Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

C–F bond activation of perfluorinated arenes

by a bioxazoline-derived N-heterocyclic carbene

Jack Emerson-King, Simone A. Hauser and Adrian B. Chaplin*

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. E-mail: a.b.chaplin@warwick.ac.uk

Contents

1.	Experimental	.2
2.	Computational details	.6
3.	References	.9

1. Experimental

1.1 General experimental methods

All manipulations were performed under an atmosphere of argon, using Schlenk and glove box techniques. Glassware was oven dried at 150° C overnight and flamed under vacuum prior to use. Anhydrous cyclohexane was freeze-pump-thaw degassed three times before being placed under an atmosphere of argon. Fluoroarenes were dried over CaH₂, distilled, and stored over thoroughly dried 3 Å MS. CD₂Cl₂ was dried over thoroughly dried 3 Å molecular sieves and freeze-pump-thaw degassed three times before being placed under an atmosphere of argon. IBioxMe₄ was prepared following a literature procedure.¹ NMR spectra were recorded on Bruker Avance III HD 300 MHz or 500 MHz spectrometers at 298 K. ¹H NMR spectra recorded in fluorobenzene solvents were referenced with the aid of an internal sealed capillary of C₆D₆. Chemical shirts are quoted in ppm and coupling constants in Hz. Elemental analysis performed by Stephen Boyer at London Metropolitan University.

1.2 Preparation of new compounds

1.2.1 Imidazoliumolate 1a

To a solution of $IBioxMe_4$ (10.4 mg, 0.050 mmol) in 1,2-difluorobenzene (0.5 mL) was added octafluorotoluene (35.4 μ L, 0.250 mmol). The colour of the solution immediately became deep red and was left to stand overnight at RT. Layering the solution with cyclohexane (*ca*. 5 mL) afforded the product as a red crystalline solid on diffusion, which was washed with cyclohexane (3 x 1 mL) and dried *in vacuo*. Yield = 7.1 mg (32% yield).

¹**H NMR** (CD₂Cl₂, 500 MHz): δ 4.92 (d, ²J_{FH} = 47.2, 2H, CH₂F), 4.48 (s, 2H, oxazoline CH₂), 1.47 (d, ⁴J_{FH} = 1.8, 6H, C(C<u>H₃)₂CH₂F)</u>, 1.35 (s, 6H, oxazoline CH₃).

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ 147.0 (dd, ¹J_{FC} = 252, ²J_{FC} = 15, {C}Ar^F}, 144.7 (dd, ¹J_{FC} = 265, ²J_{FC} = 16, {C}Ar^F}, 140.7 (s, CO⁻), 131.2 (s, <u>C</u>OCH₂), 121.0 (q, ¹J_{CF} = 276, CF₃), 114.7 (t, ³J_{FC} = 19, <u>C</u>CF), 91.6 (s, NCN), 86.1 (d, ¹J_{FC} = 176, <u>C</u>H₂F), 85.3 (s, oxazoline CH₂), 65.8 (s, oxazoline <u>C</u>(CH₃)₂), 63.3 (d, ²J_{FC} = 18, <u>C</u>(CH₃)₂CH₂F), 24.9 (s, oxazoline CH₃), 23.7 (d, ³J_{FC} = 5, C(<u>C</u>H₃)₂CH₂F). One <u>C</u>CF signal was not unambiguously located; it may be coincident with the other <u>C</u>CF signal.

¹⁹**F NMR** (CD₂Cl₂, 377 MHz): δ -56.81 (t, ${}^{4}J_{FF}$ = 21.9, CF₃), -133.14 - -132.95 (m, Ar^F), -138.80 - -138.47 (m, Ar^F), -224.59 (t of m, ${}^{2}J_{FH}$ = 47.2, CH₂F).

¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz): δ -56.81 (t, ⁴J_{FF} = 21.9, CF₃), -133.12 - -132.97 (m, Ar^F),

-138.80 – -138.48 (m, Ar^F), -224.58 (t, *J* = 5.5, CH₂F).

Anal. Calc. for C₁₈H₁₆F₈N₂O₂ (444.33 g·mol⁻¹): C, 48.66; H, 3.63; N, 6.30. Found: C, 48.79; H, 3.55; N, 6.40.

Figure S-4: $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR spectrum of 1a (CD_2Cl_2, 377 MHz).

1.2.2 Imidazoliumolate 2

To a solution of IBioxMe₄ (10.4 mg, 0.050 mmol) in 1,2-difluorobenzene (0.5 mL) was added hexafluorobenzene (28.9 μ L, 0.250 mmol). The colour of the solution immediately became deep red. The product, as a mixture of rotamers, crystallised out of solution on standing at RT overnight and was isolated by cold filtration (0 °C), washing with cold 1,2-difluorobenzene (3 x 2 mL; 0 °C). Yield = 5.7 mg (19%) as a microcrystalline red solid. Despite repeated attempts, satisfactory microanalysis data could not be obtained, presumably due to the extremely air and moisture sensitive nature of this compound. Although the rotamers form in a ~ 1:1 ratio, variation of this ratio was found for isolated material. NMR data presented here is for material with the rotamers in a ~ 1:1.6 ratio.

