# Catalytic enantioselective cascade Michael/cyclization reaction of 3-isothiocyanato oxindoles with exocyclic α,β-unsaturated ketones en route to 3,2'-pyrrolidinyl bispirooxindoles

## Satavisha Kayal and Santanu Mukherjee\*

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA

sm@orgchem.iisc.ernet.in

## SUPPORTING INFORMATION: PART A

| A. General information                                                                                                                        | S-2  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| B. Preparation of 3-isothiocyanato oxindoles                                                                                                  | S-3  |
| C. Preparation of catalysts                                                                                                                   | S-3  |
| D. Synthesis and characterization of exocyclic $\alpha$ , $\beta$ -unsaturated ketones                                                        | S-3  |
| E. Preparation of <i>rac</i> -3 or <i>rac</i> -5                                                                                              | S-10 |
| F. Enantioselective Michael addition/cyclization cascade of 3-isothiocyanato oxindoles with exocyclic $\alpha$ , $\beta$ -unsaturated ketones | S-11 |
| G. Synthetic transformations of the product <b>3aa</b>                                                                                        | S-28 |
| H. Application of compound 8 as catalyst                                                                                                      | S-30 |
| I. Single crystal X-ray diffraction analysis of <b>3ao</b>                                                                                    | S-31 |
| J. References                                                                                                                                 | S-39 |

#### A. General Information:

Infrared (FT-IR) spectra were recorded on a Perkin Elmer Spectrum BX spectrophotometer,  $v_{max}$  in cm<sup>-1</sup> and the bands are characterized as broad (br), strong (s), medium (m), and weak (w). NMR spectra were recorded on Bruker Ultrashield spectrometer at 400 MHz (for <sup>1</sup>H-NMR) and 100 MHz (for <sup>13</sup>C-NMR). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard (CDCl<sub>3</sub>:  $\delta$  7.26, CD<sub>3</sub>OD:  $\delta$  3.31 for <sup>1</sup>H-NMR and CDCl<sub>3</sub>:  $\delta$  77.16, CD<sub>3</sub>OD:  $\delta$  49.00 for <sup>13</sup>C-NMR). For <sup>1</sup>H-NMR, data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectrometry was performed on Micromass Q-TOF Micro instrument. Optical rotations were measured on JASCO P-2000 polarimeter. Melting points were measured using ANALAB  $\mu$ -Thermocal 10 melting point apparatus. All melting points were measured in open glass capillary and values are uncorrected. Enantiomeric ratios were determined by Shimadzu LC-20AD HPLC instrument and SPD-20A UV/Vis detector using stationary phase chiral columns (25 cm × 0.46 cm) in comparison with authentic racemic compounds.

Unless otherwise noted all reactions have been carried out with distilled and dried solvents under an atmosphere of N<sub>2</sub>. Oven (120 °C) dried glassware with standard vacuum line techniques were used. All work up and purification were carried out with reagent grade solvents in air. Thin-layer chromatography was performed using Merck silica-gel 60  $F_{254}$  pre-coated plates (0.25 mm). Column chromatography was performed using silica-gel (230-400 or 100-200 mesh).

**B.** Preparation of 3-isothiocyanato oxindoles: 3-Isothiocyanato oxindoles (1a-1e) were prepared according to the previously reported procedure.<sup>1</sup>

**C. Preparation of catalysts:** Catalysts (I-V) were prepared according to the literature procedure.<sup>2</sup>

**D.** Synthesis and characterization of exocyclic  $\alpha,\beta$ -unsaturated ketones (2):  $\beta$ -Alkylidene- $\alpha$ -indanones (2) and  $\beta$ -alkylidene- $\alpha$ -tetralones (4) were prepared by following the reported literature procedure.<sup>3</sup>



In a round bottom flask fitted with a magnetic stir-bar, compound **S1** (1.0 equiv) and aldehyde (1.0 equiv) were taken in ethanol (0.5 M) and cooled to 0 °C. 5% Aqueous solution of NaOH (0.1 M) was added drop-wise to the mixture at 0 °C and the resulting solution was stirred for 1h at the same temperature. Solid compound precipitated out which was filtered, washed with cold ethanol and dried under reduced pressure to obtain the desired product. The crude product was used for the next step without further purification.

(*E*)-2-Benzylidene-2,3-dihydro-1*H*-inden-1-one (2a): White solid (675 mg, 3.06 mmol, 81% yield); FT-IR (Thin film): 3022 (w), 1687 (s), 1615 (s), 1490 (m), 737 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.29 (d, *J* = 7.5 Hz, 1H), 7.69-7.67 (m, 3H), 7.26 (t, *J* = 7.3 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.48-7.38 (m, 4H), 4.06 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.5, 149.8, 138.2, 138.2, 135.6, 134.8, 134.7, 134.1, 130.9, 129.8, 129.1, 127.8, 126.3, 124.6, 124.6, 32.6; HRMS (ESI+): Calcd for C<sub>16</sub>H<sub>13</sub>O ([M+H]<sup>+</sup>): 221.0966, Found: 221.0963.

(*E*)-2-(2-Fluorobenzylidene)-2,3-dihydro-1*H*-inden-1-one (2b): White solid (850 mg, 3.56 mmol, 94% yield); FT-IR (Thin film): 2932 (w), 1695 (s), 1624 (s), 1454 (m), 730 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.89 (br s, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 6.9 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 9.3 Hz, 1H),

3.98 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.9, 161.9 (d, J = 254.7 Hz), 149.7, 138.0, 136.6 (d, J = 1.3 Hz), 134.9, 131.4, 131.3, 130.1 (d, J = 2.3 Hz), 127.8, 126.3, 125.6 (d, J = 5.5 Hz), 124.6, 124.4 (d, J = 3.8 Hz), 123.6, 123.5, 116.2 (d, J = 22.2 Hz), 32.3 (d, J = 2.1 Hz); HRMS (ESI+): Calcd for C<sub>16</sub>H<sub>12</sub>FO ([M+H]<sup>+</sup>): 239.0872, Found: 239.0875.

(*E*)-2-(4-Fluorobenzylidene)-2,3-dihydro-1*H*-inden-1-one (2c): White solid (800 mg, 3.35 mmol, 88% yield); FT-IR (Thin film): 2939 (w), 1695 (s), 1623 (s), 1579 (m), 731 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.90 (d, *J* = 7.6 Hz, 1H), 7.64-7.61 (m, 2H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.45-7.41 (m, 3H), 7.35 (d, *J* = 9.5 Hz, 1H), 7.12-7.07 (m, 1H), 4.02 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.2, 163.1 (d, *J* = 246.5 Hz), 149.6, 137.9, 137.7, 137.6, 136.0, 135.0, 132.5 (d, *J* = 2.6 Hz), 130.5 (d, *J* = 8.0 Hz), 127.9, 126.8 (d, *J* = 2.8 Hz), 126.3, 124.6, 116.8 (d, *J* = 15.7

Hz), 116.6 (d, J = 15.2 Hz), 32.4; **HRMS (ESI+):** Calcd for C<sub>16</sub>H<sub>12</sub>FO ([M+H]<sup>+</sup>): 239.0872, Found: 239.0872.

(*E*)-2-(4-Fluorobenzylidene)-2,3-dihydro-1*H*-inden-1-one (2d): White solid (900 mg, 3.77 mmol, 99% yield); FT-IR (Thin film): 3022 (w), 1684 (s), 1588 (s), 1500 (m), 1223 (m), 832 (s), 726 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.89 (d, J = 7.5 Hz, 1H), 7.67-7.59 (m, 4H), 7.55 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.3 Hz, 1H), 7.14 (t, J = 8.5 Hz, 2H), 4.00 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.3, 163.5 (d, J = 252.8 Hz), 149.6, 138.1, 134.8, 134.4, 132.8, 132.7,

131.7 (d, J = 3.3 Hz), 127.9, 126.3, 124.6, 116.4, 116.1, 32.4; **HRMS (ESI+):** Calcd for  $C_{16}H_{12}FO([M+H]^+)$ : 239.0872, Found: 239.0874.

(*E*)-2-(3-Chlorobenzylidene)-2,3-dihydro-1*H*-inden-1-oneone (2e): White solid (850 mg, 3.34 mmol, 88% yield); FT-IR (Thin film): 3414 (w), 1694 (s), 1628 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.88 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.1 Hz, 2H), 7.56-7.54 (m, 2H), 7.50 (d, *J* = 6.7 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.37-7.34 (m, 2H), 4.00 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 194.0, 149.6, 137.9, 137.3, 136.1, 135.0, 132.3, 130.2, 130.1, 129.6, 129.0, 127.9, 126.3, 124.6, 32.4; HRMS (ESI+): Calcd for C<sub>16</sub>H<sub>12</sub>ClO ([M+Na]<sup>+</sup>): 255.0577, Found: 255.0579.

(*E*)-2-(4-Bromobenzylidene)-2,3-dihydro-1*H*-inden-1-one (2f): White solid (900 mg, 3.01 mmol, 79% yield); FT-IR (Thin film): 3413 (w), 1691 (s), 1618 (s), 1477 (m), 1269 (m), 1072 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.87 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.56-7.53 (m, 4H), 7.48 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 3.95 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.1, 149.5, 137.9, 135.4, 134.9, 134.3, 132.5, 132.3, 132.1,

127.9, 126.3, 124.6, 124.1, 32.4; **HRMS (ESI+):** Calcd for C<sub>16</sub>H<sub>11</sub>BrNaO ([M+Na]<sup>+</sup>): 320.9891, Found: 320.9892.

(*E*)-2-(4-Methylbenzylidene)-2,3-dihydro-1*H*-inden-1-one (2g): White solid (840 mg, 3.58 mmol, 95% yield); FT-IR (Thin film): 2882 (w), 1682 (s), 1601 (s), 1456 (m), 1090 (m), 735 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.88 (d, *J* = 7.5 Hz, 1H), 7.63 (s, 1H), 7.60-7.51 (m, 4H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 3.98 (s, 2H), 2.38 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.5, 149.7, 140.2, 138.2, 134.6, 134.1, 133.8, 132.7, 130.9, 129.8, 127.7, 126.2,

124.4, 32.6, 21.6; **HRMS (ESI+):** Calcd for  $C_{17}H_{14}NaO$  ([M+Na]<sup>+</sup>): 257.0942, Found: 257.0945.

(E)-2-(4-Isopropylbenzylidene)-2,3-dihydro-1H-inden-1-one (2h): White solid (700 mg, 2.66



mmol, 71% yield); **FT-IR (Thin film):** 3459 (w), 2961 (m), 1695 (s), 1627 (s), 1465 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  7.91 (d, J = 7.5 Hz, 1H), 7.67 (s, 1H), 7.63-7.59 (m, 3H), 7.55 (d, J = 7.5 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 4.03 (s, 2H), 2.99-2.92 (m, 1H), 1.29 (s, 3H), 1.28 (s, 3H); <sup>13</sup>**C-NMR (100 MHz, CDCl<sub>3</sub>):**  $\delta$  194.5, 151.1, 149.7, 138.3, 134.6, 134.1, 134.0, 133.1, 131.0, 127.7, 127.2, 126.3, 124.5, 34.2,

32.6, 23.9; **HRMS (ESI+):** Calcd for C<sub>19</sub>H<sub>18</sub>NaO ([M+Na]<sup>+</sup>): 285.1255, Found: 285.1257.

(*E*)-2-(4-Methoxybenzylidene)-2,3-dihydro-1*H*-inden-1-one (2i): White solid (900 mg, 3.59 mmol, 95% yield); FT-IR (Thin film): 2193 (w), 1688 (s), 1591 (s), 1504 (m), 1247 (s), 730 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.89 (d, *J* = 7.5 Hz, 1H), 7.64-7.62 (m, 3H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.3 Hz, 1H), 6.97 (d, *J* = 8.5 Hz, 2H), 3.99 (s, 2H), 3.85 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.5, 161.0, 149.6, 138.4, 134.4, 133.9,

132.7, 132.5, 128.3, 127.7, 126.2, 124.4, 114.6, 55.5, 32.6; **HRMS (ESI+):** Calcd for  $C_{17}H_{14}NaO_2$  ([M+Na]<sup>+</sup>): 273.0891, Found: 273.0889.

(*E*)-2-(3,4-Dimethoxybenzylidene)-2,3-dihydro-1*H*-inden-1-one (2j): White solid (850 mg, 3.03 mmol, 80% yield); **FT-IR (Thin film):** 3612 (w), 1690 (s), 1513 (s), 1253 (s), 1022 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.84 (d, *J* = 7.5 Hz, 1H), 7.56-7.53 (m, 2H), 7.49 (d, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.23 (dd, *J* = 8.4 Hz, 1.5 Hz, 1H), 7.10 (d, *J* = 1.4 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 3.91 (br s, 5H), 3.88 (s, 3H); <sup>13</sup>C-NMR (100 MHz,

**CDCl<sub>3</sub>):**  $\delta$  194.2, 150.6, 149.4, 149.1, 138.2, 134.4, 134.0, 132.6, 128.4, 127.6, 126.1, 124.6, 124.2, 113.5, 111.3, 56.0, 32.3; **HRMS (ESI+):** Calcd for C<sub>18</sub>H<sub>16</sub>NaO<sub>3</sub> ([M+Na]<sup>+</sup>): 303.0997, Found: 303.0994.

(*E*)-2-(4-(Trifluoromethyl)benzylidene)-2,3-dihydro-1*H*-inden-1-oneone (2k): White solid (900 mg, 3.12 mmol, 82% yield); FT-IR (Thin film): 3076 (w), 1692 (s), 1624 (s), 1466 (m), 1316 (s), 1162 (m), 1108 (s), 737 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.91 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.66 (br s, 1H), 7.63 (d, *J* = 7.3 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.3 Hz, 1H), 4.05 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 

194.0, 149.6, 138.9, 137.8, 137.1, 135.1, 132.0, 130.7, 128.0, 126.4, 125.9 (d, J = 3.6 Hz), 125.4, 124.8, 122.6, 32.4; **HRMS (ESI+):** Calcd for C<sub>17</sub>H<sub>12</sub>F<sub>3</sub>O ([M+H]<sup>+</sup>): 289.0840, Found: 289.0841.

(*E*)-2-(3-Nitrobenzylidene)-2,3-dihydro-1*H*-inden-1-one (2l): White solid (900 mg, 3.39 mmol, 50% yield); **FT-IR (Thin film):** 3174 (w), 1692 (m), 1606 (s), 1527 (s), 1339 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.54 (s, 1H), 8.25 (dd, *J* = 8.2 Hz, 1.3 Hz, 1H), 7.94 (t, *J* = 6.9 Hz, 2H), 7.69-7.60 (m, 4H), 7.46 (t, *J* = 7.4 Hz, 1H), 4.11 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.8, 149.5, 148.8, 137.7, 137.6, 137.2, 136.6, 135.3, 130.9, 130.1, 128.2, 126.5, 124.8, 124.4,

124.0, 32.4; **HRMS (ESI+):** Calcd for C<sub>16</sub>H<sub>11</sub>NNaO<sub>3</sub> ([M+Na]<sup>+</sup>): 288.0637, Found: 288.0638.

