Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information (SI)

Intermolecular interactions boost aggregation induced emission in carbazole Schiff base derivatives

Xiaoping Gan ^{a, b}, Guangjin Liu ^a, Mingjie Chu ^a, Wengang Xi ^b, Zili Ren ^a, Xiuli Zhang ^a, Yupeng Tian ^b, Hongping Zhou ^{b*}

^a Department of Applied Chemistry, School of Science, Anhui Agricultural University, 230036

Hefei, P. R. China.

^b College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, 230601, Hefei, P.R. China.

Corresponding author. Fax: +86-551-63861279; Tel: +86-551-63861279

E-mail address: zhpzhp@263.net

Figure S1: The characterization data of compounds 1-6

- Figure S2: UV-Vis (a) and fluorescence (b) spectra of compound 2 in six organic solvents with different polarities at a concentration of 2×10^{-5} mol L⁻¹.
- Figure S3: UV-Vis (a) and fluorescence (b) spectra of compound 3 in six organic solvents with different polarities at a concentration of 2×10^{-5} mol L⁻¹.
- Figure S4: UV-Vis (a) and fluorescence (b) spectra of compound 4 in six organic solvents with different polarities at a concentration of 2×10⁻⁵mol L⁻¹.
- Figure S5: UV-Vis (a) and fluorescence (b) spectra of compound 5 in six organic solvents with different polarities at a concentration of 2×10⁻⁵mol L⁻¹.

- Figure S6: UV-Vis (a) and fluorescence (b) spectra of compound 6 in six organic solvents with different polarities at a concentration of 2×10^{-5} mol L⁻¹.
- Figure S7: UV-Vis (a) and fluorescence (b) spectra of compound 2 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.
- Figure S8: UV-Vis (a) and fluorescence (b) spectra of compound 3 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.
- Figure S9: UV-Vis (a) and fluorescence (b) spectra of compound 4 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.
- Figure S10: UV-Vis (a) and fluorescence (b) spectra of compound 5 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.
- Figure S11: MTT assay of Hela cells treated with compounds 1-6 at different concentrations for 24 h
- Table S1 Crystal data of compounds 1, 2, 3, 5 and 6

Figure S1a: ¹H NMR, ¹³C NMR, IR and ESI MS spectra of compound 1.

The ¹³C NMR (100 MHz) spectrum of compound 1 in DMSO-*d*₆

Figure S1b: ¹H NMR, ¹³C NMR, IR and ESI MS spectra of compound 2.

The ¹³C NMR (100 MHz) spectrum of compound 2 in DMSO- d_6

ESI MS of compound 2

15000

The ¹³C NMR (100 MHz) spectrum of compound **3** in DMSO- d_6

IR spectrum of compound 3

ESI MS of compound 3

Figure S1d: ¹H NMR, ¹³C NMR, IR and ESI MS spectra of compound 4.

The ¹³C NMR (100 MHz) spectrum of compound 4 in DMSO-d₆

ESI MS of compound 4

Figure S1e: ¹H NMR, ¹³C NMR, IR and ESI MS spectra of compound 5.

The ¹H NMR (400MHz) spectrum of compound **5** in DMSO- d_6

The ¹³C NMR (100 MHz) spectrum of compound **5** in CD₃COCD₃

IR spectrum of compound 5

ESI MS of compound 5

Figure S1f: ¹H NMR, ¹³C NMR, IR and ESI MS spectra of compound 6.

The ¹³C NMR (100 MHz) spectrum of the compound 6 in CD₃COCD₃

Figure S2: UV-Vis (a) and fluorescence (b) spectra of compound 2 in six organic solvents with different polarities at a concentration of 2×10⁻⁵mol L⁻¹.

Supporting Information page 14/13

Figure S3: UV-Vis (a) and fluorescence (b) spectra of compound 3 in six organic solvents with different polarities at a concentration of 2×10^{-5} mol L⁻¹.

Figure S5: UV-Vis (a) and fluorescence (b) spectra of compound 5 in six organic solvents with different polarities at a concentration of 2×10^{-5} mol L⁻¹.

Figure S6: UV-Vis (a) and fluorescence (b) spectra of compound 6 in six organic solvents with different polarities at a concentration of 2×10^{-5} mol L⁻¹.

Supporting Information page 15/13

Figure S7: UV-Vis (a) and fluorescence (b) spectra of compound **2** in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.

Figure S8: UV-Vis (a) and fluorescence (b) spectra of compound 3 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.

Figure S9: UV-Vis (a) and fluorescence (b) spectra of compound 4 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10⁻⁵ M.

Figure S10: UV-Vis (a) and fluorescence (b) spectra of compound 5 in water/acetonitrile mixtures with different f_w at a concentration of 2.0×10^{-5} M.

Supporting Information page 16/13

Table S1 Crysta	l data of compounds	1, 2, 3, 5 and 6
-----------------	---------------------	------------------

Compounds	1	2	3	5	6
Empirical formula	$C_{32}H_{23}N_3$	$C_{32}H_{23}N_3$	$C_{33}H_{24}N_2$	$C_{37}H_{33}N_3$	$C_{37}H_{33}N_3O$
Formula weight	449.53	449.53	448.54	519.66	535.66
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	tetragonal
Space group	C2/c	C2/c	C2/c	P-1	Pna21
a[Å]	17.791(4)	37.005(8)	36.888(6)	9.806(3)	16.383(5)
b[Å]	6.3822(15)	11.212(2)	11.0226(19)	17.473(4)	11.090(5)
c[Å]	42.441(10)	45.528(10)	46.003(8)	35.205(9)	31.475(5)
α[°]	90.00	90.00	90.00	104.3700	90.00
β[°]	93.833(3)	91.208(3)	92.876(2)	96.872(3)	90.00
γ[°]	90.00	90.00	90.00	90.00	90.00
V[Å ³]	4808.2(19)	18886(7)	18681(5)	5799(3)	5719(3)
Ζ	8	32	32	8	8
T[K]	296(2)	296(2)	296(2)	296(2)	293(2)
$D_{calcd}[g \cdot cm^{-1}]$	1.242	1.265	1.276	1.191	1.244
F(000)	1888.0	7552.0	7552.0	2208.0	2272.0
μ [mm ⁻¹]	0.073	0.075	0.074	0.070	0.075
θrange[°]	0.96-25.00	1.10-25.00	0.89-25.00	1.20-25.00	1.29-25.00
Total no. data	4233	16569	16400	20014	10077
No. unique data	2611	7083	7368	4888	7322
$R_{\rm int}$	0.0436	0.0809	0.0955	0.0766	0.0468
R_1	0.0660	0.1690	0.0849	0.1070	0.0678
wR_2	0.2339	0.2257	0.3329	0.3982	0.2224
GOF	1.081	1.008	0.977	0.842	1.059