Supplementary Information

NBS/DBU mediated one-pot synthesis of α-acyloxyketones from benzylic secondary alcohols and carboxylic acids

Minghui Zhu, Wei Wei*, Daoshan Yang, Hong Cui, Huanhuan Cui, Xuejun Sun, Hua Wang*

The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China

*Phone:+86 537 4458317; Fax:+86 537 4458317.

. E-mail: <u>weiweiqfnu@163.com; huawang_qfnu@126.com</u>

Contents

1. General information	S2
2. General procedure for NBS/DBU mediated one-pot synthesis of α -acyl	oxyketones
from benzylic secondary alcohols and carboxylic acids	
3. Preliminary mechanistic studies	
4. Characterization data of products 3aa–3as, 6a	S5-S14
5. Copies of NMR spectra for 3aa–3as, 6a	S15-S46

1. General information

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Alfa Aesar and Beijing Ouhe Chemical Company and used as received without further purification unless otherwise stated. ¹H NMR, ¹³C NMR and ³¹P NMR were recorded in CDCl₃ on a Bruker Avance III 400 spectrometer with TMS as internal standard (400 MHz ¹H, 100 MHz ¹³C) at room temperature, the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh). 2. General procedure for NBS/DBU mediated one-pot synthesis of α -acyloxyketones from benzylic secondary alcohols and carboxylic acids

In a tube (25ml), alcohol 1 (0.25 mmol), carboxylic acid 2 (0.5 mmol), NBS (0.5 mmol), and 1,4-dioxane (2 mL) were added. Subsequently, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 1 h, then DBU (0.5 mmol) was added to reaction system. After another 2-4 hours, the reaction was stopped and the solution was concentrated under vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **3**.

3. Preliminary mechanistic studies.

(1) The reaction of **6a** and **2a** in the presence of DBU.

In a sealed tube (25ml), α -bromo ketone **6a** (0.25 mmol), benzoic acid **2a** (0.25 mmol), and 1,4-dioxane (2 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 2 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **3aa** in 75% yield.

(2) The reaction of 1-phenylpropan-1-ol 1a with NBS

In a tube (25ml), 1-phenylpropan-1-ol 1a (0.25 mmol), NBS (0.5 mmol), and 1,4-

dioxane (2 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 1 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired α -bromo ketone **6a** in 87% yield.

(3) The reaction of 1-phenylpropan-1-ol 1a with Br_2

In a tube (25ml), 1-phenylpropan-1-ol **1a** (0.25 mmol), Br₂ (0.5 mmol), and 1,4dioxane (2 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 1 h. After the reaction, the solution was concentrated in vacuum. None of the desired desired α -bromo ketone **6a** was detected.

(4) The reaction of propiophenone 5a with Br_2

In a tube (25ml), propiophenone **5a** (0.25 mmol), Br₂ (0.5 mmol), and 1,4-dioxane (2 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 1 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired α -bromo ketone **6a** in 74% yield.

(4) The reaction of propiophenone 5a with NBS

In a tube (25ml), propiophenone 5a (0.25 mmol), NBS (0.5 mmol), and 1,4-

dioxane (2 mL) were added. Then, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 1 h. After the reaction, the solution was concentrated in vacuum. Only a trace amount of the desired α -bromo ketone **6a** was detected.

(5) The reaction of propiophenone **5a** with benzoic acid **2a** under the standard conditions.

In a tube (25ml), propiophenone **5a** (0.25 mmol), benzoic acid **2a** (0.375 mmol), NBS (0.5 mmol), and 1,4-dioxane (2 mL) were added. Subsequently, the tube was sealed and the reaction vessel was allowed to stir at 60 °C for 1 h, then DBU (0.5 mmol) was added to reaction system. After another 2 hours, the reaction was stopped and the solution was concentrated under vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **3aa** in 62% yield.

(6) The reaction of 1-phenylpropan-1-ol 1a with NBS under N₂.

