Supporting Information

Thiophene-Substituted Phenothiazine-Based Photosensitisers for Radical and Cationic Photopolymerizations Reaction under Visible Laser Beams (405 and 455nm)

Pengjie Chao^{*a*, *b*, *c*}, Renquan Gu^{*b*}, Xiaoyu Ma^{*b*}, Tao Wang^{**a*, *b*} and Yuming Zhao^{*d*}

^aState Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University

of Chemical Technology, Beijing 100029, China

^bDepartment of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China

^cDepartment of Chemistry, South University of Science and Technology of China(SUSTC), No.

1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China

^dDepartment of Chemistry, Memorial University St. John's, NL, Canada A1B 3X7

*corresponding E-mail: wangtwj2000@163.com Telephone: 010-64435350

1. Synthesis of EPTZ[1, 2]

Yield: 95.15%; ¹H NMR (400 MHz, CDCl3) δ 7.20 (dd, *J* = 12.5, 6.5 Hz, 4H), 6.93 (dd, *J* = 18.4, 7.7 Hz, 4H , 3.96 (q, *J* = 6.78 Hz, 2H), 1.45 (t, *J* = 7.03 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 145.03, 127.39, 127.24, 124.49, 122.35, 115.15, 41.78, 13.07.

2. Synthesis of HPTZ [3]

Yield: 82.33%; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, J = 7.58 Hz, 1H), 6.92 (dd, J = 18.7, 7.7 Hz, 1H), 3.87 (t, J = 6.8, 2H), 1.83 (m, 2H), 1.50–1.42 (m, 2H), 1.36–1.30 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.29, 127.42, 127.17, 124.93, 122.35, 115.44, 60.40, 47.50, 31.48, 26.69, 22.60, 14.00.

3. Synthesis of MBrEPTZ [2, 4, 5]

Yield: 74.37%; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 7.2 Hz, 2H), 7.17 (t, *J* = 7.75 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 6.99 – 6.90 (m, 1H), 6.87 (d, *J* = 8.08 Hz, 1H), 6.72 (d, *J* = 9.07 Hz, 1H), 3.87 (q, *J*=7.6, 2H), 1.42 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz,CDCl₃) δ130.16, 129.85, 129.67, 129.55, 127.49, 126.84, 123.80, 122.67, 116.34, 116.22, 115.24, 114.45, 41.89, 12.91.

4. Synthesis of DBrEPTZ[6]

Yield: 68.76%; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 2.3 Hz, 1H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 2H), 6.69 (d, *J* = 8.6 Hz, 2H), 3.84 (q, *J* = 6.85 Hz, 2H), 1.39 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.76, 130.15, 129.62, 125.94, 116.34, 114.76, 42.05, 12.80.

5. Synthesis of MBrHPTZ [7]

Yield: 80.11%. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dq, *J* = 4.0, 2.2 Hz, 2H), 7.16 (dd, *J* = 9.0, 8.1, 1.3 Hz, 2H), 6.92 (dd, *J* = 29.0, 7.5 Hz, 2H), 6.71 (dd, *J* = 8.2, 4.9 Hz, 1H), 3.79 (q, *J* = 6.9 Hz, 2H), 1.84–1.74 (m, 2H), 1.49–1.40 (m, 2H), 1.36–1.29 (m, 4H), 0.90 (t, *J* =7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 130.12, 129.83, 129.73, 129.63, 127.45, 127.30, 126.48, 122.68, 116.67, 116.56, 115.57, 114.76, 47.64, 31.41, 26.59, 26.51, 22.59, 13.99.

6. Synthesis of DBrHPTZ

Yield: 61.53%; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.3 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 3H), 6.70 (d, *J* = 8.4 Hz, 2H), 3.78 (q, *J* = 6.9 Hz, 2H), 1.76 (m, 2H), 1.41 (m, 2H), 1.33–1.28 (m, 4H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.13, 130.12, 129.71, 126.49, 116.67, 114.78, 47.62, 31.38, 26.66, 26.50, 22.57, 13.98.

7. Synthesis of MBrFEPTZ [8, 9]

Yield: 79.65%. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.66 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.29–7.25 (m, 1H), 7.23 (d, *J* = 8.2 Hz, 1H), 6.93 (d, *J* = 8.5 Hz, 1H), 6.75 (d, *J* = 8.7 Hz, 1H), 3.96 (q, *J* = 7.0 Hz, 2H), 1.45 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.88, 149.85, 142.29, 131.26, 130.36, 130.26, 129.70, 128.29, 125.60, 123.82, 116.68, 115.81, 114.58, 42.59, 12.73.

8. Synthesis of MBrFHPTZ

Yield: 77.41%. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.67 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.29–7.24 (m, 2H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.74 (d, *J* = 8.6 Hz, 1H), 3.89–3.84 (m, 2H), 1.81 (m, 7.4 Hz, 2H), 1.44 (m, 2H), 1.37–1.28 (m, 4H), 0.90 (t, *J* = 7.0, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.90, 150.34, 142.67, 131.30, 130.24, 129.80, 128.46, 127.56, 126.17, 124.41, 117.09, 115.81, 115.00, 48.10, 31.34, 26.62, 26.44, 22.55, 13.96.