(*E*)-2-(4-Nitrobenzylidene)-2,3-dihydro-1*H*-inden-1-one (2m): White solid (850 mg, 3.20 mmol, 85% yield); FT-IR (Thin film): 3412 (w), 1690 (s), 1626 (m), 1510 (s), 1337 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.32 (d, *J* = 8.6 Hz, 2H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.69 (br s, 1H), 7.65 (d, *J* = 7.3 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 4.10 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.8, 149.5, 147.9, 141.8, 138.6, 137.7,

135.4, 131.1, 131.0, 128.2, 126.4, 124.9, 124.3, 32.5; **HRMS (ESI+):** Calcd for  $C_{16}H_{12}NO_3$  ([M+H]<sup>+</sup>): 266.0817, Found: 266.0820.

(E)-2-(Perfluorophenyl)methylene)-2,3-dihydro-1H-inden-1-one (2n): White solid (900 mg,



2.90 mmol, 77% yield); **FT-IR (Thin film):** 1703 (s), 1522 (s), 1492 (s), 978 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  7.89 (d, J = 7.6 Hz, 1H), 7.64 (td, J = 7.6 Hz, 1.0 Hz, 1H), 7.51-7.49 (m, 2H), 7.44 (t, J = 7.5 Hz, 1H), 3.81 (s, 2H); <sup>13</sup>**C-NMR (100 MHz, CDCl<sub>3</sub>):**  $\delta$  192.6, 149.5, 145.9, 142.8, 137.6, 135.6, 128.1, 126.4, 124.9, 117.9, 110.9, 110.8, 32.0 (t, J = 6.0 Hz); **HRMS** 

**(ESI+):** Calcd for C<sub>16</sub>H<sub>7</sub>F<sub>5</sub>NaO ([M+Na]<sup>+</sup>): 333.0315, Found: 333.0313.

(*E*)-2-(Furan-2-ylmethylene)-2,3-dihydro-1*H*-inden-1-one (20): White solid (750 mg, 3.31 mmol, 87% yield); FT-IR (Thin film): 3107 (w), 2910 (W), 1686 (s), 1618 (s), 1472 (s), 1267 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.86 (d, *J* = 7.6 Hz, 1H), 7.61-7.60 (m, 1H), 7.57 (d, *J* = 7.0 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 1.7 Hz, 1H), 7.39 (d, *J* = 7.3 Hz, 1H), 6.75 (d, *J* = 3.4 Hz, 1H), 6.55-6.53 (m, 1H), 4.02 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.1, 152.4, 149.9, 145.5, 138.6, 134.5, 132.7, 127.6, 126.3, 124.3, 120.1, 116.7, 112.8, 32.4; HRMS (ESI+): Calcd for C<sub>14</sub>H<sub>11</sub>O<sub>2</sub>

([M+H]<sup>+</sup>): 211.0759, Found: 211.0761.

(*E*)-2-(Thiophen-2-ylmethylene)-2,3-dihydro-1*H*-inden-1-one (2p): Yellow solid (625 mg, 2.76 mmol, 73% yield); FT-IR (Thin film): 3022 (w), 1687 (s), 1613 (s), 1577 (m), 730 (s), 703 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.88-7.87 (m, 2H), 7.59 (td, *J* = 7.7 Hz, 1.1 Hz, 1H), 7.57-7.54 (m, 2H), 7.42-7.38 (m, 2H), 7.15 (dd, *J* = 5.0 Hz, 3.7 Hz, 1H), 3.90 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.9, 149.1 140.0 138.6 134.6 133.2 132.8 130.6 128.3 127.7 126.6 126.3 124.4 32.4: HRMS

149.1, 140.0, 138.6, 134.6, 133.2, 132.8, 130.6, 128.3, 127.7, 126.6, 126.3, 124.4, 32.4; **HRMS** (ESI+): Calcd for C<sub>14</sub>H<sub>10</sub>NaOS ([M+Na]<sup>+</sup>): 249.0350, Found: 249.0349.

(*E*)-2-((*E*)-3-Phenylallylidene)-2,3-dihydro-1*H*-inden-1-one (2q): Yellow solid (570 mg, 2.37 mmol, 61% yield); **FT-IR (Thin film):** 3024 (w), 1689 (s), 1615 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.87 (d, *J* = 7.6 Hz, 1H), 7.59 (td, *J* = 7.6 Hz, 0.8 Hz, 1H), 7.52 (d, *J* = 7.3 Hz, 3H), 7.44-7.31 (m, 5H), 7.05-7.03 (m, 2H), 3.85 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.8, 149.0, 142.1, 139.4, 136.5, 136.2, 134.5, 133.4, 129.3, 129.0, 127.7, 127.4, 126.4, 124.5, 124.3, 30.5; HRMS

139.4, 136.5, 136.2, 134.5, 133.4, 129.3, 129.0, 127.7, 127.4, 126.4, 124.5, 124.3, 30.5; **HRMS** (ESI+): Calcd for  $C_{18}H_{14}NaO$  ([M+Na]<sup>+</sup>): 269.0942, Found: 269.0944.

(E)-2-(3-Methylbutylidene)-2,3-dihydro-1H-inden-1-one (2r): Yellow oil (500 mg, 2.49



mmol, 66% yield); **FT-IR (Thin film):** 2958 (s), 1704 (s), 1651 (s), 1608 (m), 1466 (m), 1324 (m), 1265 (m), 1093 (m), 921 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):** 7.84 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 6.93-6.88 (m, 1H), 3.64 (s, 2H), 2.19 (t, J = 7.3

Hz, 2H), 1.91-1.81 (m, 1H), 0.96 (d, J = 6.6 Hz, 6H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.4, 149.5, 139.0, 137.3, 137.1, 134.5, 127.5, 126.4, 124.4, 39.1, 30.2, 28.4, 22.7; HRMS (ESI+): Calcd for C<sub>14</sub>H<sub>16</sub>NaO ([M+Na]<sup>+</sup>): 223.1099, Found: 223.1099.

**2-Methylene-2,3-dihydro-1***H***-inden-1-one (2s):** Compound **2s** was prepared by following the reported literature procedure.<sup>4</sup> Yellow oil (395 mg, 2.74 mmol, 72% yield); **FT-IR** (**Thin film):** 3396 (w), 1705 (s), 1642 (m), 1609 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl\_3):**  $\delta$  7.86 (d, J = 7.7 Hz, 1H), 7.60 (td, J = 7.5 Hz, 1.0 Hz, 1H), 7.48 (dt, J = 7.7 Hz, 0.8 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 6.31 (td, J = 2.3 Hz, 0.7 Hz, 1H), 5.64-5.63 (m, 1H), 3.75 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl\_3):  $\delta$  193.6, 150.0, 143.4, 138.4, 135.0, 127.7, 126.5, 124.8, 119.4, 31.9; **HRMS (ESI+):** Calcd for C<sub>10</sub>H<sub>8</sub>NaO ([M+Na]<sup>+</sup>): 167.0473, Found: 167.0474.

(*E*)-2-Benzylidene-5-chloro-2,3-dihydro-1*H*-inden-1-one (2t): White solid (500 mg, 1.96 mmol, 65% yield); FT-IR (Thin film): 1695 (s), 1625 (s), 1599 (m), 766 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.83 (d, *J* = 8.1 Hz, 1H), 7.67-7.64 (m, 3H), 7.54 (s, 1H), 7.49-7.45 (m, 2H), 7.43-7.39 (m, 2H), 4.02 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.0, 151.2, 141.0, 136.7, 135.3, 134.7, 134.2, 130.9, 130.0, 129.1, 128.6, 126.5, 125.7, 32.3; HRMS (ESI+): Calcd for C<sub>16</sub>H<sub>11</sub>ClNaO ([M+Na]<sup>+</sup>): 277.0396, Found: 277.0393.

(*E*)-2-Benzylidene-5-bromo-2,3-dihydro-1*H*-inden-1-one (2u): White solid (590 mg, 1.97 mmol, 83% yield); FT-IR (Thin film): 3052 (w), 1694 (s), 1623 (s), 1596 (m), 763 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.75 (d, *J* = 8.1 Hz, 1H), 7.72 (br s, 1H), 7.68 (t, *J* = 1.9 Hz, 1H), 7.66-7.64 (m, 2H), 7.56 (dt, *J* = 8.1 Hz, 0.7 Hz, 1H), 7.49-7.40 (m, 3H), 4.02 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.2, 151.3, 137.0, 135.3, 134.8, 134.1, 131.5, 130.9, 130.1, 129.8, 129.6, 129.1, 125.8, 32.3; HRMS (ESI+): Calcd for C<sub>16</sub>H<sub>11</sub>BrNaO ([M+Na]<sup>+</sup>): 320.9891, Found: 320.9889.

(*E*)-2-Benzylidene-5-fluoro-2,3-dihydro-1*H*-inden-1-one (2v): White solid (490 mg, 2.05 mmol, 62% yield); FT-IR (Thin film): 1692 (s), 1617 (s), 1239 (s), 770 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.91 (dd, *J* = 8.4 Hz, 5.3 Hz, 1H), 7.66-7.65 (m, 3H), 7.48-7.41 (m, 3H), 7.25-7.21 (m, 1H), 7.13 (td, *J* = 8.9 Hz, 2.1 Hz, 1H), 4.04 (s, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  192.7, 167.1 (d, *J* = 257.4 Hz), 152.5 (d, *J* = 10.2 Hz), 135.3, 134.6, 134.4, 134.2, 130.8, 129.9, 129.1, 128.9, 128.8, 126.9, 126.8, 116.1 (d, *J* = 23.5 Hz), 113.1 (d, *J* = 22.5 Hz), 32.5; HRMS (ESI+): Calcd for C<sub>16</sub>H<sub>11</sub>FNaO ([M+Na]<sup>+</sup>): 261.0691, Found: 261.0692. (*E*)-2-Benzylidene-6-methoxy-2,3-dihydro-1*H*-inden-1-one (2w): White solid (630 mg, 2.52 mmol, 65% yield); FT-IR (Thin film): 1686 (s), 1620 (s), 1484 (m), 1444 (m), 1276 (m), 770 (s), 684 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.65-7.63 (m, 3H), 7.45-7.38 (m, 4H), 7.32 (d, *J* = 2.4 Hz, 1H), 7.17 (dd, *J* = 8.4 Hz, 2.5 Hz, 1H), 3.93 (s, 2H), 3.84 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.3, 159.7, 142.5, 139.3, 135.7, 135.5, 133.8, 130.8, 129.7, 129.0, 127.0, 124.0, 105.9, 55.7, 31.9; HRMS (ESI+): Calcd for C<sub>17</sub>H<sub>14</sub>NaO<sub>2</sub> ([M+Na]<sup>+</sup>): 273.0891, Found: 273.0892.

(*E*)-2-Benzylidene-4-bromo-2,3-dihydro-1*H*-inden-1-one (2x): White solid (600 mg, 2.01 mmol, 85% yield); FT-IR (Thin film): 2897 (w), 1699 (s), 1624 (m), 1592 (m), 1113 (s), 757 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.85 (d, *J* = 7.5 Hz, 1H), 7.76 (dd, *J* = 7.7 Hz, 0.6 Hz, 1H), 7.70-7.68 (m, 3H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.44-7.40 (m, 1H), 7.32 (t, *J* = 7.7 Hz, 1H), 3.94 (s, 2H); <sup>13</sup>C-NMR (100 MHz,

**CDCl<sub>3</sub>):**  $\delta$  193.6, 149.6, 140.2, 137.4, 135.2, 135.1, 133.8, 131.0, 130.2, 129.6, 129.2, 123.3, 121.8, 33.7; **HRMS (ESI+):** Calcd for C<sub>16</sub>H<sub>11</sub>BrNaO ([M+Na]<sup>+</sup>): 320.9891, Found: 320.9890.

(*E*)-2-Benzylidenecyclopentan-1-one (2y): Yellow solid (880 mg, 5.11 mmol, 86% yield); FT-IR (Thin film): 1711 (s), 1623 (s), 1407 (m), 1232 (m), 1174 (m), 927 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): 7.53 (d, J = 7.4 Hz, 2H), 7.42-7.35 (m, 4H), 2.96 (td, J = 7.3 Hz, 2.5 Hz, 2H), 2.40 (t, J = 7.9 Hz, 2H), 2.06-1.98 (m, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.1, 136.2, 135.6, 132.3, 130.6, 129.4, 128.8, 37.9, 29.4, 20.3; HRMS (ESI+): Calcd for C<sub>12</sub>H<sub>12</sub>OH ([M+Na]<sup>+</sup>): 173.0966, Found: 173.0968.

(Z)-2-Benzylidenebenzofuran-3(2*H*)-one (2z): White solid (300 mg, 1.35 mmol, 90% yield); FT-IR (Thin film): 3025 (w), 1708 (s), 1654 (s), 1599 (s), 1457 (m), 1300 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.91 (d, *J* = 7.6 Hz, 2H), 7.79 (d, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.41-7.38 (m, 1H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 6.89 (s, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  184.9, 166.3, 147.0, 137.0, 132.4, 131.6, 130.0, 129.0, 124.8, 123.6, 121.7, 113.1, 113.0; HRMS (ESI+): Calcd for C<sub>15</sub>H<sub>10</sub>NaO<sub>2</sub> ([M+Na]<sup>+</sup>): 245.0578, Found: 245.0577.

(E)-2-Benzylidene-3,4-dihydronaphthalen-1(2H)-one (4a): White solid (450 mg, 1.92 mmol, 56% yield); FT-IR (Thin film): 3023 (w), 1656 (s), 1591 (s), 1488 (s), 1293
(m), 742 (s), 690 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 8.14 (dd, J = 7.4 Hz, 0.7 Hz, 1H), 7.88 (s, 1H), 7.48 (td, J = 7.4 Hz, 1.2 Hz, 1H), 7.47-7.40 (m, 4H), 7.38-7.33 (m, 2H), 7.25-7.24 (m, 1H), 3.14 (td, J = 7.6 Hz, 1.5 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H);
<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 188.0, 143.4, 136.8, 136.0, 135.6, 133.4, 130.0, 128.7,

128.6, 128.4, 128.3, 127.2, 29.0, 27.3; **HRMS (ESI+):** Calcd for C<sub>17</sub>H<sub>15</sub>O ([M+H]<sup>+</sup>): 235.1123, Found: 235.1125.