¹**H NMR** (CD₂Cl₂, 500 MHz, major rotamer): δ 4.89 (d, ${}^{2}J_{FH}$ = 47.3, 2H, CH₂F), 4.49 (s, 2H, oxazoline CH₂), 1.52 (d, ${}^{4}J_{FH}$ = 1.4, 6H, C(CH₃)₂CH₂F), 1.37 (s, 6H, oxazoline CH₃).

¹**H NMR** (CD₂Cl₂, 500 MHz, minor rotamer): δ 4.91 (d, ${}^{2}J_{FH}$ = 47.3, 2H, CH₂F), 4.50 (s, 2H, oxazoline CH₂), 1.50 (d, ${}^{4}J_{FH}$ = 1.4, 6H, C(C<u>H₃</u>)₂CH₂F), 1.38 (s, 6H, oxazoline CH₃).

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz, major rotamer): δ 147 (dd, ${}^{1}J_{FC} \sim 250$, ${}^{2}J_{FC} \sim 12$, {C}Ar^F), 140.6 (s, CO⁻), 131 (s, <u>C</u>OCH₂), 92 (s, NCN), 86.3 (d, ${}^{1}J_{FC} = 176$, CH₂F), 85.3 (s, oxazoline CH₂), 65.7 (s, oxazoline, <u>C</u>(CH₃)₂), 63.3 (d, ${}^{2}J_{FC} = 18$, <u>C</u>(CH₃)₂CH₂F), 24.9 (s, oxazoline CH₃), 23.4 (d, ${}^{3}J_{FC} = 5$, C(<u>C</u>H₃)₂CH₂F). The CCF signal was not unambiguously located.

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz, minor rotamer): δ 147 (dd, ¹J_{FC} ~ 250, ²J_{FC} ~ 12, {C}Ar^F}, 140.7 (s, CO⁻), 131 (s, <u>C</u>OCH₂), 92 (s, NCN), 86.2 (d, ¹J_{FC} = 176, CH₂F), 85.2 (s, oxazoline CH₂), 65.5 (s, oxazoline, <u>C</u>(CH₃)₂), 63.5 (d, ²J_{FC} = 18, <u>C</u>(CH₃)₂CH₂F), 25.0 (s, oxazoline CH₃), 23.5 (d, ³J_{FC} = 5, C(<u>C</u>H₃)₂CH₂F). The <u>C</u>CF signal was not unambiguously located.

¹⁹**F NMR** (CD₂Cl₂, 377 MHz, major rotamer): δ -133.71 (br. t, J = 2, Ar^F), -223.44 (t, ²J_{FF} = 47.3, CH₂F). ¹⁹**F NMR** (CD₂Cl₂, 377 MHz, minor rotamer): δ -133.63 (br. t, J = 2, Ar^F), -223.89 (t, ²J_{FF} = 47.3, CH₂F). ¹⁹**F**{¹**H**} **NMR** (CD₂Cl₂, 377 MHz, major rotamer): δ -133.71 (br. t, J = 2, Ar^F), -223.44 (br, CH₂F). ¹⁹**F**{¹**H**} **NMR** (CD₂Cl₂, 377 MHz, minor rotamer): δ -133.63 (br. t, J = 2, Ar^F), -223.89 (br, CH₂F).

Figure S-8: ${}^{19}F{}^{1}H{}$ NMR spectrum of **2** (CD₂Cl₂, 377 MHz). Residual 1,2-difluorobenzene at -139.4 ppm.

1.3 NMR scale reactions – general procedure.

To a J. Young's NMR tube containing a solution of $IBioxMe_4$ (2.1 mg, 10.0 µmol) in 1,2-difluorobenzene (0.5 mL) was added octafluorotoluene or hexafluorobenzene (50.0 µmol), resulting in red solutions. NMR spectroscopy indicated quantitative formation of compounds **1a** and **2** (rotamers ~ 1:1) within 1 and 4 hours respectively.

2. Computational details

2 – anti-rotamer, trans-C–F

2 – *syn*-rotamer, *trans*-C–F

2 – syn-rotamer, cis-C–F

2.1 Geometry optimisation and free energy calculations

Density functional theory (DFT) calculations were implemented in the Gaussian 03 suite of programs² at the BP86/6-31++G(d,p) level.³ Geometry optimisations were performed without symmetry constraints based on starting geometries prepared in the following ways:

- Multiple conformations of **1a** arising from free rotation of the alkyl fluoride moiety were initiated from the geometry of the obtained crystal structure.
- The lowest energy conformer of **1a** was appropriately modified for use as the starting geometry for **1b**.
- **2** was constructed in the same manner as **1b**, considering two possible conformers of each rotamer (see Figure S-9) to arrive at the local minima for each rotamer.
- Hexafluorobenzene and octafluorotoluene were optimised from handmade structures

Optimised geometries and energies are provided in xyz format. The absence of imaginary vibrational modes confirmed the structures as minima on the potential energy surface. Thermal corrections (298.15 K, 1 atm) were applied to deduce relevant thermodynamic parameters (see Table S-1).