An oven-dried Schlenk tube was charged with a magnetic stir-bar, 1phenylpropan-1-ol **1a** (0.25 mmol) and NBS (0.5 mmol). The tube was then evacuated and backfill with nitrogen. The evacuated/backfill sequence was repeated two additional times. Under a counter-flow of nitrogen, 1,4-dioxane (2 mL) was added. Then, the reaction vessel was allowed to stir at 60 °C for 1 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired α -bromo ketone **6a** in 78% yield.

4. Characterization data of products

1-oxo-1-phenylpropan-2-yl benzoate

Compound **3aa** was obtained in 99% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.12 (d, J = 7.1 Hz, 2H), 8.03 (d, J = 7.1 Hz, 2H), 7.63-7.58 (m, 2H), 7.53-7.45 (m, 4H), 6.24 (q, J = 7.0 Hz, 3H), 1.70 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.7, 166.0, 134.5, 133.6, 133.3, 129.9, 129.5, 128.8, 128.5, 128.4, 71.9, 17.2; HRMS calc. for C₁₆H₁₄O₃Na (M+Na)⁺, 277.0841; found, 277.0846.

1-oxo-1-p-tolylpropan-2-yl benzoate

Compound **3ba** was obtained in 89% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.11 (d, *J* = 7.0 Hz, 2H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.22 (q, *J* = 7.0 Hz, 1H), 2.44 (s, 3H), 1.69 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.2, 166.0, 144.5, 133.2, 132.0, 129.9, 129.6, 129.5, 128.7, 128.4, 71.8, 21.7, 17.3; HRMS calc. for C₁₇H₁₆O₃Na (M+Na)⁺, 291.0997; found, 291.0999.

2-oxo-2-phenylethyl benzoate

Compound **3ca** was obtained in 88% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.17 (d, *J* = 7.1 Hz, 2H), 8.00 (d, *J* = 7.1 Hz, 2H), 7.66-7.61 (m, 2H), 7.56-7.48 (m, 4H), 5.61 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 192.3, 166.0, 134.4, 133.9, 133.3, 130.0, 128.9, 128.5, 127.9, 66.5; HRMS calc. for C₁₅H₁₂O₃Na (M+Na)⁺, 263.0684; found, 263.0685.

2-(4-methoxyphenyl)-2-oxoethyl benzoate

Compound **3da** was obtained in 85% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.17 (d, J = 7.1 Hz, 2H), 7.98 (d, J = 6.9 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.00 (d, J = 6.9 Hz, 2H), 5.57 (s, 2H),

3.91 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 190.6, 166.1, 164.1, 133.3, 130.2, 130.0, 129.6, 128.4, 127.4, 114.1, 66.2, 55.5; HRMS calc. for C₁₆H₁₄O₄Na (M+Na)⁺, 293.0790; found, 293.0791.

2-(4-fluorophenyl)-2-oxoethyl benzoate

Compound **3ea** was obtained in 69% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.16 (d, *J* = 7.1 Hz, 2H), 8.06-8.02 (m, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 2H), 7.21 (t, *J* = 8.6 Hz, 2H), 5.57 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 190.7, 166.2 (d, *J* = 254.5 Hz), 166.1, 133.4, 130.8 (d, *J* = 2.9 Hz), 130.6 (d, *J* = 9.4 Hz), 130.0, 129.3, 128.5, 116.1 (d, *J* = 21.9 Hz), 66.3; HRMS calc. for C₁₅H₁₁O₃FNa (M+Na)⁺, 281.0590; found, 281.0593.

2-(4-chlorophenyl)-2-oxoethyl benzoate

Compound **3fa** was obtained in 85% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.16 (d, *J* = 7.1 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52-7.48 (m, 3H), 5.56 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 191.1, 166.0 140.4, 133.4, 132.7, 130.0, 129.3, 129.2, 128.5, 66.3; HRMS calc. for C₁₅H₁₁O₃ClNa (M+Na)⁺, 297.0294; found, 297.0291.