(E)-2-(4-(Trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one (4b): White solid



(900 mg, 2.97 mmol, 87% yield); **FT-IR (Thin film):** 3403 (w), 1668 (m), 1598 (m), 1332 (m), 1114 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.14 (d, J = 7.7 Hz, 1H), 7.84 (br s, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.53-7.48 (m, 3H), 7.37 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 3.09 (t,

J = 5.8 Hz, 2H), 2.96 (t, J = 6.3 Hz, 2H); <sup>13</sup>C-NMR (100 M Hz, CDCl<sub>3</sub>):  $\delta$  187.6, 143.3, 139.6, 137.5, 134.8, 133.7, 133.3, 130.0, 128.4, 128.4, 127.3, 125.5, 125.5, 28.9, 27.3; HRMS (ESI+): Calcd for C<sub>18</sub>H<sub>13</sub>F<sub>3</sub>NaO ([M+Na]<sup>+</sup>): 325.0816, Found: 325.0814.

(*E*)-2-(4-Chlorobenzylidene)-3,4-dihydronaphthalen-1(2*H*)-one (4c): White solid (850 mg, 3.16 mmol, 92% yield); **FT-IR (Thin film):** 3414 (w), 1666 (s), 1595 (s), 1299 (m), 1091 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.12 (d, *J* = 7.5 Hz, 1H), 7.79 (br s, 1H), 7.48 (td, *J* = 7.4 Hz, 0.9 Hz, 1H), 7.39-7.34 (m, 5H), 7.25 (d, *J* = 7.9 Hz, 1H), 3.08 (t, *J* = 6.4 Hz, 2H), 2.94 (t, *J* = 6.4 Hz, 2H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  187.7, 143.2, 136.1, 135.3, 134.6, 134.4, 133.5, 133.5, 131.2, 128.8, 128.4, 128.3, 127.2, 28.9, 27.3; HRMS (ESI+): Calcd for C<sub>17</sub>H<sub>13</sub>ClNaO ([M+Na]<sup>+</sup>): 291.0553, Found: 291.0554.

E. General procedure for the preparation of racemic Michael addition-cyclization cascade products (*rac*-3 or *rac*-5):



In an oven and vacuum-dried reaction tube, an exocyclic  $\alpha$ , $\beta$ -unsaturated ketone (0.055 mmol, 1.1 equiv) was taken with 0.2 mL of freshly distilled CH<sub>2</sub>Cl<sub>2</sub> under positive argon pressure. After 2 min a solution of 3-isothiocyanato oxindole 1 (0.050 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (0.3 mL) was added over 5 min. After 1 h, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) and sat. aqueous NH<sub>4</sub>Cl solution (2.0 mL) at the reaction temperature. Organic layer was separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 4.0 mL). Combined organic layer was dried over anh. Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by flash

column chromatography on silica-gel (230-400 mesh) using 1:4 EtOAc/CH<sub>2</sub>Cl<sub>2</sub> to obtain *rac*-**3** or *rac*-**5**.

F. General procedure for the enantioselective Michael addition/cyclization cascade of 3-isothiocyanato oxindoles with exocyclic α,β-unsaturated ketones:



In an oven and vacuum-dried reaction tube, catalyst **IV** (0.01 mmol, 0.1 equiv) and an exocyclic  $\alpha,\beta$ -unsaturated ketone (0.11 mmol, 1.1 equiv) were taken with 0.5 mL of freshly distilled CH<sub>2</sub>Cl<sub>2</sub> under positive argon pressure. After 5 min, a solution of 3-isothiocyanato oxindole **1** (0.10 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) was added over 5 min at 25 °C. The resulting reaction mixture was stirred for at the same temperature. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) and sat. aqueous NH<sub>4</sub>Cl solution (5.0 mL) at the reaction temperature. Organic layer was separated from the aqueous layer. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 4.0 mL). Combined organic layer was washed with brine (10 mL), dried over anh. Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica-gel (230-400 mesh) using 1:10 EtOAc/CH<sub>2</sub>Cl<sub>2</sub> to obtain **3** or **5**.

**Compound 3aa:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (47.0 mg, 0.094 mmol, 94% yield); **m.p.** 180-181 °C



(decomposition); **FT-IR (Thin film):** 3334 (w), 1720 (s), 1608 (m), 1488 (m), 1467 (s), 1367 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.48 (br s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.54 (t, J = 7.9 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.36-7.23 (m, 3H), 7.11 (dd, J = 16.9 Hz, 7.5 Hz, 2H), 6.98 (q, J = 7.9 Hz, 4H), 6.75 (d, J = 7.5 Hz, 2H), 6.58 (d, J = 7.5 Hz, 1H), 6.54 (d,

J = 7.5 Hz, 2H), 5.31 (d, J = 16.2 Hz, 1H), 5.14 (s, 1H), 4.39 (d, J = 16.2 Hz, 1H), 3.81 (d, J = 16.6 Hz, 1H), 3.58 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.8, 201.9, 174.6, 152.8, 142.7, 136.0, 135.5, 134.4, 131.5, 131.0, 130.3, 128.8, 128.7, 128.6, 128.4, 128.0, 127.4, 126.7, 126.4, 125.3, 125.0, 123.5, 110.7, 73.4, 70.2, 59.0, 44.2, 38.3; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 523.1456, Found: 523.1459; Optical rotation:  $[\alpha]_D^{21}$ +36.5 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50)

*n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 11.7$  min,  $\tau_{minor} = 15.2$  min). The stereochemistry of the product **3aa** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound ent-3aa: Reaction was performed on a 0.1 mmol scale under identical reaction



conditions as for **3aa** using pseudoenantiomeric catalyst V. Purified by silicagel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (48.0 mg, 0.096 mmol, 96% yield). **Optical rotation:**  $[\alpha]_D^{21}$  –33.0 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 95.5:4.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak

AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 11.7$  min,  $\tau_{major} = 15.2$  min).

**Compound 3ab:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.096 mmol, 96% yield); **m.p.** 110-111 °C; **FT-IR (Thin film):** 3334 (w), 1718 (s), 1605 (m), 1461 (s), 1361 (m), 750 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.35 (br s, 1H), 7.83 (d, *J* = 7.6

Hz, 1H), 7.57 (d, J = 7.3 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.39-7.37 (m, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.24-7.22 (m, 1H), 7.14-7.08

(m, 2H), 7.04 (t, J = 7.5 Hz, 2H), 6.85 (t, J = 9.2 Hz, 1H), 6.66 (d, J = 7.2 Hz, 2H), 6.63 (d, J = 7.9 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 6.54 (t, J = 7.4 Hz, 1H), 5.64 (s, 1H), 5.29 (d, J = 16.1 Hz, 1H), 4.44 (d, J = 16.1 Hz, 1H), 3.84 (d, J = 16.6 Hz, 1H), 3.54 (d, J = 16.1 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.5, 201.2, 174.5, 161.3 (d, J = 250.1 Hz), 152.5, 142.7, 135.6, 135.4, 134.6, 131.1, 130.3, 129.9, 129.8, 128.7, 127.9 127.4, 126.5, 126.4, 126.2, 125.3, 125.1, 123.5, 118.9 (d, J = 12.3 Hz), 116.0 (d, J = 23.8 Hz), 110.7, 73.1, 69.7, 49.3, 44.2, 38.2; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>FN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 541.1362, Found: 541.1359; Optical rotation:  $[\alpha]_D^{21}$  +18.5 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (60:40 *n*-Hexane/*i*-PrOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 12.5$  min,  $\tau_{major} = 14.1$  min). The stereochemistry of the product **3ab** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ac: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.096 mmol, 96% yield); **m.p.** 140-141 °C; **FT-IR (Thin film):** 3417 (w), 1721 (s), 1606 (m), 1473 (s), 1467 (s), 1367 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.47 (br s, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.58-7.54 (m, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.35 (q, *J* = 7.4 Hz,

2H), 7.27-7.24 (m, 1H), 7.13 (t, J = 7.3 Hz, 1H), 7.04 (t, J = 7.5 Hz, 2H), 6.97-6.92 (m, 1H), 6.81 (td, J = 8.3 Hz, 2.0 Hz, 1H), 6.66-6.64 (m, 3H), 6.55 (d, J = 7.7 Hz, 1H), 6.38 (d, J = 10.3 Hz, 1H), 5.27 (d, J = 16.1 Hz, 1H), 5.12 (s, 1H), 4.44 (d, J = 16.1 Hz, 1H), 3.80 (d, J = 16.6 Hz, 1H), 3.50 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.3, 201.6, 174.5, 162.4 (d, J = 246.8 Hz), 152.7, 142.7, 135.9, 135.7, 134.4, 134.0, 134.0, 131.3, 130.1, 130.1, 128.8, 128.1, 127.6, 126.5 126.4, 126.2, 126.0, 125.2, 125.1, 123.7, 116.8 (d, J = 22.6 Hz), 115.4 (d, J = 20.6 Hz), 110.9, 73.1, 70.1, 58.2, 44.3, 38.2; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>FN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 541.1362, Found: 541.1364; Optical rotation:  $[\alpha]_D^{21}$  +41.6 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 11.6$  min,  $\tau_{minor} = 15.6$  min). The stereochemistry of the product **3ac** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3ad:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (49.0 mg, 0.094 mmol, 94% yield); **m.p.** 250-251 °C (decomposition); **FT-IR (Thin film):** 3412 (w), 1721 (s), 1607 (m), 1467 (m), 1368 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.26 (br s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.56 (q, J = 7.5 Hz, 2H), 7.41 (d, J = 7.7 Hz, 1H), 7.38-7.31 (m, 2H), 7.26-7.23 (m, 1H), 7.14 (t, J = 7.3 Hz, 1H), 7.04 (t, J = 7.5 Hz, 2H), 7.0

Hz, 2H), 6.74-6.64 (m, 4H), 6.61 (d, J = 7.7 Hz, 1H), 6.57 (d, J = 7.5 Hz, 2H), 5.28 (d, J = 16.0 Hz, 1H), 5.12 (s, 1H), 4.38 (d, J = 16.1 Hz, 1H), 3.81 (d, J = 16.6 Hz, 1H), 3.51 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.6, 201.7, 174.6, 162.7 (d, J = 249.9 Hz), 152.7, 142.7, 135.9, 135.7, 134.4, 132.0, 131.9, 131.1, 128.7, 128.0, 127.6, 126.4 125.1 (d, J = 21.5 Hz), 123.6, 115.5 (d, J = 21.1 Hz), 110.8, 73.3, 70.1, 58.2, 44.2, 38.1; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>FN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 541.1362, Found: 541.1364; **Optical rotation:** [ $\alpha$ ]<sub>D</sub><sup>21</sup> +22.8 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 10.2$  min,  $\tau_{major} = 12.2$  min). The stereochemistry of the product **3ad** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3ae:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.093 mmol, 93% yield); **m.p.** 128-129 °C; **FT-IR (Thin film):** 3431 (w), 1721 (s), 1641 (s), 1467 (m), 1367 (m), 1277 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.56 (br s, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.59-7.54 (m, 2H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.35 (q, *J* = 7.3 Hz, 2H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.15-7.08 (m, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 7.59-7.54 (m, 2H), 7.15-7.08 (m, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 7.59-7.54 (m, 2H), 7.59 (m

Hz, 2H), 6.88 (t, J = 7.9 Hz, 1H), 6.72 (s, 1H), 6.65-6.61 (m, 4H), 5.28 (d, J = 16.0 Hz, 1H), 5.08 (s, 1H), 4.43 (d, J = 16.1 Hz, 1H), 3.81 (d, J = 16.6 Hz, 1H), 3.48 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.4, 201.5, 174.5, 152.6, 142.7, 135.8, 135.7, 134.5, 134.4, 133.6, 131.3, 130.2, 129.8, 128.8, 128.7, 128.3, 128.1, 127.6, 126.4, 126.2, 125.2, 125.1, 123.7, 110.9, 73.1, 70.1, 58.2, 44.3, 38.1; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>ClN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 557.1066, Found: 557.1069; Optical rotation:  $[\alpha]_D^{23}$  +50.7 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 11.6$  min,  $\tau_{minor} = 17.8$  min). The stereochemistry of the product **3ae** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3af: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (53.5 mg, 0.092 mmol, 92% yield); **m.p.** 89-90 °C; **FT-IR (Thin film):** 3274 (w), 1722 (s), 1607 (m), 1465 (w), 1368 (w); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.51 (br s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.58-7.54 (m, 2H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.38-7.31 (m, 2H), 7.25-7.23 (m, 1H), 7.15 (t, *J* = 7.1 Hz, 1H), 7.11-7.05 (m, 4H), 6.62-6.55 (m, 5H), 5.31 (d,

J = 16.1 Hz, 1H), 5.05 (s, 1H), 4.38 (d, J = 16.1 Hz, 1H), 3.81 (d, J = 16.7 Hz, 1H), 3.48 (d, J = 16.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.5, 201.6, 174.5, 152.6, 142.6, 135.8, 135.7, 134.3, 131.8, 131.2, 130.4, 128.8, 128.1, 127.6, 126.4, 126.3, 126.2, 125.2, 125.0, 123.7, 123.0, 110.8, 73.2, 70.0, 58.4, 44.2, 38.0; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>BrN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 601.0561, Found: 601.0563; Optical rotation:  $[\alpha]_D^{21}$  +38.6 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 11.3$  min,  $\tau_{major} = 14.5$  min). The stereochemistry of the product **3af** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ag: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (43.5 mg, 0.085 mmol, 85% yield); **m.p.** 120-121 °C; **FT-IR (Thin film):** 3431 (w), 1721 (s), 1638 (m), 1615 (m), 1471 (m), 1471 (m), 1371 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.45 (br s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.1 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.54 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz), 7.50 (d, J = 7.5 Hz), 7.50 (d, J = 7.5 Hz),

1H), 7.26-7.23 (m, 1H), 7.11 (t, J = 7.3 Hz, 1H), 6.98 (d, J = 7.5 Hz, 2H), 6.77 (d, J = 7.9 Hz, 2H), 6.63 (d, J = 8.0 Hz, 2H), 6.55 (t, J = 8.4 Hz, 3H), 5.31 (d, J = 16.1 Hz, 1H), 5.10 (s, 1H), 4.38 (d, J = 16.1 Hz, 1H), 3.80 (d, J = 16.6 Hz, 1H), 3.59 (d, J = 16.6 Hz, 1H), 2.17 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.1, 201.9, 174.6, 152.9, 142.7, 138.2, 136.0, 135.5, 134.4,

