Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information (SI)

Real-time Detection and Imaging of Copper (II) in Cellular

Mitochondria

Hong Li^a, Ruilong Zhang^a, Chunxia Li^b, Bei Huang^b, Tingting Yu^a, Xiaodan Huang^a, Xuejun Zhang^c, Fei Li^{a,*}, Hongping Zhou^{a,*}, Yupeng Tian^a

^aCollege of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional

Inorganic Materials Chemistry of Anhui Province, 230601, Hefei, P.R. China

^bCenter of Stem cell Research and Transformation Medicine, Anhui University, Hefei 230601, P. R.

China.

^cFaculty of Health Science, University of Macau, Taipa, Macau SAR. P.R. China

Corresponding author. Fax: +86-551-63861279; Tel: +86-551-63861279

E-mail: zhpzhp@263.net

Fig. S1: ¹H NMR spectrum of L (in DMSO- d_6)

Fig. S2: ${}^{13}C$ NMR spectrum of L (in DMSO- d_6)

Fig. S3: FT-IR of L in KBr

Fig. S4: APCI-Mass spectrum of L

Fig. S5: A color change photograph for Cu²⁺ and the other metal ions under visible light.

Fig. S6: A color change photograph for Cu^{2+} and the other metal ions under UV light at 365 nm.

Fig. S7: Fluorescence intensity of 10 μ L probe L at 450nm over a wide pH range of 4.0–11.0.

Fig. S8: Job's plot of the complexation between the probe L and Cu²⁺. The total concentration of probe L and Cu²⁺ was 50 μ M.

Fig. S9: Benesi-Hildebrand plot of L-Cu²⁺ complexe in mixed solution (water-tetrahydrofuran ,1:1,v/v).

Fig. S10:Fluorescence titration of L-Cu²⁺ in mixed solution (tetrahydrofuran- water ,1:1,v/v) at 450nm.

Fig. S11: Fluorescence spectra of L (10 μ M) in the presence of Cu²⁺ (1.0 equiv.) and EDTA

(1.0 equiv.) in mixed solution (water-tetrahydrofuran, 1:1, v/v).

Fig. S12: MTT assay of HepG2 cells treated with probe L at different concentrations for 24 h.

Fig. S13: Photon-bleach experiment showed L photostability over continued laser scanning.

Fig. S14: Confocal fluorescent images: a1-d1 is dark-field, a2-d2 is bright-field, a3-d3 is overlay, and the concentration of probe L from a – d is 1×10^{-5} mol/L, 5×10^{-6} mol/L, 1×10^{-6} mol/L, 1×10^{-7} mol/L.

Fig. S3: FT-IR of L in KBr

Fig. S4: APCI-Mass spectrum of L

Fig. S5: A color change photograph for Cu^{2+} and the other metal ions under visible light.

Fig. S6: A color change photograph for Cu²⁺ and the other metal ions under UV light at 365 nm.

Fig. S7: Fluorescence intensity of 10 μ L probe L at 450nm over a wide pH range of 4.0–11.0.

Fig. S8: Job's plot of the complexation between the probe L and Cu²⁺. The total concentration of probe L and Cu²⁺ was 50 μ M.

Fig. S9: Benesi-Hildebrand plot of L-Cu²⁺ complexe in mixed solution (water-tetrahydrofuran ,1:1,v/v).

Fig. S10:Fluorescence titration of L-Cu²⁺ in mixed solution (tetrahydrofuran- water ,1:1,v/v) at 450nm.

Fig. S11: Fluorescence spectra of L (10 μ M) in the presence of Cu²⁺ (1.0 equiv.) and EDTA

(1.0 equiv.) in mixed solution (water-tetrahydrofuran,1:1,v/v).

Fig. S12: MTT assay of HepG2 cells (TCHu 72) treated with probe L at different concentrations for 24 h.

Fig. S13: Photon-bleach experiment showed L photostability over continued laser scanning.

Fig. S14: Confocal fluorescent images: a1-d1 is dark-field, a2-d2 is bright-field, a3-d3 is overlay, and the concentration of probe L from a - d is 1×10^{-5} mol/L, 5×10^{-6} mol/L, 1×10^{-6} mol/L, 1×10^{-7} mol/L.