2-(4-bromophenyl)-2-oxoethyl benzoate

Compound **3ga** was obtained in 66% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.17-8.15 (m, 2H), 7.86 (d, *J* = 8.6 Hz, 2H), 7.68 (d, *J* = 8.6 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 2H), 5.55 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 191.3, 166.0, 133.4, 133.1, 132.3, 130.0, 129.3, 129.3, 129.2, 128.5, 66.3; HRMS calc. for C₁₅H₁₁O₃BrNa (M+Na)⁺, 340.9789; found, 340.9791.

2-oxo-2-(3-(trifluoromethyl)phenyl)ethyl benzoate

Compound **3ha** was obtained in 55% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.26 (s, 1H), 8.19-8.14 (m, 3H), 7.91 (d, *J* = 7.8 Hz,

1H), 7.69 (t, J = 7.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.51 (t, J = 7.9 Hz, 2H), 5.60 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 191.2, 166.0, 134.9, 133.5, 131.6 (d, J = 33.0Hz), 131.0, 130.3 (q, J = 3.4 Hz, Hz), 130.0, 129.6, 129.2, 128.5, 128.4, 124.8 (d, J = 4.1 Hz), 66.4; HRMS calc. for C₁₆H₁₁O₃F₃Na (M+Na)⁺, 331.0558; found, 331.0561.

1-oxo-1-phenylpentan-2-yl benzoate

Compound **3ia** was obtained in 92% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.13 (d, J = 7.1 Hz, 2H), 8.03 (J = 7.2 Hz, 2H), 7.62-7.59 (m, 2H), 7.54-7.46 (m, 4H), 6.14 (dd, $J_I = 5.4$ Hz, $J_2 = 7.9$ Hz, 1H), 2.04-1.99 (m, 2H), 1.66-1.59 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.5, 166.2, 134.9, 133.5, 133.2, 129.9, 129.6, 128.8, 128.5, 128.4, 75.6, 33.5, 19.0, 13.8; HRMS calc. for C₁₈H₁₈O₃Na (M+Na)⁺, 305.1154; found, 305.1155.

1-oxo-1-phenylhexan-2-yl benzoate

Compound **3ja** was obtained in 91% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.13 (d, J = 7.1 Hz, 2H), 8.03 (d, J = 7.1 Hz, 2H), 7.64-7.59 (m, 2H), 7.54-7.47 (m, 4H), 6.12 (t, J = 6.2 Hz, 1H), 2.06-2.01 (m, 2H), 1.59-1.53(m, 2H), 1.46-1.39 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.5, 166.2, 135.0, 133.5, 133.2, 129.9, 129.6, 128.8, 128.5, 128.4, 75.8, 31.2, 27.7, 22.4, 13.8; HRMS calc. for C₁₉H₂₀O₃Na (M+Na)⁺, 319.1310; found, 319.1311.

2-(naphthalen-2-yl)-2-oxoethyl benzoate

Compound **3ka** was obtained in 70% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.71 (d, J = 8.6 Hz, 1H), 8.18 (t, J = 7.1 Hz, 2H), 8.07 (d, J = 8.3 Hz, 1H), 7.98 (dd, J_I = 0.9 Hz, J_2 = 7.2 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.65-7.61 (m, 2H), 7.59-7.56 (m, 2H), 7.50 (t, J = 7.8 Hz, 1H), 5.59 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.0, 166.1, 134.0, 133.5, 133.4, 132.5, 130.3,

130.2, 130.0, 129.5, 128.5, 128.4, 127.5, 126.8, 125.7, 124.3, 67.9; HRMS calc. for C₁₉H₁₄O₃Na (M+Na)⁺, 313.0841; found, 313.0844.