131.0, 130.2, 129.3, 128.6, 128.3, 127.9, 127.4, 126.8, 126.4, 126.4, 125.2, 125.1, 123.4, 110.6, 73.4, 70.2, 58.9, 44.2, 38.3, 21.1; **HRMS (ESI+):** Calcd for  $C_{33}H_{26}N_2NaO_2S$  ([M+Na]<sup>+</sup>): 537.1613, Found: 537.1614; **Optical rotation:**  $[\alpha]_D^{21}$  +36.8 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97.5:2.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 12.2 \text{ min}$ ,  $\tau_{minor} = 16.6 \text{ min}$ ). The stereochemistry of the product **3ag** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3ah:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (51.0 mg, 0.094 mmol, 94% yield); **m.p.** 163-164 °C; **FT-IR (Thin film):** 3416 (w), 1722 (s), 1608 (m), 1467 (s), 1367 (m), 1010 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.46 (br s, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.37-7.30 (m, 2H), 7.23 (d, J = 7.4 Hz, 1H), 7.10

(t, J = 7.3 Hz, 1H), 7.01 (t, J = 7.5 Hz, 2H), 6.81 (d, J = 8.2 Hz, 2H), 6.67-6.60 (m, 5H), 5.31 (d, J = 16.1 Hz, 1H), 5.15 (s, 1H), 4.42 (d, J = 16.1 Hz, 1H), 3.77 (d, J = 16.5 Hz, 1H), 3.56 (d, J = 16.5 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.8, 201.9, 174.7, 152.9, 148.8, 142.7, 136.1, 135.4, 134.5, 130.9, 130.0, 128.7, 128.7, 127.9, 127.4, 126.7, 126.6, 126.5, 126.4, 125.3, 125.0, 123.5, 110.6, 73.3, 70.4, 58.3, 44.3, 38.3, 33.5, 23.8, 23.7; HRMS (ESI+): Calcd for C<sub>35</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 565.1926, Found: 565.1926; Optical rotation:  $[\alpha]_D^{21}$  +42.7 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 6.6 \min$ ,  $\tau_{major} = 9.2 \min$ ). The stereochemistry of the product **3ah** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ai: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.094 mmol, 94% yield); **m.p.** 150-151 °C; **FT-IR (Thin film):** 3336 (w), 1721 (s), 1608 (m), 1466 (m), 1366 (m), 1253 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.26 (br s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 7.6Hz, 1H), 7.37-7.22 (m, 3H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.00 (t,

J = 7.5 Hz, 2H), 6.66 (d, J = 8.6 Hz, 2H), 6.58-6.48 (m, 5H), 5.29 (d, J = 16.1 Hz, 1H), 5.08 (s, 1H), 4.36 (d, J = 16.2 Hz, 1H), 3.79 (d, J = 16.6 Hz, 1H), 3.64 (s, 3H), 3.58 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.2, 202.0, 174.6, 159.7, 152.9, 142.7, 136.0, 135.5, 134.4, 131.5, 131.0, 128.7, 128.0, 127.5, 126.7, 126.4, 126.4, 125.2, 125.0, 123.4, 123.2, 114.0, 110.7, 73.5, 70.2, 58.7, 55.2, 44.1, 38.2; HRMS (ESI+): Calcd for C<sub>33</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub>S ([M+Na]<sup>+</sup>): 553.1562, Found: 553.1564; **Optical rotation:**  $[\alpha]_D^{21}$  +25.1 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 94.5:5.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 9.4$  min,  $\tau_{major} = 14.6$  min). The stereochemistry of the product **3ai** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3aj: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (52.0 mg, 0.093 mmol, 93% yield); **m.p.** 138-139 °C; **FT-IR (Thin film):** 3437 (w), 1721 (s), 1609 (m), 1463 (s), 1368 (m), 1272 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.45 (br s, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.4 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.29 (dt, *J* = 7.7 Hz, 1.2

Hz, 1H), 7.25- 7.23 (m, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.99 (t, J = 7.6 Hz, 2H), 6.59 (d, J = 7.6 Hz, 1H), 6.56 (d, J = 7.5 Hz, 2H), 6.45 (d, J = 8.4 Hz, 1H), 6.35 (dd, J = 8.4 Hz, 1.9 Hz, 1H), 6.15 (d, J = 1.9 Hz, 1H), 5.28 (d, J = 16.1 Hz, 1H), 5.06 (s, 1H), 4.38 (d, J = 16.1 Hz, 1H), 3.78 (d, J = 16.5 Hz, 1H), 3.70 (s, 3H), 3.55 (d, J = 16.5 Hz, 1H), 3.27 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.1, 202.1, 174.5, 152.9, 149.1, 148.5, 142.9, 136.0, 135.6, 134.3, 130.9, 128.7, 128.0, 127.6, 127.0, 126.5, 126.4, 125.2, 125.0, 123.7, 123.4, 123.1, 112.7, 110.9, 110.8, 73.3, 70.3, 58.7, 55.7, 55.7, 44.2, 38.4; HRMS (ESI+): Calcd for C<sub>34</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>4</sub>S ([M+Na]<sup>+</sup>): 583.1667, Found: 583.1668; Optical rotation:  $[\alpha]_D^{21} + 32.1$  (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 95:5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 11.7$  min,  $\tau_{major} = 13.8$  min). The stereochemistry of the product **3aj** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ak: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.088 mmol, 88% yield); **m.p.** 90-91 °C; **FT-IR (Thin film):** 3242 (w), 1715 (s), 1607 (m), 1463 (s), 1321 (s), 1116 (s), 748 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.33 (br s, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.60-7.55 (m, 2H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.38- 7.34 (m, 2H), 7.28-7.21 (m, 3H), 7.12 (t, 7.3 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 2H),

6.85 (d, J = 8.1 Hz, 2H), 6.66 (d, J = 7.8 Hz, 1H), 6.62 (d, J = 7.5 Hz, 2H), 5.27 (d, J = 15.8 Hz, 1H), 5.20 (s, 1H), 4.40 (d, J = 15.8 Hz, 1H), 3.82 (d, J = 16.6 Hz, 1H), 3.45 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 208.2, 201.5, 174.4, 152.5, 142.7, 135.8, 134.4, 131.3, 130.8, 130.5, 128.7, 128.2, 127.7, 126.4, 126.2, 125.5, 125.4, 125.3, 125.1, 123.8, 110.9, 73.0, 70.1, 58.2, 44.3, 38.1; HRMS (ESI+): Calcd for C<sub>33</sub>H<sub>23</sub>F<sub>3</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 591.1330, Found: 591.1332; Optical rotation:  $[\alpha]_D^{21}$  +35.1 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 99:1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 6.5$  min,  $\tau_{major} = 9.8$  min). The stereochemistry of the product **3ak** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3al:** Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (53.0 mg, 0.097 mmol, 97% yield); **m.p.** 127-128 °C; **FT-IR (Thin film):** 3436 (w), 1723 (s), 1606 (m), 1526 (s), 1413 (m), 1334 (s), 1019 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.81 (br s, 1H), 7.94 (dt, *J* = 7.3 Hz, 2.2 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.64 (dd, *J* = 7.4 Hz, 0.8 Hz, 1H), 7.56 (td, *J* = 7.4 Hz, 1.0 Hz, 1H), 7.46-7.32 (m,

5H), 7.20-7.16 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H), 6.99 (t, J = 7.5 Hz, 2H), 6.72 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 7.4 Hz, 2H), 5.22-5.18 (m, 2H), 4.48 (d, J = 15.8 Hz, 1H), 3.86 (d, J = 16.8 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  207.8, 201.3, 174.2, 152.4, 147.9, 142.5, 136.8, 135.9, 135.7, 134.5, 133.7, 131.7, 129.7, 128.7, 128.3, 127.8, 126.6, 126.5, 125.6, 125.3, 125.2, 124.1, 124.0, 123.4, 111.0, 72.8, 70.0, 57.7, 44.4, 38.0; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>N<sub>3</sub>NaO<sub>4</sub>S ([M+Na]<sup>+</sup>): 568.1307, Found: 568.1309; Optical rotation:  $[\alpha]_D^{21}$  +86.7 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was assigned in HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 12.8$  min,  $\tau_{major} = 18.4$  min). The stereochemistry of the product **3al** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3am:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.092 mmol, 92% yield); **m.p.** 198-199 °C; **FT-IR (Thin film):** 3337 (w), 1722 (s), 1605 (m), 1521 (m), 1468 (m), 1349 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.66 (br s, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.6 Hz, 2H), 7.57 (q, *J* = 7.4 Hz, 2H), 7.42-7.36 (m, 3H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.1

*J* = 7.5 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.73 (m, 3H), 5.24-5.20 (m, 2H), 4.46 (d, *J* = 15.8 Hz, 1H), 3.85 (d, *J* = 16.7 Hz, 1H), 3.41 (d, *J* = 16.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  207.9, 201.3, 174.1, 152.3, 147.8, 142.6, 139.0, 136.0, 135.7, 134.5, 131.6, 130.9, 128.7, 128.3, 127.9, 126.8, 126.4, 125.8, 125.3, 125.2, 123.9, 123.5, 111.0, 72.8, 70.0, 58.1, 44.4, 38.1; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>N<sub>3</sub>NaO<sub>4</sub>S ([M+Na]<sup>+</sup>): 568.1307, Found: 568.1305; Optical rotation:  $[\alpha]_D^{22}$  +51.5 (*c* 1.0, acetone) for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 10.7 \text{ min}, \tau_{major} = 23.1 \text{ min}$ ). The

stereochemistry of the product 3am was assigned in analogy with 3ao. See Supporting Information: Part B for HPLC chromatograms.

Compound 3an: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (56.0 mg, 0.095 mmol, 95% yield); m.p. 133-134 °C; FT-IR (Thin film): 2923 (w), 2852 (m), 1729 (s), 1608 (m), 1496 (m), 1464 (s), 1123 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 8.50 (br s, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.3 Hz, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.5 Hz, 1H), 7.25-7.23 (m, 3H), 7.19 (d, J = 8.1 Hz, 1H), 7.17-7.15 (m, 2H), 6.99 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 5.68 (s, 1H), 5.25 (d, *J* = 15.5 Hz, 1H), 4.51 (d, *J* = 15.5 Hz, 1H), 3.96 (d, *J* = 16.9 Hz, 1H), 3.16 (d, *J* = 16.9 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 205.7, 199.4, 175.2, 152.8, 142.5, 135.8, 135.3, 134.4, 131.3, 128.9, 128.1, 128.0, 127.4, 126.2, 126.1, 125.6, 125.2, 123.0, 109.7, 73.2, 70.8, 47.5, 44.7, 39.4; **HRMS (ESI+):** Calcd for  $C_{32}H_{19}F_5N_2NaO_2S$  ([M+Na]<sup>+</sup>): 613.0985, Found: 613.0983; **Optical** rotation:  $\left[\alpha\right]_{D}^{22}$  +44.8 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{\text{maior}} = 6.5$  min,  $\tau_{\text{minor}} = 8.4$  min). The stereochemistry of the product **3an** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3ao:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); Yellow solid (46.0 mg, 0.094 mmol, 94% yield); m.p. 195-196 °C; FT-IR (Thin film): 3402 (w), 1724 (s), 1607 (m), 1468 (m), 1369 (m), 1017 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 8.44 (br s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 8.4 Hz, 2H), 7.39 (t, Β'n

J = 7.4 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.20-7.14 (m, 5H), 7.05-7.03 (m, 2H), 6.93-6.92 (m, 1H), 6.71 (d, J = 7.7 Hz, 1H), 5.94-5.92 (m, 1H), 5.26 (d, J = 15.0 Hz, 1H), 5.22 (s, 1H), 4.61 (d, J = 15.9 Hz, 1H), 3.77 (d, J = 16.8 Hz, 1H), 3.57 (d, J = 16.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 207.9, 201.5, 173.9, 152.9, 146.6, 142.9, 142.7, 135.9, 135.6, 134.8, 131.0, 128.9, 128.0, 127.8, 127.1, 126.3, 126.0, 125.6, 125.3, 123.4, 110.4, 109.9, 109.6, 71.7, 69.2, 52.4, 44.5, 39.3; **HRMS (ESI+):** Calcd for  $C_{30}H_{22}N_2NaO_3S$  ([M+Na]<sup>+</sup>): 513.1249, Found: 513.1246; **Optical rotation:**  $[\alpha]_D^{21}$  +35.3 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 90:10 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 n-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{\text{minor}} = 10.4 \text{ min}, \tau_{\text{maior}} = 12.7 \text{ min}$ ). The stereochemistry of the product **3ao** was assigned in single crystal X-Ray diffraction analysis. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ap: Purified by silica-gel (230-400 mesh) flash column chromatography



1H), 6.71-6.69 (m, 3H), 6.63 (d, J = 7.8 Hz, 1H), 6.54 (d, J = 3.3 Hz, 1H), 5.47 (s, 1H), 5.30 (d, J = 16.0 Hz, 1H), 4.47 (d, J = 16.0 Hz, 1H), 3.79 (d, J = 16.6 Hz, 1H), 3.65 (d, J = 16.6 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.4, 201.7, 174.1, 153.0, 143.4, 136.0, 135.6, 134.5, 132.6, 131.5, 129.2, 128.8, 128.0, 127.6, 126.6, 126.5, 126.4, 126.4, 125.7, 125.1, 123.6, 110.7, 72.9, 70.3, 55.1 44.3, 39.1; HRMS (ESI+): Calcd for C<sub>30</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 529.1020, Found: 529.1019; **Optical rotation**:  $[\alpha]_D^{21}$  +27.6 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 93:7 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 12.6$  min,  $\tau_{minor} = 14.7$  min). The stereochemistry of the product **3ap** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3aq: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (51.0 mg, 0.097 mmol, 97% yield); **m.p.** 108-109 °C; **FT-IR (Thin film):** 3028 (w), 2923 (m), 1721 (s), 1608 (m), 1469 (s), 1367 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.66 (br s, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.60-7.56 (m,1H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.22-7.20 (m, 1H), 7.15-7.12 (m, 3H), 7.08 (d, *J* = 7.6

Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 6.92-6.90 (m, 2H), 6.80 (t, J = 7.6 Hz, 2H), 6.66 (d, J = 7.7 Hz, 1H), 6.45 (d, J = 15.5 Hz, 1H), 5.53 (d, J = 15.5 Hz, 9.9 Hz, 1H), 5.37 (d, J = 16.1 Hz, 1H), 4.57 (d, J = 6.5 Hz, 1H), 4.54 (d, J = 12.8 Hz, 1H), 3.79 (d, J = 16.8 Hz, 1H), 3.62 (d, J = 16.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.7, 202.1, 174.7, 152.8, 142.4, 137.6, 136.2, 135.7, 134.6, 130.8, 128.7, 128.6, 128.4, 128.1, 127.6, 126.7, 126.7, 126.4, 125.8, 125.1, 124.8, 123.6, 119.0, 110.7, 73.3, 70.1, 56.9, 44.4 38.0; HRMS (ESI+): Calcd for C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub>S ([M+Na]<sup>+</sup>): 549.1613, Found: 549.1614; Optical rotation:  $[\alpha]_D^{22}$  +28.8 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 95.5:4.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (60:40 *n*-Hexane/ *i*-PrOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 21.7$  min,  $\tau_{major} = 23.8$  min). The stereochemistry of the product **3aq** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ar: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (45.0 mg, 0.094 mmol, 94% yield); **m.p.** 186-187 °C (decomposition); **FT-IR (Thin film):** 3348 (w), 1722 (s), 1608 (m), 1471 (m), 1364 (m), 1019 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.33 (br s, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 7.3 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.36-7.24 (m, 7H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.88