E_{trans} , $H = E + RT$, $G = H - TS$. Energies quoted in atomic units.									
Species	Eo	Е	Н	G					
octafluorotoluene	-1065.418892	-1065.406091	-1065.405146	-1065.459307					
hexafluorobenzene	-827.610464	-827.600474	-827.599529	-827.645933					
1a	-1753.939516	-1753.910500	-1753.909556	-1753.999509					
1b	-1516.130891	-1516.104693	-1516.103749	-1516.186453					
2 – anti-rotamer, cis-C–F	-2204.651210	-2204.608781	-2204.607836	-2204.726109					

-2204.649937 -2204.648874

-2204.650200

-2204.607448

-2204.606457

-2204.607819

-2204.606504

-2204.605513

-2204.606875

-2204.725083

-2204.724091

-2204.724972

Table S-1: Thermodynamic parameters of optimised compounds: $E_0 = E_{elec} + ZPE$, $E = E_0 + E_{vib} + E_{rot} + E_{trans}$, H = E + RT, G = H - TS. Energies quoted in atomic units.

2.2 Geometries of isomers of 2

syn-rotamer, trans-C-F

F syn-rotamer, cis-C-F

anti-rotamer, trans-C-F

anti-rotamer, cis-C-F

Figure S-9: Optimised structures of selected rotamers of **2**. Hydrogen atoms omitted for clarity, orthogonal 'bottom up' view shown.

2.3 Natural charges of 1a, 1b, octafluorotoluene and hexafluorobenzene

Figure S-10: Optimised structures of **1a**, **1b**, octafluorotoluene and hexafluorobenzene, coloured by calculated natural charges. See Table S-2 for values.

1a			1b		00	octafluorotoluene		he	hexafluorobenzene		
F	1	-0.38734	F	1	-0.38834	С	1	-0.25746	С	1	0.29007
F	2	-0.29893	F	2	-0.29573	С	2	0.37533	С	2	0.29006
F	3	-0.29147	F	3	-0.29078	С	3	0.28697	С	3	0.29009
F	4	-0.28935	F	4	-0.29103	С	4	0.31606	С	4	0.29007
F	5	-0.30205	F	5	-0.29952	С	5	0.28696	С	5	0.29006
0	6	-0.47894	0	6	-0.48626	С	6	0.37523	С	6	0.29009
0	7	-0.63491	0	7	-0.64914	F	7	-0.28864	F	7	-0.29007
Ν	8	-0.36674	Ν	8	-0.36713	F	8	-0.28788	F	8	-0.29008
Ν	9	-0.40319	Ν	9	-0.40527	F	9	-0.28322	F	9	-0.29006
С	10	0.34240	С	10	0.33703	F	10	-0.28786	F	10	-0.29007
С	11	0.37578	С	11	0.35559	F	11	-0.28875	F	11	-0.29008
С	12	0.48004	С	12	0.47550	С	12	1.02960	F	12	-0.29006
С	13	-0.12109	С	13	-0.11878	F	13	-0.32399			
Н	14	0.24996	Н	14	0.24732	F	14	-0.32817			
Н	15	0.23556	Н	15	0.23215	F	15	-0.32419			
С	16	0.08677	С	16	0.08665						
С	17	-0.69288	С	17	-0.69248						
Н	18	0.25054	Н	18	0.24796						
Н	19	0.25530	Н	19	0.25435						
Н	20	0.26453	Н	20	0.26299						
С	21	-0.69435	С	21	-0.69269						
Н	22	0.25998	Н	22	0.26034						
Н	23	0.25137	Н	23	0.24921						
Н	24	0.25130	Н	24	0.24916						
С	25	0.07134	С	25	0.07088						
С	26	-0.01703	С	26	-0.01579						
Н	27	0.21160	Н	27	0.20949						
Н	28	0.25153	Н	28	0.25190						
С	29	-0.69662	С	29	-0.69580						
Н	30	0.24269	Н	30	0.24096						
Н	31	0.28013	Н	31	0.28137						
Н	32	0.25150	Н	32	0.24903						
С	33	-0.69649	С	33	-0.69498						
Н	34	0.25894	Н	34	0.25698						
Н	35	0.25792	н	35	0.25658						
H	36	0.24196	Н	36	0.24004						
C	37	-0.19801	C	37	-0.21665						
C	38	0.34635	C	38	0.35937						
C	39	0.36607	C	39	0.27820						
C C	40	-0.2/418		40	0.30140						
C C	41 42	0.36081		41 42	0.27718						
C C	4Z	0.34783	с г	4Z	0.35528						
с г	43 11	1.049/5	Г	43	-0.28055						
г Е	44 ∕/⊑	-U.33488									
F	40 46	-0.32010									
		0.00/00									

Table S-2: Natural charges for 1a, 1b, octafluorotoluene and hexafluorobenzene

3. References

- (a) A. B. Chaplin, Organometallics, 2014, 33, 3069–3077; (b) A. B. Chaplin, Organometallics, 2014, 33, 624–626.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratman, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03,* Revision D.02, Gaussian, Inc., Wallingford CT, 2004.
- 3 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822–8824; (c) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257–2261.