, 8.3 Hz, 6H); 7.82 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 126.6; 127.0; 127.3; 127.5; 128.8; 134.2; 140.6; 141.4; 142.7; HRMS (ESI): calcd for C₁₃H₁₃N₂ [M + H]⁺: 197.1073 found 197.1074.

3,4-dichlorobenzylidene hydrazone (13k) Obtained as a white solid. Yield 86%; IR (neat): 3176; 1737; 1594; 174; 1372; 121; 1132; 1027 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.63 (br s, 2H); 7.41-7.32 (m, 2H); 7.61 (s, 2H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 125.2; 127.6; 130.5; 132.1; 132.8; 135.4; 139.8.

3-benzyloxybenzylidene hydrazone (130) Obtained as white crystals. Yield 82%; mp 62-64 °C; IR (neat): 3348, 3183, 3034, 1620, 1650, 1590, 185, 103, 1070, 925, 832 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 5.12 (s, 2H); 5.56 (br s, 2H); 6.96 (dd, J = 6, 5 Hz, 1H); 7.13 (d, J = 8 Hz, 1H); 7.28 (s, 1H); 7.29 (d, J = 0.5 Hz, 1H); 7.37 (d, J = 7.5 Hz, 1H); 7.42 (t, J = 7.5 Hz, 2H); 7.48 (d, J = 6 Hz, 2H); 7.75 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 70.0; 111.3; 116; 119.5; 127.6; 128.0; 128.6; 129.6; 136.6; 136.9; 142.9; 159.1; HRMS (ESI): calcd for C₁₅H₁₄N₂O [M + H]⁺: 227.1178 found 227.1178.

2-bromo-5-methoxybenzylidene hydrazone (13p): Obtained as a white solid. Yield 69%; IR (neat): 3292, 2937; 2837; 1616; 1592; 177; 1407; 1317; 1264; 1181; 1128; 1025 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 3.82 (s, 3H); 5.63 (br s, 2H); 6.74 (d, J = 8.4 Hz, 1H); 7.34 (d, J = 8.4 Hz, 1H); 7.91 (s, 1H); 8.04 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 55.8; 112.7; 113.5; 125.7; 128.3; 132.0 137.2; 155.8.

General procedure for benzyl fluoride synthesis:

A 4 mL PFA (Teflon) vial containing (difluoroiodo)toluene (1.7 equiv) was placed under nitrogen and immersed in a pre-heated 40 °C bath. To this was added a pre-made solution of hydrazone **13** (50 mg, 1.0 equiv) in CH_2Cl_2 (1.5 mL) via a syringe pump over ~10 minutes. The reaction was monitored by TLC analysis, and upon consumption of the hydrazone (5-10 min), the reaction mixture was cooled to RT and concentrated by rotary evaporation. The resulting crude reaction mixture was purified by flash silica gel chromatography (EtOAc in hexanes or EtOAc in benzene) to provide the benzyl fluorides **10**.

1-(fluoromethyl)-4-nitrobenzene (10a):⁶ Obtained as a white crystalline solid (35 mg, 74 %); R_f: 0.3 (1/9 Ethyl acetate/Hexane); IR (neat): 3115; 3086; 1935; 1605; 1504; 1347; 1012; 838 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 5.49 (d, *J* = 46.7 Hz, 2H); 7.51 (d, *J* = 8.1 Hz, 2H); 8.23 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (75MHz, CDCl₃, δ ppm): 82.8 (d, *J* = 170.5 Hz, 1C); 123.7; 126.9 (d, *J* = 7.1 Hz, 2C); 143.3 (d, *J* = 17.7 Hz, 1C); 147.8; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -215.91; GC-MS (EI) 153.9 (M-H)⁺.

1-(fluoromethyl)-3-nitrobenzene (10b): Obtained as a yellow liquid (33 mg, 71 %); IR (neat): 3094; 2960; 1526; 1349; 1218; 989; 892; 804 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.48 (d, *J* = 46.9 Hz, 2H); 7.59 (t, *J* = 7.8 Hz, 1H); 7.69 (d, *J* = 7.8 Hz, 1H); 8.21 (apparent d, *J* = Hz, 2H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 83.0 (d, *J* = 170.5 Hz, 1C); 121.8 (d, *J* = 7.2 Hz, 1C); 123.5 (d, *J* = 1.8 Hz, 1C); 129.7; 132.5 (d, *J* = 6.3 Hz, 1C); 138.3 (d, *J* = 18.4 Hz, 1C); 148.4; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): - 212.59; GC-MS (EI) 153.9 (M-H)⁺.