(d, J = 7.8 Hz, 1H), 5.17 (d, J = 15.4 Hz, 1H), 4.74 (d, J = 15.4 Hz, 1H), 3.97 (t, J = 7.5 Hz, 1H), 3.63 (d, J = 16.9 Hz, 1H), 3.47 (d, J = 16.9 Hz, 1H), 0.90-0.76 (m, 2H), 0.71-0.61 (m, 1H), 0.54 (d, J = 6.3 Hz, 3H), 0.50 (d, J = 6.2 Hz, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.7, 202.4, 174.6, 152.9, 142.7, 136.1, 135.5, 135.4, 130.6, 128.9, 128.1, 128.1, 127.9, 127.9, 126.4, 125.6, 125.2, 123.4, 110.2, 72.9, 69.2, 49.1, 44.7, 37.5, 36.0, 25.5, 22.8, 22.2; HRMS (ESI+): Calcd for C<sub>30</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 503.1769, Found: 503.1768; Optical rotation:  $[\alpha]_D^{21}$  +39.7 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 83:17 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 6.2$  min,  $\tau_{major} = 9.3$  min). The stereochemistry of the product **3ar** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3as: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (41.5 mg, 0.097 mmol, 97% yield); **m.p.** 139-140 °C; **FT-IR (Thin film):** 3344 (w), 1723 (s), 1609 (m), 1486 (m), 1364 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.54 (br s, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.1 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.3 Hz, 1H), 7.32-7.22 (m, 6H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.79 (d,

J = 7.7 Hz, 1H), 5.06 (d, J = 15.7 Hz, 1H), 4.84 (d, J = 15.7 Hz, 1H), 4.05 (d, J = 16.6 Hz, 1H), 3.52 (d, J = 13.2 Hz, 1H), 3.34 (d, J = 16.7 Hz, 1H), 2.33 (d, J = 13.2 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  207.8, 201.9, 174.6, 152.5, 142.0, 135.8, 135.6, 135.2, 130.5, 129.1, 129.0, 128.1, 127.9, 127.5, 126.3, 125.2, 123.8, 123.8, 110.3, 69.4, 66.6, 45.2, 44.9, 44.6; HRMS (ESI+): Calcd for C<sub>26</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 447.1143, Found: 447.1147; Optical rotation:  $[\alpha]_D^{22}$  +43.2 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 12.3$  min,  $\tau_{major} = 18.6$  min). The stereochemistry of the product **3as** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms. Compound 3at: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (51.0 mg, 0.095 mmol, 95% yield); **m.p.** 122-123 °C; **FT-IR (Thin film):** 3398 (w), 1724 (s), 1602 (m), 1467 (m), 1370 (m), 1219 (s), 1018 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.76 (br s, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 7.1 Hz, 1H), 7.39 (s, 1H), 7.33-7.24 (m, 3H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 4H), 6.72 (d, *J* = 7.7 Hz, 2H), 6.58 (d, *J* = 7.7 Hz, 1H), 6.55 (d, *J* = 7.6 Hz,

2H), 5.30 (d, J = 16.3 Hz, 1H), 5.08 (s, 1H), 4.39 (d, J = 16.2 Hz, 1H), 3.78 (d, J = 16.9 Hz, 1H), 3.52 (d, J = 16.9 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.2, 200.5, 174.6, 154.2, 142.7, 142.1, 134.4, 134.3, 131.2, 131.1, 130.2, 128.8, 128.8, 128.7, 128.5, 127.4, 126.6, 126.4, 126.3, 126.0, 125.2, 123.6, 110.8, 73.4, 70.4, 58.8, 44.2, 37.8; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>ClN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 557.1066, Found: 557.1068; Optical rotation:  $[\alpha]_D^{22}$  +74.9 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 99:1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (40:60 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 11.7$  min,  $\tau_{minor} = 35.2$  min). The stereochemistry of the product **3at** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3au:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (56.0 mg, 0.095 mmol, 95% yield); **m.p.** 115-116 °C; **FT-IR (Thin film):** 3269 (w), 1723 (s), 1596 (m). 1487 (m), 1467 (s), 1370 (s), 1219 (s), 1019 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.80 (br s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.57-7.56 (m, 2H), 7.45 (d, J = 8.2 Hz, 1H), 7.33-7.24 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.97 (d, J = 7.6 Hz, 4H), 6.71 (d, J = 7.6 Hz, 2H), 6.57 (d, J = 7.5 Hz, 1H),

6.52 (d, J = 7.5 Hz, 2H), 5.29 (d, J = 16.3 Hz, 1H), 5.08 (s, 1H), 4.38 (d, J = 16.3 Hz, 1H), 3.79 (d, J = 16.9 Hz, 1H), 3.54 (d, J = 16.9 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.2, 200.7, 174.6, 154.3, 142.6, 134.8, 134.3, 131.6, 131.2, 131.1, 130.2, 129.7, 128.7, 128.7, 128.6, 127.4, 126.4, 126.3, 126.0, 125.2, 123.6, 110.8, 73.4, 70.3, 58.8, 44.2, 37.7; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>BrN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 601.0561, Found: 601.0561; **Optical rotation**:  $[\alpha]_D^{22}$  +84.6 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (40:60 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 12.8$  min,  $\tau_{minor} = 31.9$  min). The stereochemistry of the product **3au** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3av: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.096 mmol, 96% yield); **m.p.** 127-128 °C; **FT-IR (Thin film):** 3266 (w), 1723 (s), 1613 (m), 1595 (m), 1471 (m), 1369 (m), 1256 (m), 1219 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.73 (br s, 1H), 7.79 (dd, J = 8.4 Hz, 5.3 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.25-7.24 (m, 1H), 7.15-7.02 (m, 4H), 6.98 (t, J = 7.6 Hz, 4H), 6.72 (d, J = 7.7 Hz, 2H), 6.58 (d, J = 7.6 Hz, 1H), 6.53 (d, J = 7.6

Hz, 2H), 5.30 (d, J = 16.3 Hz, 1H), 5.08 (s, 1H), 4.39 (d, J = 16.2 Hz, 1H), 3.79 (d, J = 16.9 Hz, 1H), 3.55 (d, J = 16.9 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.4, 200.0, 174.6, 167.5 (d, J = 258.0), 155.7 (d, J = 10.5 Hz), 142.7, 134.3, 132.4, 131.3, 131.1, 130.2, 128.8, 128.7, 128.5, 127.4, 127.3, 127.2, 126.5, 126.3, 125.2, 123.6, 116.5, 116.3, 113.2, 113.0, 110.8, 73.4, 70.5, 58.9, 44.2, 38.0; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>FN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 541.1362, Found: 541.1363; **Optical rotation**:  $[\alpha]_D^{22}$  +30.3 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (40:60 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 9.6$  min,  $\tau_{minor} = 32.7$  min). The stereochemistry of the product **3av** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3aw: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (51.0 mg, 0.096 mmol, 96% yield); **m.p.** 150-151 °C; **FT-IR (Thin film):** 3270 (w), 1710 (s), 1607 (m), 1480 (s), 1359 (m), 1275 (m), 745 (s); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.51 (br s, 1H), 7.58 (d, *J* = 7.4 Hz, 1H), 7.32-7.22 (m, 4H), 7.14-7.07 (m, 3H), 6.97 (q, *J* = 8.1 Hz, 4H), 6.73 (d, *J* = 7.5 Hz, 2H), 6.57 (d, J = 7.5 Hz, 2H), 6.57 (d

1H), 6.54 (d, J = 7.6 Hz, 2H), 5.30 (d, J = 16.2 Hz, 1H), 5.11 (s, 1H), 4.38 (d, J = 16.2 Hz, 1H), 3.79 (s, 3H), 3.72 (d, J = 16.4 Hz, 1H), 3.51 (d, J = 16.4 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.0, 201.8, 174.5, 159.8, 145.8, 142.7, 137.2, 134.4, 131.5, 131.0, 130.2, 128.8, 128.6, 128.4, 127.4, 127.0, 126.7, 126.4, 125.3, 123.5, 110.7, 105.9, 73.3, 70.9, 59.0, 55.7, 44.2, 37.6; HRMS (ESI+): Calcd for C<sub>33</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub>S ([M+Na]<sup>+</sup>): 553.1562, Found: 553.1562; Optical rotation:  $[\alpha]_D^{22}$  +13.2 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97.5:2.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 14.5$  min,  $\tau_{minor} = 16.9$  min). The stereochemistry of the product **3aw** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ax: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (55.0 mg, 0.095 mmol, 95% yield); **m.p.** 110-111 °C; **FT-IR (Thin film):** 3296 (w), 1713 (s), 1602 (m), 1465 (s), 1368 (s), 1252 (m), 1117 (m), 1033 (m), 749 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.71 (br s, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 7.0 Hz, 1H), 7.31-7.20 (m, 3H), 7.14 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.3

Hz, 1H), 6.98 (t, J = 7.5 Hz, 4H), 6.75 (d, J = 7.7 Hz, 2H), 6.58 (d, J = 7.4 Hz, 1H), 6.54 (d, J = 7.5 Hz, 2H), 5.29 (d, J = 16.2 Hz, 1H), 5.11 (s, 1H), 4.41 (d, J = 16.2 Hz, 1H), 3.73 (d, J = 17.1 Hz, 1H), 3.45 (d, J = 17.1 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  207.9, 201.3, 174.5, 152.4, 142.7, 138.2, 137.9, 134.4, 131.2, 131.1, 130.2, 129.7, 128.8, 128.7, 128.6, 127.4, 126.4, 126.3, 125.2, 123.8, 123.7, 121.8, 110.8, 73.4, 70.3, 58.9, 44.2, 39.1; HRMS (ESI+): Calcd for C<sub>32</sub>H<sub>23</sub>BrN<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 601.0561, Found: 601.0560; Optical rotation:  $[\alpha]_D^{22}$  +109.7 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 99:1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (40:60 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 5.8$  min,  $\tau_{major} = 13.2$  min). The stereochemistry of the product **3ax** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ay: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); Yellow solid (40.0 mg, 0.088 mmol, 88% yield); **m.p.** 113-114 °C; **FT-IR (Thin film):** 3336 (w), 1732 (s), 1610 (m), 1469 (m), 1365 (s); **<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.32 (br s, 1H), 7.56 (d, *J* = 7.3 Hz, 1H), 7.25-7.16 (m, 3H), 7.11-7.05 (m, 3H), 6.98 (t, *J* = 7.5 Hz, 2H), 6.77 (d, *J* = 7.7 Hz, 2H), 6.52-6.48 (m, 3H), 5.25 (d, *J* = 16.1 Hz, 1H), 4.82 (s, 1H), 4.33 (d, *J* = 16.1 Hz,

1H), 2.79-2.76 (m, 1H), 2.65-2.59 (m, 1H), 2.47-2.42 (m, 1H), 4.82 (s, 1H), 4.85 (d, 5 = 10.1 Hz, 1H), 2.79-2.76 (m, 1H), 2.65-2.59 (m, 1H), 2.47-2.42 (m, 1H), 2.35-2.32 (m, 1H), 2.06-2.02 (m 1H), 1.31-1.26 (m, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  214.3, 209.1, 174.7, 142.6, 134.4, 131.4, 130.9, 130.6, 128.7, 128.6, 128.6, 127.4, 126.6, 126.3, 125.4, 123.2, 110.6, 73.6, 70.1, 59.5, 44.1, 38.1, 34.4, 19.2; HRMS (ESI+): Calcd for C<sub>28</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 475.1456, Found: 475.1452; **Optical rotation:**  $[\alpha]_D^{21}$  –13.8 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 79:21 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 7.0$  min,  $\tau_{major} = 9.4$  min). The stereochemistry of the product **3ay** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3az: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (49.0 mg, 0.097 mmol, 97% yield); **m.p.** 117-118 °C; **FT-IR (Thin film):** 3278 (w), 1724 (s), 1610 (s), 1469 (s), 1372 (s), 1011 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.74 (br s, 1H), 8.05-8.02 (m, 1H), 7.61-7.57 (m, 2H), 7.29-7.26 (m, 1H), 7.25-7.19 (m, 2H), 7.16-7.12 (m, 1H), 7.09-7.02 (m, 6H), 6.95 (t, J = 7.6 Hz, 2H), 6.65 (t, J = 7.4 Hz, 2H),

6.49-6.47 (m, 1H), 5.26 (d, J = 16.2 Hz, 1H), 4.74 (s, 1H), 4.45 (d, J = 16.2 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  199.8, 196.2, 173.5, 171.8, 142.4, 138.6, 134.3, 130.9, 130.8, 129.0, 128.7, 128.7, 128.3, 127.5, 126.8, 126.5, 125.1, 123.5, 123.0, 121.2, 113.4, 110.2, 95.5, 74.1, 58.8, 44.2; HRMS (ESI+): Calcd for C<sub>31</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>3</sub>S ([M+Na]<sup>+</sup>): 525.1249, Found: 535.1248; **Optical rotation:**  $[\alpha]_D^{22}$  +238.0 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 5.6$  min,  $\tau_{major} = 7.5$  min). The stereochemistry of the product **3az** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3ba:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (40.0 mg, 0.094 mmol, 94% yield); **m.p.** 250-251 °C (decomposition.); **FT-IR (Thin film):** 3411 (w), 2921 (m), 1721 (s), 1607 (s), 1470 (m), 1121 (m), 1019 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.40 (br s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.57-7.51 (m, 2H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 7.5

1H), 7.02 (t, J = 7.3 Hz, 1H), 6.92 (t, J = 7.6 Hz, 2H), 6.85 (d, J = 7.7Hz, 1H), 6.68 (d, J = 7.6 Hz, 2H), 5.08 (s, 1H), 3.75 (d, J = 16.5 Hz, 1H), 3.51 (d, J = 16.5 Hz, 1H), 3.15 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.4, 202.1, 174.2, 152.8, 143.7, 136.1, 135.5, 131.8, 131.2, 129.6, 128.5, 128.1, 128.0, 126.5, 126.3, 125.5, 125.0, 123.6, 109.7, 72.9, 70.3, 57.9, 38.4, 27.2; HRMS (ESI+): Calcd for C<sub>26</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 447.1143, Found: 447.1141; Optical rotation:  $[\alpha]_D^{21}$  +73.1 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 7.9$  min,  $\tau_{major} = 11.1$  min). The stereochemistry of the product **3ab** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms. Compound 3ca: Purified by silica-gel (230-400 mesh) flash column chromatography