1-oxo-2,3-dihydro-1H-inden-2-yl benzoate

Compound **3la** was obtained in 88% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.12 (d, *J* = 7.1 Hz, 2H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.70 (dt, *J*₁ = 1.1 Hz, *J*₂ = 7.6 Hz, 1H), 7.63-7.59 (m, 1H), 7.52-7.46 (m, 4H), 5.67 (dd, *J*₁ = 4.8 Hz, *J*₂ = 8.0 Hz, 1H), 3.80 (dd, *J*₁ = 8.0 Hz, *J*₂ = 17.0 Hz, 1H), 3.23 (dd, *J*₁ = 4.8 Hz, *J*₂ = 17.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 200.4, 166.1, 150.4, 135.9, 134.7, 133.4, 130.0, 129.4, 128.4, 128.2, 126.7, 124.6, 74.5, 33.6; HRMS calc. for C₁₆H₁₂O₃Na (M+Na)⁺, 275.0684; found, 275.0685.

1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl benzoate

Compound **3ma** was obtained in 92% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.19-8.16 (m, 2H), 8.09 (dd, $J_I = 1.1$ Hz, $J_2 = 7.8$ Hz, 1H), 7.64-7.59 (m, 1H), 7.56 (dt, $J_I = 1.4$ Hz, $J_2 = 7.5$ Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 5.83 (dd, $J_I = 5.2$ Hz, $J_2 = 13.2$ Hz, 1H), 3.36-3.28 (m, 1H), 3.21-3.15 (m, 1H), 2.60-2.54 (m, 1H), 2.52-2.41 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 192.8, 165.8, 143.1, 133.9, 133.2, 131.7, 129.9, 129.8, 128.7, 128.4, 127.9, 127.0, 75.0, 29.3, 28.0; HRMS calc. for C₁₇H₁₄O₃Na (M+Na)⁺, 289.0841; found, 289.0845.

1-oxo-1-phenylpropan-2-yl 4-methylbenzoate

Compound **3ab** was obtained in 90% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.04-7.99 (m, 4H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.21 (q, *J* = 7.0 Hz, 1H), 2.44 (s, 3H), 1.69 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.9, 166.1, 144.1, 134.5, 133.6, 129.9, 129.1, 128.8, 128.6, 126.7, 71.7, 21.7, 17.2; HRMS calc. for C₁₇H₁₆O₃Na (M+Na)⁺, 291.0997; found, 291.0993.

1-oxo-1-phenylpropan-2-yl 4-methoxybenzoate

Compound **3ac** was obtained in 91% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.08-8.01 (m, 4H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 6.20 (q, *J* = 7.0 Hz, 1H), 3.89 (s, 3H), 1.68 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 197.0, 165.7, 163.7, 134.6, 133.5, 132.0, 128.8, 128.6, 121.9, 113.7, 71.6, 55.5, 17.2; HRMS calc. for C₁₇H₁₆O₄Na (M+Na)⁺, 307.0946; found, 307.0944.

1-oxo-1-phenylpropan-2-yl 3-methylbenzoate

Compound **3ad** was obtained in 93% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.03 (d, J = 7.8 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.41 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 6.23 (q, J = 7.0 Hz, 1H), 2.43 (s, 3H), 1.70 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.8, 166.2, 138.2, 134.5, 134.1, 133.6, 130.4, 129.4, 128.8, 128.6, 128.3, 127.1, 71.8, 21.3, 17.2; HRMS calc. for C₁₇H₁₆O₃Na (M+Na)⁺, 291.0997; found, 291.0991.

1-oxo-1-phenylpropan-2-yl 4-chlorobenzoate

Compound **3ae** was obtained in 92% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.07-8.01 (m, 4H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 6.22 (q, *J* = 7.0 Hz, 1H), 1.70 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.5, 165.1, 139.8, 134.3, 133.7, 131.3, 128.9, 128.8, 128.5, 128.0, 72.1, 17.2; HRMS calc. for C₁₆H₁₃O₃ClNa (M+Na)⁺, 311.0451; found, 311.0453.

1-oxo-1-phenylpropan-2-yl 4-bromobenzoate

Compound **3af** was obtained in 90% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.02-7.97 (m, 4H), 7.64-7.60 (m, 3H), 7.52 (t, *J* = 7.9 Hz, 2H), 6.22 (q, *J* = 7.0 Hz, 1H), 1.69 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100

MHz, ppm): δ 196.5, 165.3, 134.3, 133.7, 131.8, 131.4, 128.9, 128.5, 128.4, 72.1, 17.3; HRMS calc. for C₁₆H₁₃O₃BrNa (M+Na)⁺, 354.9946; found, 354.9949.

