ELECTRONIC SUPPORTING INFORMATION

Novel hetarylazo dyes containing tetrazole and hydroquinoline moieties:

Spectral characteristics, solvatochromism and photochemistry

Tatiana D. Nekipelova^{a*}, Evgenii N. Khodot^b, Olga N. Klimovich^a (Lygo), Lidiya N.

Kurkovskaya^a, Irina I. Levina^a and Vladimir A. Kuzmin^a

^aEmanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334

Russia

^bZelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia (A)

(B)

Figure S1 HRMS spectra of dyes 3 (A) and 4 (B).

Absorption spectra of dyes 4 and 5 in different solvents at different concentrations

Figure S2 Normalized absorption spectra of dyes 4 (A, B) and 5 (C, D) at concentrations > 1 \times 10⁻⁴ M (A, C) and < 1 \times 10⁻⁵ M (B, D) in different solvents.

Gaussian deconvolution of the spectra for 3 and 4 in various solvents

Figure S3. Deconvolution of normalized absorption spectra of **3** at different concentrations in MeOH.

Figure S4. Gaussian deconvolution of normalized absorption spectra of dye 3 at different concentrations in ACN.

Figure S5. Gaussian deconvolution of normalized absorption spectra of dye **3** at different concentrations in DMSO.

Figure S6. Gaussian deconvolution of normalized absorption spectra of dye 3 in CH_2Cl_2 and water

Figure S7. Gaussian deconvolution of normalized absorption spectra of dye **4** at different concentrations in MeOH.

Figure S8. Gaussian deconvolution of normalized absorption spectra of dye 4 at different concentrations in AcN.

C/10 ⁻⁵	МеОН					
М	G1(19780±100)	G2(21340±250)	G3(23060±50)	G4(25850±60)		
	H (FWMH)	H (FWMH)	H (FWMH)	H (FWMH)		
0.38	0	0.26 (2257)	0.70 (4142)	0.18 (8043)		
1.74	0	0.35 (2257)	0.80 (4142)	0.086 (8043)		
5.20	0.11 (1857)	0.35 (2257)	0.76 (4142)	0.16 (8043)		
7.00	0.43 (1852)	0.50 (2201)	0.65 (4146)	0.13 (8031)		
8.70	0.58 (1880)	0.53 (2267)	0.54 (4210)	0.11 (8047)		
10.5	0.59 (1840)	0.54 (2303)	0.49 (4071)	0.10 (8050)		
41.8	0.57 (1802)	0.52(2190)	0.36 (3964)	0.07 (8082)		
	ACN					
	G1(19850±100)	G2(20850±250)	G3(22850±400)	G4(25950±100)		
	H (FWMH)	H (FWMH)	H(FWMH)	H(FWMH)		
0.37	0.49 (1760)	0.51 (2688)	0.62 (4862)	0.22 (7608)		
0.55	0.47 (1725)	0.49 (2630)	0.43 (4876)	0.19 (7304)		
0.83	0.34 (1510)	0.56 (2445)	0.41 (4465)	0.17 (7148)		
1.86	0.38 (1583)	0.57 (2502)	0.36 (4148)	0.11 (7044)		
2.80	0.34 (1516)	0.62 (2489)	0.36 (3994)	0.09 (7052)		
4.18	0.36 (1526)	0.62 (2419)	0.36 (3825)	0.06 (7080)		
41.8	0.33 (1532)	0.64 (2378)	0.37 (3640)	0.05 (7113)		
	DMSO					
	G1(19350±50)	G2(20850±500)	G3(23110±500)	G4(25820±500)		
	H (FWMH)	H (FWMH)	H (FWMH)	H (FWMH)		
0.74	0	0.18 (1722)	0.89 (4356)	0.14 (6830)		
1.54	0.33 (1711)	0.37 (2407)	0.88 (4364)	0.11 (6830)		
1.91	0.44 (1638)	0.45 (2650)	0.87 (4601)	0.11 (6848)		
2.35	0.55 (1652)	0.55 (2656)	0.80 (4633)	0.11 (6859)		
2.90	0.53 (1641)	0.56 (2661)	0.61 (4680)	0.11 (6889)		
4.18	0.50 (1633)	0.59 (2648)	0.40 (4446)	0.09 (6958)		
7.32	0.52 (1639)	0.58 (2509)	0.37 (4380)	0.07 (6907)		
10.0	0.48 (1596)	0.60 (2464)	0.34 (4180)	0.07 (6916)		
26.1	0.44 (1556)	0.65 (2518)	0.31 (3943)	0.07 (7042)		
	CH ₂ Cl ₂					
	G1(19620)	G2(20451)	G3(22464)	G4(25820±500)		
	H (FWMH)	H (FWMH)	H (FWMH)	H (FWMH)		
5-0.1	0.30 (1318)	0.77 (2412)	0.29 (3167)	0.03 (7038)		
	H ₂ O					
	Gl	G2(20810)	G3(22970)	G4(25867)		
	H (FWMH)	H(FWMH)	H(FWMH)	H(FWMH)		
5-0.1	0	0.69 (2729)	0.52 (4110)	0.17 (6589)		