(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (41.0 mg, 0.091 mmol, 91% yield); **m.p.** 230-231 °C (decomposition); **FT-IR (Thin film):** 3432 (w), 1722 (m), 1605 (s), 1466 (m), 1332 (m), 1019 (m); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.20 (br s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.54 (q, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.27-7.24 (m, 1H), 7.02

(t, J = 7.4 Hz, 1H), 6.92 (t, J = 7.6 Hz, 2H), 6.83 (d, J = 7.8 Hz, 1H), 6.69 (d, J = 7.4 Hz, 2H), 5.07 (s, 1H), 3.83-3.75 (m, 2H), 3.54 (d, J = 16.6 Hz, 1H), 3.42-3.34 (m, 1H), 1.45-1.32 (m, 2H), 0.56 (t, J = 7.4 Hz, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.8, 201.9, 174.0, 152.8, 143.3, 136.0, 135.5, 131.6, 131.0, 129.8, 128.4, 128.3, 128.0, 126.7, 126.3, 125.4, 125.1, 123.2, 109.8, 73.0, 70.1, 58.7, 42.2, 38.4, 20.5, 10.8; HRMS (ESI+): Calcd for C<sub>28</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 475.1456, Found: 475.1458; Optical rotation:  $[\alpha]_D^{21}$  +103.7 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 6.3$  min,  $\tau_{major} = 8.3$  min). The stereochemistry of the product **3ca** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

Compound 3da: Purified by silica-gel (230-400 mesh) flash column chromatography



1H), 6.95 (t, J = 7.7 Hz, 2H), 6.72 (d, J = 7.5 Hz, 2H), 6.59 (d, J = 7.6 Hz, 1H), 6.53-6.47 (m, 4H), 5.21 (d, J = 15.8 Hz, 1H), 5.11 (s, 1H), 4.33 (d, J = 15.8 Hz, 1H), 3.81 (d, J = 16.6 Hz, 1H), 3.69 (s, 3H), 3.56 (d, J = 16.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.7, 201.9, 174.5, 158.7, 152.8, 142.7, 135.9, 135.5, 131.5, 131.0, 130.1, 128.6, 128.3, 127.9, 127.7, 126.6, 126.4, 126.3, 125.2, 125.0, 123.5, 114.1, 110.8, 73.3, 70.2, 58.8, 55.2, 43.7, 38.2; HRMS (ESI+): Calcd for C<sub>33</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub>S ([M+Na]<sup>+</sup>): 553.1566, Found: 553.1562; Optical rotation:  $[\alpha]_D^{21} + 26.6$  (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 11.4$  min,  $\tau_{major} = 14.1$  min). The stereochemistry of the product **3da** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.

**Compound 3ea:** Purified by silica-gel (230-400 mesh) flash column chromatography



Èη

(EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (41.5 mg, 0.094 mmol, 94% yield); **m.p.** 145-146 °C; **FT-IR (Thin film):** 3173 (w), 1721 (s), 1601 (s), 1552 (s), 1413 (m), 1334 (m), 1111 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 8.53 (br s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.52 (t, J = 7.1 Hz, 1H), 7.39 (d, J = 7.6Hz, 1H), 7.35-7.32 (m, 2H), 7.26-7.24 (m, 1H), 7.01 (t, J = 7.3 Hz, 1H),

6.94 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 6.68 (d, J = 7.5 Hz, 2H), 5.07 (s, 1H), 3.75 (d, J = 16.6 Hz, 1H), 3.48 (d, J = 16.6 Hz, 1H), 3.13 (s, 3H), 2.47 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 208.1, 202.1, 174.2, 152.8, 141.4, 136.1, 135.5, 133.2, 132.0, 131.5, 129.5, 128.4, 128.0, 127.9, 126.5, 126.3, 126.0, 125.0, 109.5, 73.0, 70.3, 57.7, 38.3, 27.2, 21.5; HRMS (ESI+): Calcd for C<sub>27</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 461.1300, Found: 461.1300; Optical rotation:  $\left[\alpha\right]_{D}^{21}$  +30.5 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 5.9$  min,  $\tau_{major} = 7.9$  min). The stereochemistry of the product 3ea was assigned in analogy with 3ao. See Supporting Information: Part B for HPLC chromatograms.

**Compound 5aa:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (48.0 mg, 0.093 mmol, 93% yield); m.p. 96-97 °C: FT-IR (Thin film): 3428 (w), 1642 (m), 1466 (m), 1363 (w); <sup>1</sup>**H-NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  8.50 (br s, 1H), 8.08 (d, J = 7.7 Hz, 1H), 7.73 (d, J = 7.3 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1Hz), 7.24 (d, J = 7.4 Hz), 7.24 (d, J = 7.4 Hz), 7.24 (d, J =J = 7.8 Hz, 1H), 7.19-7.16 (m, 3H), 7.10 (t, J = 7.3 Hz, 1H), 7.05-6.98 (m, 4H),

6.89 (d, J = 7.7 Hz, 2H), 6.51-6.47 (m, 3H), 5.64 (s, 1H), 5.29 (d, J = 16.3 Hz, 1H), 4.32 (d, J = 16.3 Hz, 1H), 4.05-3.97 (m, 1H), 2.84-2.77 (m, 2H), 2.37-2.30 (m, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 206.5, 204.5, 193.2, 176.0, 144.0, 143.0, 134.4, 133.6, 132.4, 131.7, 131.5, 130.9, 128.8, 128.8, 128.5, 128.3, 127.4, 127.1, 126.8, 126.3, 125.6, 123.0, 110.6, 73.4, 66.7, 59.3, 44.1, 31.9, 25.7; **HRMS (ESI+):** Calcd for C<sub>33</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 537.1613, Found: 537.1612; **Optical rotation:**  $\left[\alpha\right]_{D}^{21}$  -6.5 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 7.4 \text{ min}$ ,  $\tau_{major} = 12.2 \text{ min}$ ). The stereochemistry of the product 5aa was assigned in analogy with 3ao. See Supporting Information: Part B for HPLC chromatograms.



**Compound 5ab:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (55.0 mg, 0.094 mmol, 94% yield); m.p. 142-143 °C; FT-IR (Thin film): 3347 (w), 1729 (s), 1607 (m), 1469 (s), 1369 (m), 1325 (s), 1123 (s); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 8.64 (br s, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.45 (t, J = 7.3 Hz, 1H), 7.31-7.25 (m, 4H), 7.19 (t, J = 7.8 Hz, 2H), 7.11 (t, J = 7.2 Hz, 1H),

7.01-6.97 (m, 4H), 6.57-6.54 (m, 3H), 5.70 (s, 1H), 5.28 (d, J = 16.1 Hz, 1H), 4.32 (d, J = 16.1Hz, 1H), 4.09-4.03 (m, 1H), 2.82-2.79 (m, 2H), 2.23-2.15 (m, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 205.5, 192.7, 176.0, 144.0, 142.9, 135.9, 134.4, 133.8, 132.2, 131.7, 131.2, 128.8, 128.7, 128.6, 127.6, 126.9, 126.5, 126.3, 125.7, 125.1, 125.1, 123.3, 110.8, 73.1, 66.7, 58.4, 44.3, 31.7, 25.7; **HRMS (ESI+):** Calcd for  $C_{34}H_{25}F_{3}N_{2}NaO_{2}S$  ([M+Na]<sup>+</sup>): 605.1487, Found: 605.1487; **Optical rotation:**  $\left[\alpha\right]_{D}^{21}$  +9.6 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor} = 5.1 \text{ min}, \tau_{maior} = 12.6$ min). The stereochemistry of the product **3ab** was assigned in analogy with **3ao**. See Supporting Information: Part B for HPLC chromatograms.



**Compound 5ac:** Purified by silica-gel (230-400 mesh) flash column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:10); White solid (50.0 mg, 0.091 mmol, 91% yield); m.p. 133-134 °C; FT-IR (Thin film): 3344 (w), 2922 (m), 1728 (s), 1603 (m), 1465 (s), 1365 (m), 1013 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 8.67 (br s, 1H), 8.07 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.32-7.27 (m, 2H), 7.18 (t, J = 7.4 Hz, 2H), 7.16-7.13 (m, 1H), 7.06 (t,

J = 7.5 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.4 Hz, 2H), 6.52 (d, J = 7.6 Hz, 3H), 5.60 (s, 1H), 5.31 (d, J = 16.2 Hz, 1H), 4.32 (d, J = 16.2 Hz, 1H), 4.08-4.00 (m, 1H), 2.84-2.78 (m, 2H), 2.25 (td, J = 13.5 Hz, 4.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  205.9, 192.9, 176.0, 144.0, 142.9, 134.6, 134.4, 133.7, 132.7, 132.3, 131.0, 130.2, 128.7, 128.7, 128.5, 128.5, 127.6, 126.8, 126.7, 126.2, 125.6, 123.2, 110.7, 73.3, 66.6, 58.4, 44.2, 31.7, 25.7; HRMS (ESI+): Calcd for  $C_{33}H_{25}CIN_2NaO_2S$  ([M+Na]<sup>+</sup>): 571.1223, Found: 571.1223; **Optical rotation:**  $[\alpha]_D^{21}$ +9.3 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 94:6 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{\text{minor}} = 7.0$  min,  $\tau_{\text{maior}} = 15.9$  min). The stereochemistry of the product 5ac was assigned in analogy with 3ao. See Supporting Information: Part B for HPLC chromatograms.

### G. Synthetic transformations of the product 3aa:

**Conversion of 3aa to 6:** 



In an oven dried 10 mL round bottom flask, fitted with a magnetic stir-bar, a solution of 3aa (25.0 mg, 0.049 mmol, 1.0 equiv.; with 98:2 er) in freshly distilled THF (1.5 mL) was taken and K<sub>2</sub>CO<sub>3</sub> (20.7 mg, 0.149 mmol, 3.0 equiv.) was added. The solution was cooled to 0 °C and iodomethane (0.1 mL, 0.149 mmol, 3.0 equiv.) was added drop-wise to it. Reaction mixture was warmed slowly to 25 °C over 20 min and allowed to stir at 25 °C. After stirring for 1.5 h at 25 °C, the reaction mixture was diluted with H<sub>2</sub>O (5 mL) and EtOAc (10 mL). Organic phase was separated from the aqueous layer. The aqueous layer was extracted with EtOAc ( $3 \times 5$  mL). The combined organic layer was washed with brine (5 mL), dried over anh. Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by column chromatography on silica-gel (230-400 mesh) using 1:9 EtOAc/ CH<sub>2</sub>Cl<sub>2</sub> to afford 6 as white solid (22.0 mg, 0.043 mmol, 85% yield). m.p. 199-200 °C; FT-IR (Thin film): 1719 (s), 1606 (m), 1464 (m), 1362 (m), 1218 (s), 1021 (m); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.84 (d, J = 7.7 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.3 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.15-7.07 (m, 3H), 7.03 (t, J = 7.4 Hz, 2H), 6.97 (t, J = 7.5 Hz, 2H), 6.76 (d, J = 7.7 Hz, 2H), 6.67 (d, J = 7.4 Hz, 2H), 6.56 (d, J = 7.7 Hz, 1H), 5.33 (d, J = 16.1 Hz, 1H), 5.11 (s, 1H), 4.42 (d, J = 16.1 Hz, 1H), 3.60 (s, 2H), 2.43 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  201.9, 179.4, 176.6, 152.1, 143.3, 135.8, 135.8, 135.1, 133.2, 130.3, 123.0, 128.7, 128.4, 128.2, 127.8, 127.3, 126.6, 126.5, 125.1, 125.0, 122.6, 110.1, 83.1, 71.7, 60.0, 43.9, 36.3, 13.8; HRMS (ESI+): Calcd for C<sub>33</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>2</sub>S ([M+Na]<sup>+</sup>): 537.1613, Found: 537.1614; Optical rotation:  $\left[\alpha\right]_{D}^{22}$  -93.9 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (50:50 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{\text{major}} = 4.2 \text{ min}, \tau_{\text{minor}} = 5.0 \text{ min}$ ).

**Conversion of 3aa to 7:** 



In a 25 mL round bottom flask, 3aa (25 mg, 0.049 mmol, 1.0 equiv.; with 98:2 er) was dissolved in 4 mL CH<sub>2</sub>Cl<sub>2</sub>. The reaction mixture was then cooled to 0 °C, 30% aqueous H<sub>2</sub>O<sub>2</sub> (0.2 mL) and 88% aqueous formic acid (0.2 mL) were added successively. The resulting mixture was warmed to 25 °C and stirred vigorously for 3 h. The reaction mixture was quenched with 1 M aqueous  $K_2CO_3$  (5 mL) solution. Organic phase was separated from aqueous phase. The aqueous layer was extracted with  $CH_2Cl_2$  (3 × 5 mL). The combined organic phase was washed with brine (15 mL), dried over anh. Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel (230-400 mesh) using 1:1 EtOAc/CH<sub>2</sub>Cl<sub>2</sub> to afford 7 as white solid (22.0 mg, 0.045 mmol, 91% yield). m.p. 215-216 °C (decomposed): FT-IR (Thin film): 3276 (w), 1728 (s), 1694 (m), 1607 (m), 1464 (s), 1364 (s); <sup>1</sup>H-NMR (400 **MHz, CDCl<sub>3</sub>**):  $\delta$  7.78 (d, J = 7.6 Hz, 1H), 7.61-7.59 (m, 1H), 7.53 (td, J = 7.4 Hz, 1.1 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.30-7.22 (m, 2H), 7.15-7.08 (m, 2H), 6.98 (q, 2H), 6.98 (m, 2H), 6.98 J = 7.4 Hz, 4H), 6.76 (d, J = 7.6 Hz, 3H), 6.54-6.50 (m, 3H), 5.30 (d, J = 16.2 Hz, 1H), 5.07 (s, 1H), 4.35 (d, J = 16.2 Hz, 1H), 3.76 (d, J = 16.7 Hz, 1H), 3.51 (d, J = 16.7 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 201.6, 176.8, 175.5, 152.8, 142.9, 135.7, 135.6, 134.5, 131.9, 130.7, 130.5, 128.8, 128.6, 128.4, 128.2, 128.1, 127.5, 126.4, 126.4, 125.0, 124.8, 123.2, 110.5, 67.3, 61.8, 57.5, 44.2, 35.1; **HRMS (ESI+):** Calcd for C<sub>32</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>3</sub> ([M+Na]<sup>+</sup>): 507.1685, Found: 507.1686; **Optical rotation:**  $\left[\alpha\right]_{D}^{22}$  -34.6 (c 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 n-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{minor}$  = 16.3 min,  $\tau_{\rm major} = 17.8 \text{ min}$ ).