1-oxo-1-phenylpropan-2-yl 4-nitrobenzoate

Compound **3ag** was obtained in 92% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.35-8.29 (m, 4H), 8.01 (t, *J* = 7.2 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.9 Hz, 2H), 6.28 (q, *J* = 7.0 Hz, 1H), 1.74 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.0, 164.2, 150.8, 135.0, 134.2, 133.9, 131.0, 129.0, 128.5, 123.6, 72.8, 17.3; HRMS calc. for C₁₆H₁₃NO₅Na (M+Na)⁺, 322.0691, found, 322.0693.

1-oxo-1-phenylpropan-2-yl 4-(trifluoromethyl)benzoate

Compound **3ah** was obtained in 72% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.24 (d, *J* = 8.0 Hz, 2H), 8.01 (d, *J* = 7.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 6.26 (q, *J* = 7.0 Hz, 1H), 1.72 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.3, 164.8, 134.7(d, *J* = 32.5 Hz), 134.3, 133.8, 132.8, 130.3, 128.9, 128.5, 125.5 (q, *J* = 3.7 Hz), 123.6 (d, *J* = 271.1 Hz), 72.4, 17.3; HRMS calc. for C₁₇H₁₃O₃F₃Na (M+Na)⁺, 345.0714; found, 345.0717.

1-oxo-1-phenylpropan-2-yl 2-chlorobenzoate

Compound **3ai** was obtained in 93% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.02 (t, J = 7.4 Hz, 2H), 7.98 (d, J = 7.1 Hz, 1H), 7.64 (t, J = 7.3 Hz, 1H), 7.53 (t, J = 7.9 Hz, 2H), 7.50-7.44 (m, 2H), 7.38-7.34 (m, 1H), 6.27 (q, J = 7.0 Hz, 1H), 1.69 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.4, 164.9, 134.1, 133.6, 132.8, 131.8, 131.1, 129.4, 128.8, 128.5, 126.6, 72.3, 17.1; HRMS calc. for C₁₆H₁₃O₃ClNa (M+Na)⁺, 311.0451; found, 311.0553.

1-oxo-1-phenylpropan-2-yl 2-bromo-5-methylbenzoate

Compound **3aj** was obtained in 88% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.03 (d, J = 7.7 Hz, 2H), 7.76 (d, J = 1.9 Hz, 1H),

7.63 (t, J = 7.2 Hz, 1H), 7.56-7.51 (m, 3H), 7.18 (dd, $J_I = 2.2$ Hz, $J_2 = 8.2$ Hz, 1H), 6.27 (q, J = 7.0 Hz, 1H), 2.37 (s, 3H), 1.69 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.5, 165.6, 137.4, 134.4, 134.1, 133.8, 133.7, 132.3, 131.0, 128.8, 128.6, 118.5, 72.3, 20.8, 17.2; HRMS calc. for C₁₇H₁₅O₃BrNa (M+Na)⁺, 369.0102; found, 369.0104.

1-oxo-1-phenylpropan-2-yl 2-bromobenzoate

Compound **3ak** was obtained in 84% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.01 (d, *J* = 7.2 Hz, 2H), 7.97 (dd, *J*₁ = 2.0 Hz, *J*₂ = 7.6 Hz, 1H), 7.69 (dd, *J*₁ = 1.2 Hz, *J*₂ = 7.6 Hz, 1H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.43-7.37 (m, 2H), 6.27 (q, *J* = 7.0 Hz, 1H), 1.69 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.4, 165.4, 134.4, 134.4, 133.7, 132.8, 131.8, 131.4, 128.8, 128.5, 127.2, 121.9, 72.4, 17.1; HRMS calc. for C₁₆H₁₃O₃BrNa (M+Na)⁺, 354.9946; found, 354.9949.