1-(fluoromethyl)-2-nitrobenzene (10c)⁶: Obtained as a white solid (30 mg, 64%); IR (neat): 2925; 1616; 1522; 1341; 1009; 858 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.89 (d, J = 47.9 Hz, 2H); 7.53 (t, J = 8.0 Hz, 1H); 7.77 (t, J = 7.7 Hz, 1H); 7.83 (d, J = 7.7 Hz, 1H); 8.24 (d, J = 8.1 Hz, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 81.3 (d, J = 172.8 Hz, 1C); 124.9, 126.8 (d, J = 17.6 Hz, 1C); 128.6, 134.3, 134.4, 145.6; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -219.4; GC-MS (EI) 155.0 (M)⁺.

4-(fluoromethyl)-1-methyl-2-nitrobenzene (10d): Obtained as a colourless liquid (24mg, 51%); IR (neat): 2933; 1527; 1497; 1344; 1221; 986; 812 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 2.6 (s, 3H); 5.40 (d, *J* = 47.2 Hz, 2H); 7.37 (d, *J* = 7.8 Hz, 1H); 7.50 (d, *J* = 7.8 Hz, 1H); 7.97 (s, 1H);); ¹³C NMR (125MHz, CDCl₃, δ ppm): 20.2, 82.9 (d, *J* = 169.2Hz, 1C); 123.3 (d, *J* = 6.8 Hz, 1C); 131.5 (d, *J* = 5.9

Hz, 1C); 133.2; 133.9 (d, J = 2.5 Hz, 1C); 135.6 (d, J = 18.3 Hz, 1C); 149.2; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -210.66; GC-MS (EI) 169.1 (M⁺).

1-bromo-4-(fluoromethyl)-2-nitrobenzene (10e): Obtained as a yellow liquid (34 mg, 71%); IR (neat): 3073; 2959; 1606; 1532; 1475; 1352; 1031; 891; 827; 804 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.39 (d, J = 46.8 Hz, 2H); 7.41 (d, J = 8.2 Hz, 1H); 7.75 (d, J = 8.2 Hz, 1H); 7.97 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 82.2 (d, J = 171.2 Hz, 1C); 114.46, 123.8, 131.2, 135.4, 137.5, 149.9; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -213.86; HRMS (DART 300 °C): calcd for C₇H₆O₂NBrF [M+H]⁺: 233.9561 found 233.9559.

methyl 4-(fluoromethyl)benzoate (10f)⁷: Obtained as a pale yellow liquid (30 mg, 64%); IR (neat): 2926; 2854; 1720; 1435; 1275; 1177; 1106; 1016 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 3.90 (s, 3H); 5.43 (d, J = 47.2 Hz, 2H); 7.41 (d, J = 7.8 Hz, 2H); 8.04 (d, J = 7.8 Hz, 2H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 52.1; 86.6 (d, J = 168.8 Hz, 1C); 126.6 (d, J = 6.7 Hz, 2C); 129.8 (d, J = 2.3 Hz, 2C); 130.4; 141.2 (d, J = 17.2 Hz, 1C); 166.6; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -213.13; GC-MS (EI) 168.12 (M⁺).

4-(fluoromethyl)benzonitrile (10g):⁷ Obtained as a yellow liquid (33 mg, 71%). IR (neat): 2926; 2230; 1416; 1378; 1214; 1012; 817 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.44 (d, *J* = 46.8 Hz, 2H); 7.45 (d, *J* = 7.8 Hz, 2H); 7.67 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 83.1 (d, *J* = 170.5 Hz, 1C); 112.5; 118; 127.5 (d, *J* = 65.4 Hz, 2C); 132.4; 141.5 (d, *J* = 17.9 Hz, 1C); ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -215.44; GC-MS (EI): 135.15 (M⁺).

3-(fluoromethyl)benzonitrile (10h):⁸ Obtained as a yellow liquid; 20:1 mixture of **10h**:**16h** (34 mg, 73 %). IR (neat): 2923; 2231; 1485; 1378; 1151; 985; 891 cm⁻¹; ¹H NMR (500MHz, CDCl₃, δ ppm): 5.41 (d, J = 47.1 Hz, 2H); 6.67* (t, J = 56.1 Hz, 0.06H); 7.49 (t, J = 7.7 Hz, 1H); 7.59 (d, J = 7.7 Hz, 1H); 7.63 (d, J = 3.2 Hz, 2H); 7.76 (t, J = 8.8 Hz, 0.09H); 7.81 (s, 0.05H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 82.9 (d, J = 170.2 Hz, 1C); 113.0; 118.3; 129.5; 130.4; 131.1; 132.2; 137.9 (d, J = 18.0 Hz, 1C); ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -212.64 (**16h**: -112.73); GC-MS (EI): 135.15 (M⁺).