**Conversion of 3aa to 8:** 



In a 25 mL round bottom flask, equipped with a reflux condenser, **3aa** (100.0 mg, 0.199 mmol, 1.0 equiv.; with 98:2 er) was dissolved in freshly distilled THF (4.0 mL) and cooled to 0  $\degree$ C.

LiAlH<sub>4</sub> (46 mg, 1.21 mmol; 6.0 equiv.) was added to it and the resulting mixture was allowed to reflux for 12 h at 75 °C. After complete consumption of the starting material the reaction mixture was cooled to 0 °C and was guenched with EtOAc (5 mL). The reaction mixture was filtered over celite® and concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel (230-400 mesh) using 1:1 EtOAc/CH<sub>2</sub>Cl<sub>2</sub> to afford 8 as yellow oil (50.0 mg, 0.109 mmol, 55% yield). FT-IR (Thin film): 3382 (w), 1019 (s); <sup>1</sup>H-NMR (400 **MHz**, **CDCl**<sub>3</sub>): δ 7.35 (t, *J* = 6.8 Hz, 2H), 7.25-7.09 (m, 9H), 7.05-6.99 (m, 5H), 6.70 (t, *J* = 7.4 Hz, 1H), 6.27 (d, J = 7.9 Hz, 1H), 5.07 (s, 1H), 4.20 (d, J = 15.3 Hz, 1H), 4.03 (d, J = 15.3 Hz, 1H), 3.78 (s, 1H), 3.63 (t, J = 10.3 Hz, 4H), 3.45 (d, J = 9.2 Hz, 1H), 3.38 (d, J = 10.5 Hz, 1H), 2.97 (d, J = 15.5 Hz, 1H), 2.79 (d, J = 15.5 Hz, 1H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  152.5, 143.6, 140.1, 138.2, 138.0, 132.9, 131.2, 129.0, 128.6, 127.8, 127.4, 127.1, 126.9, 126.8, 124.6, 124.5, 123.7, 117.5, 107.9, 82.7, 73.7, 68.3, 62.6, 60.3, 53.4, 53.0, 39.7; HRMS (ESI+): Calcd for  $C_{32}H_{31}N_2O$  ([M+H]<sup>+</sup>): 459.2436, Found: 459.2437; **Optical rotation:**  $[\alpha]_D^{22}$  +31.0 (*c* 1.0, CHCl<sub>3</sub>) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 n-Hexane/EtOH, 1.0 mL/min, 20 °C, 254 nm,  $\tau_{major} = 5.8 \text{ min}$ ,  $\tau_{minor} = 25.8 \text{ min}$ ).

#### H. Application of compound 8 as catalyst:



In a reaction tube, catalyst **8** (7.0 mg, 0.01 mmol, 0.1 equiv.) and cinnamaldehyde **10** (22 mg, 0.16 mmol, 1.1 equiv.) were taken with 0.4 mL of toluene. After 5 min a solution of  $\alpha$ -Angelica lactone **9** (15 mg, 0.15 mmol, 1.0 equiv.) in toluene (0.2 mL) was added over 5 min at 25 °C. The resulting reaction mixture was stirred for 24 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was diluted with EtOAc (1.0 mL) and sat. aqueous NH<sub>4</sub>Cl solution (5.0 mL) at the reaction temperature. Organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 4.0 mL). Combined organic layer was washed with brine (10 mL), dried over anh. Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica-gel (230-400 mesh) using 2:3 EtOAc/petroleum ether to obtain **11** as yellow oil (34.0 mg, 0.15 mmol, 96% yield; with 1:1 dr).

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  9.63 (s, 1H), 9.59 (s, 1H), 7.36-7.28 (m, 10H), 7.18-7.16 (m, 2H), 6.07 (d, J = 5.6 Hz, 1H), 5.92 (d, J = 5.6 Hz, 1H), 3.74 (dd, J = 8.6 Hz, 5.5 Hz, 1H), 3.56 (dd, J = 8.6 Hz, 5.6 Hz, 1H), 2.95-2.80 (m, 4H), 1.45 (s, 3H), 1.31(s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  199.8, 199.7, 172.3, 171.9, 160.7, 158.7, 138.3, 138.1, 129.4, 128.9, 128.8, 128.6, 127.9, 127.9, 121.5, 120.9, 89.8, 89.7, 46.6, 45.9, 44.6, 44.1, 23.6, 22.2; The spectral data are consistent with those reported in the literature.<sup>5</sup>

The enantiomeric ratios were determined after reduction of **11** to the corresponding alcohol **12** following the procedure as shown below:



In an oven dried 10 mL two-neck round-bottom flask, 11 (35 mg, 0.15 mmol, 1.0 equiv.) and CeCl<sub>3.7</sub>H<sub>2</sub>O (75 mg, 0.30 mmol, 2.0 equiv.) was taken in 3.0 mL of absolute methanol under argon and the resulting solution was cooled to 0  $^{\circ}$ C. To this was added NaBH<sub>4</sub> (11.5 mg, 0.30 mmol, 2.0 equiv.) at once and the resulting mixture was stirred at 0 °C. After 30 min, the reaction mixture was quenched with 2 mL of sat. NH<sub>4</sub>Cl solution and diluted with 5 mL CH<sub>2</sub>Cl<sub>2</sub>. Organic phase was separated and the aqueous phase was extracted with  $CH_2Cl_2$  (2 × 5 mL). Combined organic phase was dried over anh. Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by silica-gel (230-400 mesh) flash column chromatography (1:1 EtOAc/petroleum ether) to obtain 12 as a colorless thick oil (24 mg, 0.103 mmol, 95% vield; with 1:1 dr); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.34-7.29 (m, 3H), 7.27-7.25 (m, 1H), 7.16 (d, J =6.9 Hz, 1H), 5.89 (d, J = 5.6 Hz, 1H), 3.57-3.53 (m, 1H), 3.35-3.29 (m, 1H), 3.23 (dd, J = 11.8Hz, 3.3 Hz, 1H), 2.15-2.06 (m, 1H), 1.95-1.87 (m, 1H), 1.44 (s, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  172.6, 159.5, 138.5, 128.9, 127.7, 121.1, 90.5, 60.5, 49.5, 31.9, 23.6. The spectral data are consistent with those reported in the literature.<sup>6</sup> The diastereomers could be separated through preparative TLC. The enantiomeric ratio of one diastereomer (er 89:11) was determined by HPLC analysis using Daicel Chiralpak AD-H column (50:50 n-Hexane/EtOH, 1.0 mL/min, 20 °C, 210 nm,  $\tau_{\text{major}} = 4.6 \text{ min}$ ,  $\tau_{\text{minor}} = 6.0 \text{ min}$ ). The enantiomeric ratio for the other diastereomer (er 80:20) was determined by HPLC analysis using Daicel Chiralpak AS-H column (90:10 *n*-Hexane/EtOH, 1.0 mL/min, 20 °C, 210 nm,  $\tau_{\text{major}} = 22.6 \text{ min}, \tau_{\text{minor}} = 24.4 \text{ min}$ ).

#### I. Single crystal X-ray diffraction analysis of 3ao:

A single crystal of **3ao** (recrystallized from CHCl<sub>3</sub> at 0 °C) was mounted and the diffraction data were collected at 273 K on a Bruker SMART APEX CCD diffractometer using SMART/SAINT software. Intensity data were collected using graphite-monochromatized Mo-Ka

radiation (0.71073 Å). The structures were solved by direct methods using the SHELX-97 and refined by full-matrix least-squares on  $F^2$ . Empirical absorption corrections were applied with SADABS. All Non-hydrogen atoms were refined anisotropically and hydrogen atoms were included in geometric positions. Structure was drawn using Olex-2 and ORTEP-3. The crystallographic refinement parameters are given below:

| Identification code                  | <b>3</b> ao                                            |
|--------------------------------------|--------------------------------------------------------|
| CCDC Number                          | CCDC 1492583                                           |
| Empirical formula                    | $C_{31}H_{23}Cl_3N_2O_3S$                              |
| Formula weight                       | 609.92                                                 |
| Temperature                          | 273(2) K                                               |
| Wavelength                           | 71.073 pm                                              |
| Crystal system                       | orthorhombic                                           |
| Space group                          | $P2_{1}2_{1}2_{1}$                                     |
| Unit cell dimensions                 | $a = 801.94(5) \text{ pm}$ $\alpha = 90^{\circ}$       |
|                                      | $b = 1688.48(11) \text{ pm}$ $\beta = 90^{\circ}$      |
|                                      | $c = 2078.55(13) \text{ pm}$ $\gamma = 90^{\circ}$     |
| Volume                               | $2.8145(3) \text{ nm}^3$                               |
| Z                                    | 4                                                      |
| Density (calculated)                 | $1.439 \text{ Mg/m}^3$                                 |
| Absorption coefficient               | $0.437 \text{ mm}^{-1}$                                |
| F (000)                              | 1256                                                   |
| Crystal size                         | $0.4 \times 0.3 \times 0.2 \text{ mm}^3$               |
| Theta range for data collection      | 6.218 to 49.99°                                        |
| Index ranges                         | $-9 \le h \le 9,  -20 \le k \le 20,  -24 \le l \le 24$ |
| Reflections collected                | 117951                                                 |
| Independent reflections              | $4957 [R_{int} = 0.0690]$                              |
| Refinement method                    | Full-matrix least-squares on F <sup>2</sup>            |
| Data / restraints / parameters       | 4957 / 0 / 454                                         |
| Goodness-of-fit on F <sup>2</sup>    | 1.083                                                  |
| Final R indices $[I > 2 \sigma (I)]$ | $R1 = 0.0325, \omega R2 = 0.0683$                      |
| R indices (all data)                 | $R1 = 0.0386, \omega R2 = 0.0705$                      |
| Absolute structure parameter         | 0.02(7)                                                |
| Largest diff. peak and hole          | $0.580 \text{ and } -0.490 \text{ e.Å}^{-3}$           |

 Table 1. Crystal data and structure refinement for 3ao

| Atom | x        | у           | z           | U(eq)   |
|------|----------|-------------|-------------|---------|
| C35  | 4451(5)  | 3175(3)     | 180.4(19)   | 36.1(9) |
| C13  | 4242(2)  | 2199.9(8)   | 440.7(8)    | 93.0(6) |
| O4   | 3426(3)  | -968.2(15)  | -2315.8(11) | 31.6(6) |
| C1   | 2775(4)  | -1559.6(19) | -1939.2(15) | 19.7(7) |
| C2   | 2339(5)  | -2178(2)    | -2300.8(17) | 26.3(8) |
| C3   | 2718(5)  | -1970(2)    | -2950.3(17) | 30.8(9) |
| C5   | 2817(4)  | -1377.1(18) | -1234.7(15) | 17.2(7) |
| C6   | 1741(4)  | -1912.9(18) | -795.4(14)  | 18.4(7) |
| C7   | 2347(4)  | -525.2(18)  | -1039.8(15) | 19.0(7) |
| C8   | 1889(4)  | -629.9(19)  | -334.6(15)  | 21.6(7) |
| C9   | 4089(5)  | 1447(2)     | -1614.7(18) | 28.7(8) |
| C10  | 3257(5)  | 2037(2)     | -1938.8(17) | 30.5(9) |
| C11  | 1586(5)  | 1944(2)     | -2102.2(17) | 29.1(8) |
| C12  | 725(5)   | 1262(2)     | -1943.3(16) | 25.3(8) |
| C13  | 1563(4)  | 667.3(18)   | -1617.4(15) | 20.1(7) |
| C14  | 3217(4)  | 760.5(19)   | -1453.8(15) | 21.3(7) |
| C15  | 879(4)   | -129(2)     | -1407.7(17) | 20.4(7) |
| C16  | 3841(4)  | 48(2)       | -1124.6(16) | 22.7(7) |
| C19  | 2706(4)  | -2679.5(19) | -622.6(14)  | 18.6(7) |
| C20  | 79(4)    | -2230.6(19) | -1024.5(14) | 18.2(7) |
| C21  | 131(4)   | -3054.9(19) | -981.7(15)  | 20.5(7) |
| C22  | -1214(4) | -3523(2)    | -1142.6(17) | 26.1(8) |
| C23  | -2645(5) | -3141(2)    | -1350.6(17) | 30.6(9) |
| C24  | -2728(5) | -2325(2)    | -1385.1(17) | 28.5(8) |
| C25  | -1361(4) | -1864(2)    | -1212.5(16) | 22.8(7) |
| C26  | 2110(6)  | -4131(2)    | -598.5(17)  | 29.2(8) |
| C27  | 2153(4)  | -4640.0(19) | -1193.1(17) | 25.8(8) |
| C28  | 3077(5)  | -4412(2)    | -1725.6(19) | 33.1(9) |

Table 2. Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters ( $pm^2 \times 10^{-1}$ ) for 3ao. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C29 | 3154(6)    | -4890(3)    | -2265(2)    | 48.1(12) |
|-----|------------|-------------|-------------|----------|
| C30 | 2310(6)    | -5599(3)    | -2269(2)    | 52.7(14) |
| C31 | 1371(6)    | -5824(3)    | -1749(3)    | 54.3(14) |
| C32 | 1308(6)    | -5348(2)    | -1213(3)    | 44.0(11) |
| N1  | 1588(3)    | -1394.4(15) | -235.3(13)  | 19.4(6)  |
| N2  | 1688(4)    | -3305.3(15) | -738.3(13)  | 22.2(6)  |
| C4  | 3353(5)    | -1245(3)    | -2938.0(17) | 34.0(9)  |
| O2  | 5252(3)    | -104.9(15)  | -960.8(13)  | 33.7(6)  |
| 03  | 4139(3)    | -2699.8(13) | -431.7(11)  | 23.7(5)  |
| S1  | 1706.1(13) | 84.3(5)     | 205.0(4)    | 31.9(2)  |
| Cl1 | 4371.0(17) | 3209.0(8)   | -658.7(5)   | 55.6(3)  |
| Cl2 | 2878.2(12) | 3774.0(6)   | 517.7(5)    | 41.3(3)  |

Table 3. Anisotropic displacement parameters  $(pm^2 \times 10^{-1})$  for 3ao. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$ 

