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1. Synthesis of PEG-P[5]A

Poly(ethylene glycol)-functionalized pillar[5]arene (PEG-P[5]A) was prepared 

according to our previous work1 and the synthetic procedure was shown in Scheme.  

S1.

2. Synthesis of TPPC6-SS-COOH 

The carboxyl-termined porphyrin (TPPC6-SS-COOH) was prepared according to our 

previous work2 and TPPC6-SS-COOH was further used to synthesize pyridinium-

terminated porphyrin derivative bearing a disulfide bond (TPPC6-SS-Py), as shown in 

Scheme. S2. 

3. Synthesis of the Model Guest Compound (GM) 

1-Bromobutane (0.685 g, 5 mmol) and excessive amount of pyridine (0.5 mL, 6 mmol) 

were refluxed in acetone at 70 ℃ for 1 day. After the solvent was removed under 

vacuum, the product GM, N-butyl pyridinium bromide was obtained as a yellow solid 

(0.98 g, 90%). 1H NMR (400 MHz, D2O) δ (ppm): 9.47 (d, 2H, pyridinium-H), 8.69 (t, 

1H, pyridinium-H), 8.18 (m, 2H, pyridinium-H), 5.03 (t, 2H, N-CH2-), 2.02 (m, 2H, 

N-CH2-CH2-), 1.51 (m, 2H, N-(CH2)2-CH2-), 1.01 (t, 3H, -CH3) ( Fig. S15).



Scheme. S1 Synthetic route of PEG-P[5]A



Scheme. S2 Synthetic route of TPPC6-SS-Py



Scheme. S3 Synthetic route of GM

Fig. S1 1H NMR spectrum of 1
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Fig. S2 1H NMR spectrum of 2
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Fig. S3 1H NMR spectrum of 3
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Fig. S4 1H NMR spectrum of 4
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Fig. S5 1H NMR spectrum of 5
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Fig. S6 1H NMR spectrum of PEG-P[5]A

Fig. S7 1H NMR spectrum of TPP-OH 



Fig. S8 1H NMR spectrum of TPPC6-OH 

Fig. S9 1H NMR spectrum of TPPC6-SS-COOH



Fig. S10 1H NMR spectrum of TPPC6-SS-Br

Fig. S11 13C NMR spectrum of TPPC6-SS-Br in CDCl3



Fig. S12 MALDI-TOF-MS spectrum for TPPC6-SS-Br, calcd for 
C58H53BrN4O5S2, 1030.10; found: 1030.2435.

Fig. S13 13C NMR spectrum of TPPC6-SS-Py in CDCl3



Fig. S14 MALDI-TOF-MS spectrum of TPPC6-SS-Py, calcd for [M-Br]+ : 
C63H58N5O5S2, 1028.39; found: 1028.3729.

Fig. S15 1H NMR spectrum of GM



Fig. S16 Partial 1H NMR spectra (400 MHz, DMSO-d6) of a) PEG-P[5]A (2 mM), b) 
a 1:1 mixture of PEG-P[5]A and GM and c) GM (2 mM).
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Fig. S17  Partial 1H NMR spectra (400 MHz, CDCl3) of GM at a constant 
concentration of 2 mM with different concentrations of PEG-P[5]A: (a) 0.00 mM, (b) 
0.5 mM, (c) 1.00 mM, (d) 2.00 mM, (e) 4.00 mM, and (f) only PEG-P[5]A at 2 mM.



Investigation of the Interactions between PEG-P[5]A and GM

To determine the association constant for the complexation between PEG-P[5]A and 

GM, fluorescence titration experiments were carried out in solutions which had a 

constant concentration of PEG-P[5]A (2.5 × 10-5 M) and varying concentrations of GM. 

By a non-linear curve-fitting method, the association constant (Ka) of PEG-

P[5]A⊃GM was estimated.3

The non-linear curve-fittings were based on the equation:

ΔF = (ΔF∞/[H]0) (0.5[G]0 + 0.5([H]0 + 1/Ka) − (0.5 ([G]0
2 + (2[G]0(1/Ka − [H]0)) + 

(1/Ka + [H]0)2) 0.5))  (eq. 1)

Where ΔF is the fluorescence intensity changes at 330 nm at [H]0, ΔF∞ is the 

fluorescence intensity changes at 330 nm when PEG-P[5]A is completely complexed, 

[G]0 is the initial concentration of GM, and [H]0 is the fixed initial concentration of 

PEG-P[5]A.

Fig. S18 Fluorescence spectra of PEG-P[5]A (2.5 × 10–5 M) upon addition of GM (0 - 

14. 5 × 10–5 M) in DMF at room temperature. Upon addition of GM, emission from 

PEG-P[5]A was quenched, indicating the formation of the PEG-P[5]A-GM complex.



Fig. S19 The fluorescence changes of PEG-P[5]A upon addition of GM. The red solid 

line was obtained from the non-linear curve-fitting using eq. 1.

Fig. S20 Mole ratio plot for PEG-P[5]A and GM, indicating a 1:1 stoichiometry.



Fig. S21 Plot of the I382/I372 ratio with different concentrations of PEG-P[5]A 

/TPPC6-SS-Py micelles.

Fig. S22 Viability of A549 cells measured by the MTT assay after treating with 

different concentration of PEG-P[5]A/TPPC6-SS-Py, TPPC6-SS-Py and PEG-P[5]A 

without light irradiation.



Fig. S23 UV-Vis absorption spectra of DPBF with supremolecular micelles after 

irradiation for different times (inset: plot of absorbance versus concentration).
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