Table S1. Parameters of the Gaussian functions (wavenumbers, FWMH in cm^{-1} and *H* - height) in deconvolution of the normalized absorption spectra for **3** in various solvents at different concentrations

C/10 ⁻⁵	MeOH					
M	$G1(18600 \pm 300)$	$G2(20750 \pm 300)$	$G3(23000 \pm 200)$	$G4(28940 \pm 300)$		
	H (FWMH/cm ⁻¹)					
10	0.45 (1860)	0.37 (2910)	0.28 (3890)	0.21 (7230)		
7.5	0.40 (1860)	0.35 (2910)	0.31 (3890)	0.22 (7230)		
5	0.15 (1900)	0.32 (2900)	0.41 (4032)	0.22 (7250)		
2.5	0.06 (1830)	0.33 (2750)	0.43 (3790)	0.22 (7230)		
	ACN					
	$G1(19240 \pm 40)$	$G2(20650 \pm 100)$	$G3(23100 \pm 200)$	$G4(29050 \pm 250)$		
	H (FWMH/cm ⁻¹)					
10	0.60 (2020)	0.56 (2900)	0.21 (4330)	0.16 (5680)		
5	0.59 (2000)	0.58 (2790)	0.30 (4330)	0.16 (5680)		
2.5	0.58 (2070)	0.57(2920)	0.45 (4470)	0.20 (5740)		
1	0.50 (2240)	0.56 (3140)	0.65 (4690)	0.24 (5790)		
DMSO						
	$G1(18810 \pm 150)$	$G2(20660 \pm 100$	$G3(22600 \pm 400$	$G4(26600 \pm 700)$		
	H (FWMH/cm ⁻¹)					
10	0.55 (1710)	0.58 (2560)	0.42 (4010)	0.18 (6910)		
7.5	0.58 (1730)	0.55 (2540)	0.50 (4020)	0.21 (7060)		
5	0.58 (1830)	0.48 (2590)	0.72 (3920)	0.31 (7050)		
2.5	0.16 (2220)	0.33 (1860)	0.79 (3730)	0.32 (6870)		
1	0.05 (1850)	0.37 (1870)	0.73 (3410)	0.35 (6750)		

Table S2. Parameters of the Gaussian functions (wavenumbers, FWMH in cm^{-1} and *H* - height) in deconvolution of the normalized absorption spectra for **4** in various solvents at different concentrations

Figure S9 Contributions of Gaussian components into the visible absorption band at different concentrations of dye **3** in (A) MeOH (solid lines) and H_2O (dashed lines), (B) ACN (solid lines) and CH_2Cl_2 (dashed lines) and (C) DMSO

Figure S10. Contributions of Gaussian components into the visible absorption band at different concentrations of **4** in MeOH, ACN and DMSO.