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C35  | 33(2)           | 46(2)           | 30(2)           | -4.3(18)        | 6.7(18)         | -1(2)           |
| C13  | 123.1(14)       | 55.3(8)         | 100.5(12)       | 34.5(8)         | 69.0(11)        | 31.4(9)         |
| O4   | 42.1(15)        | 30.3(14)        | 22.3(12)        | 0.6(11)         | 9.3(12)         | -5.5(12)        |
| C1   | 17.0(16)        | 21.3(17)        | 20.7(16)        | 2.9(14)         | 2.1(14)         | 3.0(14)         |
| C2   | 27.0(19)        | 28(2)           | 23.8(17)        | -2.3(16)        | 0.2(15)         | 0.3(16)         |
| C3   | 26.1(19)        | 46(2)           | 20.7(18)        | -8.4(17)        | -0.1(15)        | 6.5(18)         |
| C5   | 15.5(16)        | 17.0(16)        | 18.9(15)        | 0.6(13)         | -0.1(14)        | 0.3(14)         |
| C6   | 20.3(16)        | 18.3(16)        | 16.5(15)        | -0.9(13)        | 2.3(13)         | -1.2(14)        |
| C7   | 19.7(16)        | 17.3(16)        | 20.0(16)        | 0.2(13)         | -0.3(14)        | 0.1(14)         |
| C8   | 21.0(18)        | 21.3(17)        | 22.4(17)        | 0.3(14)         | -2.5(14)        | 4.8(14)         |
| С9   | 29(2)           | 24.4(19)        | 33(2)           | 0.5(16)         | -6.0(17)        | -6.9(16)        |
| C10  | 41(2)           | 20.6(19)        | 29.6(19)        | 4.7(15)         | -2.8(18)        | -9.9(17)        |
| C11  | 38(2)           | 20.8(18)        | 29.0(19)        | 5.2(15)         | -3.6(17)        | 3.0(17)         |
| C12  | 26.7(19)        | 24.2(19)        | 25.2(18)        | 1.9(15)         | -4.0(16)        | 1.4(16)         |
| C13  | 24.0(17)        | 18.6(16)        | 17.7(15)        | -1.1(13)        | 2.3(14)         | 0.8(15)         |

| C14        | 24.3(18) | 19.3(17) | 20.2(16) | -0.8(13) | -2.1(14)  | -0.7(15)  |
|------------|----------|----------|----------|----------|-----------|-----------|
| C15        | 20.6(17) | 19.9(17) | 20.7(17) | -0.9(15) | -0.6(14)  | 1.0(15)   |
| C16        | 27.1(19) | 19.6(17) | 21.4(17) | -1.1(14) | -1.5(14)  | -2.4(15)  |
| C19        | 22.1(17) | 21.5(17) | 12.2(15) | -0.4(13) | 1.1(13)   | -0.4(14)  |
| C20        | 18.9(16) | 22.0(17) | 13.7(15) | 0.7(13)  | 2.4(13)   | -2.9(14)  |
| C21        | 24.6(18) | 20.9(17) | 15.9(16) | -0.8(13) | 2.3(14)   | -2.2(15)  |
| C22        | 30(2)    | 25(2)    | 22.9(18) | -2.4(15) | 2.6(15)   | -5.2(16)  |
| C23        | 22.9(19) | 42(2)    | 26.8(19) | -6.5(17) | 2.2(15)   | -11.2(18) |
| C24        | 18.1(17) | 40(2)    | 26.9(19) | 0.9(17)  | 2.8(15)   | 0.4(17)   |
| C25        | 19.0(17) | 27(2)    | 22.8(18) | 2.6(15)  | 3.7(14)   | 0.8(15)   |
| C26        | 43(2)    | 18.8(17) | 26.0(19) | 3.6(15)  | -2.2(19)  | 1.6(17)   |
| C27        | 25.1(18) | 17.3(17) | 35(2)    | -2.0(15) | -4.1(17)  | 3.3(14)   |
| C28        | 30(2)    | 30(2)    | 40(2)    | -1.9(18) | 1.3(18)   | -0.2(17)  |
| C29        | 51(3)    | 57(3)    | 36(2)    | -5(2)    | 5(2)      | 21(3)     |
| C30        | 52(3)    | 53(3)    | 53(3)    | -33(3)   | -22(3)    | 25(3)     |
| C31        | 43(3)    | 33(2)    | 87(4)    | -30(3)   | -10(3)    | -1(2)     |
| C32        | 45(3)    | 25(2)    | 62(3)    | -8(2)    | 9(2)      | -5.6(19)  |
| N1         | 22.0(14) | 19.4(14) | 16.8(13) | -0.4(11) | 0.6(12)   | -0.3(12)  |
| N2         | 28.8(15) | 15.1(14) | 22.7(14) | -0.3(11) | -2.9(13)  | 1.5(12)   |
| C4         | 40(2)    | 44(2)    | 17.8(17) | 2.5(17)  | 4.9(16)   | 2(2)      |
| O2         | 21.7(13) | 30.0(14) | 49.3(16) | 8.3(13)  | -10.3(12) | -2.7(11)  |
| O3         | 23.0(13) | 23.8(12) | 24.2(12) | 3.2(10)  | -3.9(10)  | 3.4(10)   |
| <b>S</b> 1 | 51.4(6)  | 21.0(4)  | 23.5(4)  | -4.2(4)  | -1.1(4)   | 6.1(4)    |
| Cl1        | 69.8(8)  | 67.9(8)  | 29.2(5)  | -12.7(5) | 3.2(5)    | -0.1(7)   |
| Cl2        | 32.1(5)  | 51.0(6)  | 40.8(5)  | -14.6(5) | 6.1(4)    | -2.4(5)   |

Table 4. Bond lengths [pm] and angles [°] for 3ao

| C35 | Cl3 | 1.742(4) | C12 | C13 | 1.385(5) |  |
|-----|-----|----------|-----|-----|----------|--|
| C35 | Cl1 | 1.746(4) | C13 | C14 | 1.379(5) |  |
| C35 | Cl2 | 1.762(4) | C13 | C15 | 1.516(5) |  |
| O4  | C1  | 1.372(4) | C14 | C16 | 1.472(5) |  |

| O4  | C4         | 1.376(4) | C16 | 02  | 1.210(4) |
|-----|------------|----------|-----|-----|----------|
| C1  | C2         | 1.334(5) | C19 | N2  | 1.357(4) |
| C1  | C5         | 1.497(4) | C19 | 03  | 1.216(4) |
| C2  | C3         | 1.428(5) | C20 | C21 | 1.395(5) |
| C3  | C4         | 1.327(6) | C20 | C25 | 1.367(5) |
| C5  | C6         | 1.548(4) | C21 | C22 | 1.378(5) |
| C5  | C7         | 1.541(4) | C21 | N2  | 1.412(4) |
| C6  | C19        | 1.550(4) | C22 | C23 | 1.386(5) |
| C6  | C20        | 1.514(4) | C23 | C24 | 1.382(6) |
| C6  | N1         | 1.462(4) | C24 | C25 | 1.392(5) |
| C7  | C8         | 1.522(4) | C26 | C27 | 1.505(5) |
| C7  | C15        | 1.555(4) | C26 | N2  | 1.464(4) |
| C7  | C16        | 1.550(4) | C27 | C28 | 1.386(5) |
| C8  | N1         | 1.329(4) | C27 | C32 | 1.374(5) |
| C8  | <b>S</b> 1 | 1.653(3) | C28 | C29 | 1.383(6) |
| C9  | C10        | 1.376(5) | C29 | C30 | 1.375(7) |
| C9  | C14        | 1.394(5) | C30 | C31 | 1.371(8) |
| C10 | C11        | 1.392(6) | C31 | C32 | 1.374(6) |
| C11 | C12        | 1.382(5) |     |     |          |

## Table 5. Bond angles [°] for 3ao

| C13 | C35 | Cl1 | 109.7(2) | C9  | C14 | C16 | 128.4(3) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C13 | C35 | Cl2 | 110.5(2) | C13 | C14 | C9  | 121.2(3) |
| Cl1 | C35 | Cl2 | 110.6(2) | C13 | C14 | C16 | 110.4(3) |
| C1  | O4  | C4  | 105.8(3) | C13 | C15 | C7  | 104.4(3) |
| O4  | C1  | C5  | 113.6(3) | C14 | C16 | C7  | 107.5(3) |
| C2  | C1  | O4  | 110.4(3) | O2  | C16 | C7  | 123.9(3) |
| C2  | C1  | C5  | 135.9(3) | O2  | C16 | C14 | 128.6(3) |
| C1  | C2  | C3  | 106.5(3) | N2  | C19 | C6  | 108.0(3) |
| C4  | C3  | C2  | 106.9(3) | 03  | C19 | C6  | 124.8(3) |
| C1  | C5  | C6  | 116.4(3) | 03  | C19 | N2  | 127.2(3) |

| C1  | C5  | C7  | 116.3(3) | C21 | C20 | C6  | 107.9(3) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C7  | C5  | C6  | 104.7(2) | C25 | C20 | C6  | 132.3(3) |
| C5  | C6  | C19 | 110.3(3) | C25 | C20 | C21 | 119.6(3) |
| C20 | C6  | C5  | 120.8(3) | C20 | C21 | N2  | 110.4(3) |
| C20 | C6  | C19 | 102.5(2) | C22 | C21 | C20 | 122.2(3) |
| N1  | C6  | C5  | 99.6(2)  | C22 | C21 | N2  | 127.4(3) |
| N1  | C6  | C19 | 111.0(2) | C21 | C22 | C23 | 117.2(3) |
| N1  | C6  | C20 | 112.9(3) | C24 | C23 | C22 | 121.4(4) |
| C5  | C7  | C15 | 117.2(3) | C23 | C24 | C25 | 120.4(4) |
| C5  | C7  | C16 | 111.3(3) | C20 | C25 | C24 | 119.1(3) |
| C8  | C7  | C5  | 101.8(2) | N2  | C26 | C27 | 112.7(3) |
| C8  | C7  | C15 | 109.9(3) | C28 | C27 | C26 | 120.6(3) |
| C8  | C7  | C16 | 111.6(3) | C32 | C27 | C26 | 120.6(4) |
| C16 | C7  | C15 | 105.1(3) | C32 | C27 | C28 | 118.7(4) |
| C7  | C8  | S1  | 126.2(2) | C29 | C28 | C27 | 120.6(4) |
| N1  | C8  | C7  | 107.8(3) | C30 | C29 | C28 | 119.4(4) |
| N1  | C8  | S1  | 125.9(3) | C31 | C30 | C29 | 120.4(4) |
| C10 | C9  | C14 | 118.5(3) | C30 | C31 | C32 | 119.8(5) |
| C9  | C10 | C11 | 120.3(3) | C31 | C32 | C27 | 121.0(5) |
| C12 | C11 | C10 | 121.1(4) | C8  | N1  | C6  | 116.3(3) |
| C11 | C12 | C13 | 118.6(3) | C19 | N2  | C21 | 111.2(3) |
| C12 | C13 | C15 | 127.5(3) | C19 | N2  | C26 | 124.6(3) |
| C14 | C13 | C12 | 120.3(3) | C21 | N2  | C26 | 124.1(3) |
| C14 | C13 | C15 | 112.2(3) | C3  | C4  | 04  | 110.3(3) |

Table 6. Hydrogen atom coordinates (Å×10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for 3ao

| Atom | x        | у         | Z.        | U(eq)  |
|------|----------|-----------|-----------|--------|
| H13  | 3250(50) | -4160(20) | -400(17)  | 28(10) |
| H7   | 3780(40) | 2510(20)  | -2028(16) | 19(9)  |
| H12  | 1860(50) | -2680(20) | -2166(17) | 29(10) |

| H20 | 620(40)   | -428(19)  | -1762(16) | 15(8)  |
|-----|-----------|-----------|-----------|--------|
| H19 | -130(40)  | -50(20)   | -1123(16) | 20(8)  |
| H9  | -380(50)  | 1180(20)  | -2081(16) | 23(9)  |
| H17 | -3700(50) | -2090(20) | -1541(17) | 28(10) |
| H18 | -1430(40) | -1350(20) | -1245(16) | 19(9)  |
| H6  | 5230(50)  | 1490(20)  | -1495(18) | 32(10) |
| H21 | 1080(50)  | -1580(20) | 150(20)   | 40(12) |
| H8  | 1000(40)  | 2360(20)  | -2356(17) | 25(9)  |
| H15 | -1080(40) | -4080(20) | -1114(16) | 25(10) |
| H3  | 2340(60)  | -5930(30) | -2600(20) | 59(14) |
| H16 | -3540(50) | -3430(20) | -1486(18) | 34(11) |
| H10 | 3770(50)  | -870(20)  | -3240(20) | 43(12) |
| H11 | 2500(60)  | -2260(30) | -3310(20) | 53(13) |
| H5  | 740(60)   | -5470(30) | -900(20)  | 53(15) |
| H1  | 3690(50)  | -3920(20) | -1721(18) | 33(10) |
| H14 | 1340(50)  | -4340(30) | -290(20)  | 50(13) |
| H4  | 770(60)   | -6310(30) | -1760(20) | 56(13) |
| H2  | 3830(60)  | -4710(30) | -2620(20) | 60(15) |
| H30 | 5530(50)  | 3370(20)  | 300(18)   | 36(11) |
| H31 | 3880(40)  | -1457(18) | -1065(15) | 10(8)  |



ORTEP representation of the X-ray structure of enantiopure **3ao** (thermal ellipsoids at 30% probability)

### J. References:

- (1) (a) W.-B. Chen, Z.-J. Wu, J. Hu, L.-F. Cun, X.-M. Zhang and W.-C. Yuan, *Org. Lett.*, 2011, 13, 2472; (b)
   S. Kayal and S. Mukherjee, *Eur. J. Org. Chem.*, 2014, 6696.
- (2) (a) M. S. Manna, V. Kumar and S. Mukherjee, *Chem. Commun.*, 2012, 48, 5193; (b) C. B. Tripathi, S. Kayal and S. Mukherjee, *Org. Lett.*, 2012, 14, 3296; (c) W. Yang and D.-M. Du, *Org. Lett.*, 2010, 12, 5450.
- (3) T. M. Kadayat, C. Park, K.-Y. Jun, T. B. T. Magar, G. Bist, H. Y. Yoo, Y. Kwon and E.-S. Lee, *Bioorg. Med. Chem.* 2015, 23, 160.
- (4) Y.-M. Li, S.-J. Lou, Q.-H. Zhou, L.-W. Zhu, L.-F. Zhu and L. Li, Eur. J. Org. Chem. 2015, 3044.
- (5) A. Quintard, A. Lefranc and A. Alexakis, *Org. Lett.*, 2011, **13**, 1540.
- (6) L. Yin, H. Takada, S. Lin, N. Kumagai and M. Shibasaki, Angew. Chem., Int. Ed., 2014, 53, 5327.