4-(fluoromethyl)phenyl 4-methylbenzenesulfonate (10i): Obtained as a colourless gum (29 mg, 60%), IR (neat): 2926; 1597; 1504; 1370; 1197; 117; 1152; 1092 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 2.43 (s, 3H); 5.32 (d, *J* = 47.5 Hz, 2H); 6.99 (d, *J* = 8.3 Hz, 2H); 7.31-7.24 (m, 4H); 7.68 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 21.7; 83.6 (d, *J* = 167.4 Hz, 1C); 122.6; 128.5; 128.6 (d, *J* = 5.9 Hz, 2C); 129.8; 132.3; 135.2 (d, *J* = 17.5 Hz, 1C); 145.5; 149.7; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -208.45; GC-MS (EI) 280.1 (M⁺).

4-(fluoromethyl)-1,1'-biphenyl (10j)⁷: Obtained as a white solid (24mg, 51%); IR (neat): 2921; 180; 1686; 1486; 1077; 1005; 823 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.43 (d, J = 47.1Hz, 2H); 7.37 (t, J = 7.4 Hz, 1H); 7.46 (t, J = 7.8 Hz, 4H); 7.62 (t, J = 7.8 Hz, 4H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 84.4 (d, J = 166Hz, 1C); 127.2, 127.4 (d, J = 1.7 Hz, 2C); 127.6; 128.1 (d, J = 6.0 Hz, 1C); 128.9; 135.1; 140.6; 141.8; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -206.39; GC-MS (EI pos.): 186.1 (M⁺).

1,2-dichloro-4-(fluoromethyl)benzene (10k)⁸: Obtained as a colourless liquid (32mg, 68%); IR (neat): 2924; 1598; 1473; 1212; 1131; 1032; 1007; 874; 816 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.31 (d, *J* = 47.3 Hz, 2H); 7.18 (d, *J* = 2.2 Hz, 1H); 7.44 (s,1H); 7.5 (d, *J* = 2.2 Hz, 1H); ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -210.38; GC-MS (EI) 178.0 (M⁺).

1-(methoxy)-3-(fluoromethyl)benzene (10n)⁷: Obtained as a colourless liquid (16 mg, 33%); IR (neat): 3008; 2959; 2838; 1598; 1587; 1457; 1266; 1156; 1040 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 3.82 (s,

3H); 5.36 (d, J = 47.7 Hz, 2H); 6.92 (m, 3H); 7.30 (app. t, J = 7.6 Hz, 1H); ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -207.93; GC-MS (EI pos.): 140.05 (M⁺).

1-(benzyloxy)-3-(fluoromethyl)benzene (100): Obtained as a white solid (30 mg, 45%); IR (neat): 3033; 2973; 2852; 1693; 1594; 1583; 1447; 1258; 1166; 1025 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 5.34 (d, *J* = 47.7 Hz, 2H); 6.97 (apparent t, 3H); 7.42-7.29 (m, 6H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 70.1; 84.4 (d, *J* = 166.8 Hz, 1C); 113.7 (d, *J* = 6.4 Hz, 1C); 115.2 (d, *J* = 3.0 Hz,1C); 119.8 (d, *J* = 5.5 Hz, 1C); 127.5; 128.1; 128.7; 129.8; 136.9; 137.8 (d, *J* = 17.4 Hz, 1C); ¹⁹F NMR (300MHz, CDCl₃, δ ppm): - 208.03; GC-MS (EI pos.): 216.1 (M⁺).

1-bromo-2-(fluoromethyl)-4-methoxybenzene (10p): Obtained as yellow liquid (22 mg, 47%); IR (neat): 3019; 2920; 1482; 1208; 1111; 1059; 1006 cm⁻¹; ¹H NMR (300MHz, CDCl₃, δ ppm): 3.81 (s, 3H); 5.38 (d, J = 47.5 Hz, 2H); 6.75 (d, J = 8.7 Hz, 1H); 7.4 (d, J = 8.7Hz, 1H); 7.47 (s, 1H); ¹³C NMR (125MHz, CDCl₃, δ ppm): 55.6; 79.6 (d, J = 166.1 Hz, 1C); 112.0; 112.7; 127.0 (d, J = 17.4 Hz, 1C); 131.2 (d, J = 8.9 Hz, 1C); 132.3 (d, J = 3.9 Hz, 1C); 155.9; ¹⁹F NMR (300MHz, CDCl₃, δ ppm): -217.59; GC-MS (EI pos.): 218.0 (M⁺).

