Supporting Information

Redox-responsive Supramolecular Amphiphilies Based on Pillar[5]arene for Enhanced Photodynamic Therapy

Ye Chen, Leilei Rui, Lichao Liu, Weian Zhang*

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

*Correspondence to: Weian Zhang (<u>wazhang@ecust.edu.cn</u>)

1. Synthesis of PEG-P[5]A

Poly(ethylene glycol)-functionalized pillar[5]arene (PEG-P[5]A) was prepared according to our previous work¹ and the synthetic procedure was shown in **Scheme**. **S1**.

2. Synthesis of TPPC6-SS-COOH

The carboxyl-termined porphyrin (TPPC6-SS-COOH) was prepared according to our previous work² and TPPC6-SS-COOH was further used to synthesize pyridinium-terminated porphyrin derivative bearing a disulfide bond (TPPC6-SS-Py), as shown in **Scheme. S2**.

3. Synthesis of the Model Guest Compound (G_M)

1-Bromobutane (0.685 g, 5 mmol) and excessive amount of pyridine (0.5 mL, 6 mmol) were refluxed in acetone at 70 °C for 1 day. After the solvent was removed under vacuum, the product G_M , *N*-butyl pyridinium bromide was obtained as a yellow solid (0.98 g, 90%). ¹H NMR (400 MHz, D₂O) δ (ppm): 9.47 (d, 2H, pyridinium-H), 8.69 (t, 1H, pyridinium-H), 8.18 (m, 2H, pyridinium-H), 5.03 (t, 2H, N-CH₂-), 2.02 (m, 2H, N-CH₂-CH₂-), 1.51 (m, 2H, N-(CH₂)₂-CH₂-), 1.01 (t, 3H, -CH₃) (**Fig. S15**).

Scheme. S1 Synthetic route of PEG-P[5]A

Scheme. S2 Synthetic route of TPPC6-SS-Py

Scheme. S3 Synthetic route of G_M

Fig. S1 ¹H NMR spectrum of 1

Fig. S2 ¹H NMR spectrum of 2

Fig. S3 ¹H NMR spectrum of 3

Fig. S4 ¹H NMR spectrum of 4

Fig. S5 ¹H NMR spectrum of 5

Fig. S6 ¹H NMR spectrum of PEG-P[5]A

Fig. S7 ¹H NMR spectrum of TPP-OH

Fig. S8 ¹H NMR spectrum of TPPC6-OH

Fig. S9 ¹H NMR spectrum of TPPC6-SS-COOH

Fig. S10 ¹H NMR spectrum of TPPC6-SS-Br

Fig. S11 ¹³C NMR spectrum of TPPC6-SS-Br in CDCl₃

Fig. S12 MALDI-TOF-MS spectrum for TPPC6-SS-Br, calcd for $C_{58}H_{53}BrN_4O_5S_2$, 1030.10; found: 1030.2435.

Fig. S13 ¹³C NMR spectrum of TPPC6-SS-Py in CDCl₃

Fig. S14 MALDI-TOF-MS spectrum of TPPC6-SS-Py, calcd for $[M\text{-}Br]^+$: $C_{63}H_{58}N_5O_5S_2,\,1028.39;\,found:\,1028.3729.$

Fig. S15 ¹H NMR spectrum of G_M

Fig. S16 Partial ¹H NMR spectra (400 MHz, DMSO- d_6) of a) PEG-P[5]A (2 mM), b) a 1:1 mixture of PEG-P[5]A and G_M and c) G_M (2 mM).

Fig. S17 Partial ¹H NMR spectra (400 MHz, CDCl₃) of G_M at a constant concentration of 2 mM with different concentrations of PEG-P[5]A: (a) 0.00 mM, (b) 0.5 mM, (c) 1.00 mM, (d) 2.00 mM, (e) 4.00 mM, and (f) only PEG-P[5]A at 2 mM.

Investigation of the Interactions between PEG-P[5]A and G_M

To determine the association constant for the complexation between PEG-P[5]A and G_M , fluorescence titration experiments were carried out in solutions which had a constant concentration of PEG-P[5]A (2.5×10^{-5} M) and varying concentrations of G_M . By a non-linear curve-fitting method, the association constant (K_a) of PEG-P[5]A \supset G_M was estimated.³

The non-linear curve-fittings were based on the equation:

$$\Delta F = (\Delta F_{\infty} / [H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0(1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5})) \quad (eq. 1)$$

Where ΔF is the fluorescence intensity changes at 330 nm at [H]₀, ΔF_{∞} is the fluorescence intensity changes at 330 nm when PEG-P[5]A is completely complexed, [G]₀ is the initial concentration of G_M, and [H]₀ is the fixed initial concentration of PEG-P[5]A.

Fig. S18 Fluorescence spectra of PEG-P[5]A (2.5×10^{-5} M) upon addition of G_M (0 - 14. 5 × 10⁻⁵ M) in DMF at room temperature. Upon addition of G_M, emission from PEG-P[5]A was quenched, indicating the formation of the PEG-P[5]A-G_M complex.

Fig. S19 The fluorescence changes of PEG-P[5]A upon addition of G_M . The red solid line was obtained from the non-linear curve-fitting using eq. 1.

Fig. S20 Mole ratio plot for PEG-P[5]A and G_M, indicating a 1:1 stoichiometry.

Fig. S21 Plot of the I_{382}/I_{372} ratio with different concentrations of PEG-P[5]A /TPPC6-SS-Py micelles.

Fig. S22 Viability of A549 cells measured by the MTT assay after treating with different concentration of PEG-P[5]A/TPPC6-SS-Py, TPPC6-SS-Py and PEG-P[5]A without light irradiation.

Fig. S23 UV-Vis absorption spectra of DPBF with supremolecular micelles after irradiation for different times (inset: plot of absorbance versus concentration).

References

- 1. L. Rui, L. Liu, Y. Wang, Y. Gao and W. Zhang, ACS Macro Lett., 2016, 5, 112-117.
- 2. F. Liu, Y. Ma, L. Xu, L. Liu and W. Zhang, *Biomater. Sci.*, 2015, **3**, 1218-1227.
- 3. Q. Duan, Y. Cao, Y. Li, X. Hu, T. Xiao, C. Lin, Y. Pan and L. Wang, J. Am. Chem. Soc., 2013, **135**, 10542-10549.