1-oxo-1-phenylpropan-2-yl 2-iodobenzoate

Compound **3al** was obtained in 78% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.02 (d, J = 7.2 Hz, 3H), 7.99 (dd, $J_I = 1.7$ Hz, $J_2 = 7.8$ Hz, 1H), 7.66-7.61 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.45 (dt, $J_I = 1.1$ Hz, $J_2 = 7.6$ Hz, 1H), 7.20 (dt, $J_I = 1.7$ Hz, $J_2 = 7.7$ Hz, 1H), 6.28 (q, J = 7.0 Hz, 1H), 1.70 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.4, 165.8, 141.4, 134.3, 134.2, 133.7, 133.0, 131.6, 128.9, 128.6, 128.0, 94.3, 72.5, 17.2; HRMS calc. for C₁₆H₁₃O₃INa (M+Na)⁺, 402.9807; found, 402.9809.

1-oxo-1-phenylpropan-2-yl 2-bromo-5-fluorobenzoate

Compound **3am** was obtained in 78% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.01 (d, J = 7.1 Hz, 2H), 7.71 (dd, J_I = 3.1 Hz, J_2 = 8.6 Hz, 1H), 7.67-7.62 (m, 2H), 7.53 (t, J = 7.9 Hz, 2H), 7.14-7.09 (m, 1H), 6.26 (q, J = 7.0 Hz, 1H), 1.70 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.1, 164.3, 161.2 (d, J = 245.7 Hz), 135.8 (d, J = 7.5 Hz), 134.2, 133.8, 132.7 (d, J = 7.4

Hz), 128.9, 128.5, 120.3 (d, J = 22.1 Hz), 119.0 (d, J = 24.5 Hz), 116.3 (d, J = 3.6 Hz), 72.7, 17.2; HRMS calc. for C₁₆H₁₂O₃BrFNa (M+Na)⁺, 372.9852; found, 372.9857.

1-oxo-1-phenylpropan-2-yl biphenyl-2-carboxylate

Compound **3an** was obtained in 82% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.97-7.92 (m, 3H), 7.61-7.55 (m, 2H), 7.50-7.45 (m, 3H), 7.41-7.35(m, 6H), 5.96 (q, *J* = 7.0 Hz, 1H), 1.32 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.5, 167.6, 143.0, 141.4, 134.4, 133.5, 131.6, 130.8, 130.4, 130.0, 128.7, 128.6, 128.5, 128.0, 127.2, 127.2, 72.0, 16.8; HRMS calc. for C₂₂H₁₈O₃Na (M+Na)⁺, 353.1154; found, 353.1151.

1-oxo-1-phenylpropan-2-yl 3-phenylpropanoate

Compound **3ao** was obtained in 93% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.96 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.9 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.24-7.22 (m, 3H), 6.00 (q, J = 7.0 Hz, 1H), 3.00 (t, J = 7.9 Hz, 2H), 2.80-2.75 (m, 2H), 1.54 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.9, 172.3, 140.4, 134.4, 133.6, 128.8, 128.5, 128.5, 128.3, 126.3, 71.4, 35.5, 30.8, 17.1; HRMS calc. for C₁₈H₁₈O₃Na (M+Na)⁺, 305.1154; found, 305.1157.

1-oxo-1-phenylpropan-2-yl acetate

Compound **3ap** was obtained in 84% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.97 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 5.99 (q, J = 7.0 Hz, 1H), 2.17 (s, 3H), 1.56 (d, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.9, 170.4, 134.5, 133.5, 128.8, 128.5, 71.4, 20.7, 17.1; HRMS calc. for C₁₁H₁₂O₃Na (M+Na)⁺, 215.0684; found, 215.0682.

1-oxo-1-phenylpropan-2-yl propionate

Compound **3aq** was obtained in 85% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.97 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 6.00 (q, J = 7.0 Hz, 1H), 2.47-2.43 (m, 2H), 1.55 (d, J = 7.0 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 197.1, 173.9, 134.6, 133.5, 128.7, 128.4, 71.2, 27.3, 17.1, 8.9; HRMS calc. for C₁₂H₁₄O₃Na (M+Na)⁺, 229.0841; found, 229.0845.