References:

- 1. V. Z. Shirinian, L. I. Belen'kii and M. M. Krayushkin, *Russian Chemical Bulletin*, 48, 2171-2173.
- 2. T. Curtius and A. Lublin, *Berichte*, **1900**, *33*, 2460-2466.
- 3. A. V. Shastin, V. N. Korotchenko, V. G. Nenajdenko and E. S. Balenkova, *Tetrahedron*, **2000**, *56*, 6557-6563.
- 4. R. L. HINMAN, J. Org. Chem. **1960**, 25, 1775-1778.
- 5. H. Müller, C. Montigel and T. Reichstein, *Helv. Chim. Acta* **1937**, *20*, 1468-1473.
- 6. J.-J. Ma, W.-B. Yi, G.-P. Lu and C. Cai, Org. Biomol. Chem., 2015, 13, 2890-2894.
- 7. J. Hu, B. Gao, L. Li, C. Ni and J. Hu, Org. Lett. **2015**, *17*, 3086-3089.
- 8. L. An, Y.-L. Xiao, Q.-Q. Min and X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 9079-9083.

¹H, ¹³C and ¹⁹F NMR spectra of new compounds

5.84

proton 16 scans

C-13 proton Decoupled

150

SI-10

2.46

5.60

C-13 proton Decoupled

-77.29 -77.04 -76.78 -21.72

proton 16 scans

5.59

6

8

4

77.31 77.06 76.81

C-13 proton Decoupled

proton 16 scans

3.82

ppm

SI-19

50

proton, 16 scans

									SI-22					
ppm '	-20	-40)	-60	1	-80	I	-100	-120	1	-140	I	-160	I

-215.635

proton, 16 scans

5.57 5.42

ppm	
-----	--

8

6

4

												SI-25				
ppm	-0	1	-20	1	-40	1	-60	1	-80	1	-100	1	-120	I	-140	 -160

proton 16 scans AVANCE 300B

5.98 5.82

10c 64%

NO₂ F

						SI-28			
ppm	-20	-40	-60	-80	-100	-120	-140	-160	

---219.309

proton, 16 scans

C-13 proton Decoupled

-20.24

										SI-31					
ppm	-20	I	-40	1	-60	I	-80	I	-100	-120	I	-140	I	-160	

5^{SI-32}

ppm

Ó

nan hinak talan sa ka sa ka sa ka sa	apaneter and by the present products	la fi fini na afan a sa mafa da sha da sa A filina a fini a sa mafa da sa fini a sa	nar fanling fa berlin film film fil fan film film an fan Gerfall film en fan film film film film film film film	a pilo, lipo kana sehelan ne kana pina kap I pina pina kana sehelan ne kana pina sehelan pina kapata pina kapat	nan han da tahun perangkan da tahun da tahun da nan han da tahun tahun da tahun da tahun da tahun da tahun da t	li in the second se Second second	andal kalan sarah kanalar di kanalar 1999 persengan pangan persebuah perangan pe	and b for bit and the bit of the bar part of states of the set of the part of the set of the bar part of the part of the set	an a	k laga al da bagina mak ad kaj ka gida gida yan ya sa ba Mary pragma ya na Uja ya mara may Kanja ya ya sa	i di katali katalar Aliyon Yugʻi taka safat tiking di ya Aliyon Yugʻi taka sama safat ya kata
							S	61-34			
ppm	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190

na ferrar di Balan de de sulla de la contra construcción de la contra de sulla de la contra de sulla de la contra de sulla La sulla verse de sulla de sull

-213.678

C-13 proton Decoupled

ppm

166.62

-52.09

-84.31 -82.97 -77.23 -76.97 -76.72

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

F MeO₂C² 10f 64%

-		~	
μ	μ	н	

-0

proton, 16 scans

10g 71%

C-13 proton Decoupled

-83.81 -82.46 -77.31 -77.05 -76.80

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

n	nr	n	
v	N		

-0

Proton, 16 Scans AVANCE 500

5.49 5.39

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

n	nm	
- 12		

-0

ppm

4

6

2.43

Ó

C-13 proton Decoupled

84.28 82.94 -77.31 -77.06 -76.80 -21.73

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

p	pm	

-0

proton, 16 scans

5.52 5.36

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

`F Ph

10j 68%

n	n	m	•	

-0

proton 16 scans AVANCE 300B

5.44 5.28 19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

proton, 16 scans

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

n	n	m	
~	r		

-0

proton 16 scans AVANCE 300B

F-19 Observed H1 Decoupled Sweep Width 210 ppm

-0

proton, 16 scans

3.83

8

6

4

F19CPD- 300 ppm Sweep Width referenced to TFA=-76.53 ppm

ppm

-0