Dyes	λ _{max} (nm)	ε _{max} ×10 ⁴ (M ⁻¹ ·cm ⁻¹)	λ _{max} (nm)	ε _{max} ×10 ⁴ (M ⁻¹ ·cm ⁻¹)	ε _{max2} ×10 ³ (M ⁻¹ ·cm ⁻¹)(405nm)	ε _{max2} ×10 ³ (M ⁻¹ ·cm ⁻¹)(455 nm)
ThEPTZ	307.7	3.18	363.3	0.87	3.37	0.33
Th ₂ EPTZ	317.6	4.69	375.4	1.26	8.87	1.86
ThFEPTZ	327.7	9.93	435.4	1.02	6.93	9.19
ThHPTZ	308.3	2.82	363.4	0.76	2.88	0.33
Th ₂ HPTZ	317.5	4.02	375.4	1.11	7.58	1.51
ThFHPTZ	327.4	3.54	435.4	0.94	6.37	8.36

Table S1. Optical absorption properties of the dyes ThPTZs (5×10^{-5} mol/L)

Table S2. Epoxy conversions of E51 in a laminate obtained under air upon exposure to different visible laser diodes for 300 s and final conversion (Cf) in the presence of ThPTZs/ION (0.1%: 3.0%, w/w); And EPTZ/ION (0.1%: 3.0%, w/w) as references.

	Epoxy Conversion (%) for E51						
ThPTZs/ION	405	nm	455 nm				
	300 s	Cf	300 s	Cf			
ThEPTZ/ION	58.2	62.3	62.8	64.1			
ThHPTZ/ION	56.5	60.8	64.4	65.6			
Th2EPTZ/ION	70.5	72.2	68.5	70.2			
Th2HPTZ/ION	67.5	69.4	69.2	70.9			
ThFEPTZ/ION	67.1	68.7	71.4	72.8			
ThFHPTZ/ION	65.8	67.3	72.7	74.7			
EPTZ/ION	14.7	20.3	15.9	21.4			

Table S3. Double bond conversions of TPGDA in a laminate obtained under air upon exposure to different visible laser diodes for 100 and 200 s in the presence of ThPTZs/ION (0.1%/1.0%, w/w); EPTZ/ION (0.1%/1.0%, w/w), CQ/TEA (0.1%/10%, w/w) and ION as references.

	Double Conversion (%) for TPGDA						
ThPTZs/ION	405	5 nm	455 nm				
	100 s	200 s	100 s	200 s			
ThEPTZ/ION	44.7	62.5	39.4	73.6			
ThHPTZ/ION	39.9	57.8	32.4	71.8			
Th2EPTZ/ION	74.9	80.7	79.6	79.8			
Th2HPTZ/ION	69.8	80.0	79.9	80.5			
ThFEPTZ/ION	76.1	77.1	82.1	82.0			
ThFHPTZ/ION	78.2	78.9	83.5	83.5			
EPTZ/ION	7.9	15.4	11.3	18.8			

Figure S1. Normalized fluorescence emission spectra of the other dyes in DMF solution ($M=5 \times 10^{-5} \text{ mol/L}$).

Figure S2. Cyclic voltammogram curves of ThHPTZ, Th2PTZ and ThFHPTZ in DCM

Figure S3. Optimized geometry, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of ThHPTZ, Th2HPTZ and ThFHPTZ at the B3LYP/6-31G* level.

References

[1] Petran A, Terec A, Bogdan E, Soran A, Lakatos E, Grosu I. Thiophene-based macrocycles via the Suzuki–Miyaura cross coupling reaction. Tetrahedron. 2014;70(38):6803-9.

[2] Yun D-H, Yoo H-S, Heo S-W, Song H-J, Moon D-K, Woo J-W, et al. Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole. Journal of Industrial and Engineering Chemistry. 2013;19(2):421-6.

[3] Kim SH, Sakong C, Chang JB, Kim B, Ko MJ, Kim DH, et al. The effect of N-

substitution and ethylthio substitution on the performance of phenothiazine donors in dye-sensitized solar cells. Dyes and Pigments. 2013;97(1):262-71.

[4] Tacca A, Po R, Caldararo M, Chiaberge S, Gila L, Longo L, et al. Ternary thiophene–X–thiophene semiconductor building blocks (X=fluorene, carbazole, phenothiazine): Modulating electronic properties and electropolymerization ability by tuning the X core. Electrochimica Acta. 2011;56(19):6638-53.

[5] Li Z, Dong Q, Li Y, Xu B, Deng M, Pei J, et al. Design and synthesis of solution processable small molecules towards high photovoltaic performance. Journal of Materials Chemistry. 2011;21(7):2159.

[6] Hemgesberg M, Ohlmann DM, Schmitt Y, Wolfe MR, Müller MK, Erb B, et al. Simple Access to Sol-Gel Precursors Bearing Fluorescent Aromatic Core Units. European Journal of Organic Chemistry. 2012;2012(11):2142-51.

[7] Li P, Tong H, Liu J, Ding J, Xie Z, Wang L. An A'–A–D–A–A' type small molecule based on 2,7-carbazole for solution-processed organic solar cells with high open-circuit voltage. RSC Advances. 2013;3(45):23098.

[8] Liu B, Wang R, Mi W, Li X, Yu H. Novel branched coumarin dyes for dyesensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. Journal of Materials Chemistry. 2012;22(30):15379.

[9] Chu H-C, Sahu D, Hsu Y-C, Padhy H, Patra D, Lin J-TS, et al. Structural planarity and conjugation effects of novel symmetrical acceptor–donor–acceptor organic sensitizers on dye-sensitized solar cells. Dyes and Pigments. 2012;93(1-3):1488-97.