1-oxo-1-phenylpropan-2-yl but-2-ynoate

Compound **3ar** was obtained in 90% yield according to the general procedure. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.96 (d, J = 8.1 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.9 Hz, 2H), 6.05 (q, J = 7.0 Hz, 1H), 2.03 (s, 3H), 1.60 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 195.7, 152.8, 134.1, 133.7, 128.8, 128.5, 87.1, 72.7, 71.9, 17.1, 3.9; HRMS calc. for C₁₃H₁₂O₃Na (M+Na)⁺, 239.0684; found, 239.0687.

(E)-1-oxo-1-phenylpropan-2-yl but-2-enoate

Compound **3as** was obtained in 50% yield according to the general procedure. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.98 (d, J = 7.2 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.9 Hz, 2H), 7.11-7.04 (m, 1H), 6.05(q, J = 7.0 Hz, 1H), 5.96 (dq, J_I = 1.6 Hz, J_2 = 15.6 Hz, 1H), 1.91 (dd, J_I = 1.7 Hz, J_2 = 7.0 Hz, 3H), 1.58 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 197.0, 165.7, 146.1, 134.5, 133.5, 128.8, 128.5, 121.9, 71.1, 18.1, 17.1; HRMS calc. for C₁₃H₁₄O₃Na (M+Na)⁺, 241.0841; found, 241.0845.

2-bromo-1-phenylpropan-1-one

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.05 (t, *J* = 7.2 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 5.3 (q, *J* = 6.6 Hz, 1H), 1.93 (d, *J* = 6.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 193.3, 134.1, 133.6, 128.9, 128.7, 41.5, 20.1. HRMS calc. for C₉H₉BrONa (M+Na)⁺, 234.9734; found, 234.9729.

5. Copies of NMR spectra for 3aa-3as, 6a

$\begin{array}{c} \mathbb{Z}_{k} \ 1850 \\ \mathbb{Z}_{k} \ 1073 \\ \mathbb{Z}_{k} \ 1075 \ 1075 \\ \mathbb{Z}_{k} \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1075 \ 1$

(1)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(

8,8,1319 8,8,1319 8,8,1319 8,8,1319 8,8,1319 6,6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 6,1358 7,1,667 1,1366 6,1358 7,1,667 1,1366 1,238 7,1,667 1,1366 1,238 7,1,667 1,1366 1,2388 1,2388 1,2388 1,2388

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} 2 & 0625 \\ 2 & 0412 \\ 2 & 0328 \\ 2 & 0328 \\ 2 & 0076 \\ 2 & 0076 \\ 1 & 1410 \\ 1 & 1400 \\ 0 & 9760 \\ 0 & 9760 \\ 0 & 978 \end{array}$

Comparison of the second seco

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

R 1866 R 1787 R 1787 R 1787 R 1877 R 1960 R 0922 R 0922

 $<^{1.7053}_{1.6877}$

 $<^{1.7458}_{1.7282}$

8. 0.353 8. 0.353 7. 9817 7. 9817 7. 9817 7. 5461 7. 5524 7. 16351 7. 16351 7. 16351 7. 16351 7. 1635 6. 2798 6. 2778 6. 2778 6. 2778 <1. 7022 -0. 0231

-2.3700 < 1.7029 < 1.7029

R 0355 R 0355 R 0162 R 0162 R 17 R 1652 R 1652 R 164 R 1652 R

 $<^{1.7028}_{1.6852}$

6, 282 6, 292 $<^{1.7092}_{1.6916}$

 $<_{1.3289}^{1.3289}$

C 1, 9700 C 1, 9700 C 1, 9721 C 1, 5219 C 1, 5219 C 1, 5219 C 1, 2319 C 2, 2480 C 2, 2785 C 9019 C 9019 C 9743 C 9745 C 9775 C

