Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

pH-Triggered Release of Gemcitabine from Polymer Coated Nanodiamonds Fabricated by RAFT polymerization and Copper Free Click Chemistry

Haiwang Lai, Mingxia Lu, Hongxu Lu, Martina H. Stenzel* and Pu Xiao*

Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, Australia.

Corresponding Authors: m.stenzel@unsw.edu.au; p.xiao@unsw.edu.au

1. Synthesis.

1.1 RAFT agent synthesis.

Figure S1. ¹H NMR spectrum of DBCO-CTA in CDCl₃.

Figure S2. ¹³C NMR spectrum of DBCO-CTA in CDCl₃.

1.2 Monomer synthesis.

Figure S3. ¹H NMR spectrum of HEAGem monomer in d_6 -DMSO.

Figure S4. ¹⁹F NMR spectrum of HEAGem monomer in d_6 -DMSO.

1.3 Polymerization (Synthesis of prodrug polymers with DBCO end groups).

Figure S5. ¹H NMR spectrum of DBCO-POEGMEA₄₅ in d_6 -DMSO.

Figure S6. ¹H NMR spectrum of DBCO-PHEAGem₁₆ after hydrolysis to release all the drug (resulting in DBCO-PHEA₁₆) in d_6 -DMSO.

Dialysis for 0 h

Dialysis for 16 h

Figure S7. The turbidity of DBCO-PHEAGem₁₆ in dialysis bag against acidic water (pH 3) at beginning and 16 h.

Figure S8. ¹H NMR spectrum of DBCO-PHEAGem₂-*co*-POEGMEA₁₈ in *d*₆-DMSO.

Figure S9. ¹H NMR spectrum of DBCO-PHEAGem₁₂-*co*-POEGMEA₂₈ after hydrolysis to release all the drug (resulting in DBCO-PHEA₁₂- POEGMEA₂₈) in *d*₆-DMSO.

Figure S10. SEC (DMAc) traces of A) DBCO-PHEAGem₁₂-*co*-POEGMEA₂₈, B) DBCO-PHEAGem₁₆, C) DBCO-PHEAGem₁₀-*co*-POEGMEA₁₄, D) DBCO-POEGMEA₄₅, E) DBCO-PHEAGem₂-*co*-POEGMEA₁₈, F) DBCO-PHEAGem₂₀-*co*-POEGMEA₄₀, and G) DBCO-PHEAGem₁₆-*b*-POEGMEA₃₈.

Scheme S2. Proposed side reactions in DBCO-CTA mediated RAFT polymerization.

2. Surface functionalization of NDs.

Scheme S3. Surface functionalization of NDs.

Figure S11. ¹H NMR spectrum of 2-azidethoxylethanol in CDCl₃.

Figure S12. ¹H NMR spectrum of 4-(2-(2-azidoethoxy)ethoxy)-4-oxobutanoic acid in CDCl₃.

Figure S13. FTIR spectra of ND-N₃, and ND-N₃@DBCO-CTA.

3. Surface coating with polymer.

Scheme S4. Coupling the prodrug polymer to the surface of NDs using SPAAC click chemistry.

Figure S14. TGA graph of NDs obtained after mixing ND-N₃ and PHEAGem₃-*co*-POEGMEA₂₄ and 3 times of centrifuge and washing cycles with methanol.

Figure S15. TGA curves of A) ND@PHEAGem₁₂-*co*-POEGMEA₂₈ and B) ND@PHEAGem₂*co*-POEGMEA₁₈.

	Polymer				Grafting
Samples	percentage on	Mn	Mn by GPC	D(nm)	density
	NDs ^{<i>a</i>}	by NMR			(chains nm ⁻²)
ND@POEGMEA45	17%	22200	23800	150	0.404
ND@PHEAGem ₁₆ -b-	20%	26300	34800	159	0.428
POEGMEA ₃₈					
ND@PHEAGem ₁₀ -co-	18%	12000	16600	182	0.961
POEGMEA ₁₄					
ND@ PHEAGem ₂₀ -co-	25%	28500	36700	165	0.512
POEGMEA ₄₀					
ND@PHEAGem2-co-	20%	10200	14000	272	1.87
POEGMEA ₁₈					
ND@PHEAGem ₁₂ -co-	19%	19700	22800	226	0.775
POEGMEA ₂₈					

Table S1. Grafting densities of the prepared polymer coated NDs determined by TGA, molecular weight and particle sizes.

Number of chains on NDs:

$$\frac{\Delta m}{\text{Chains}=Mn} * NA$$

Where Δm is the polymer percentage grafted on NDs, Mn is the molecular weight calculated from NMR and NA is Avogadro constant.

The specific surface are of a sphere:

$$SSA = \frac{6}{D * \rho}$$

 $\rho = 3.52 \text{ g cm}^{-3} = 3.52 \times 10^{-21} \text{ g nm}^{-3}$

Grafting density:

$$D = \frac{chains}{SSA}$$

Figure S16. Correlation between grafting densities of polymer coated NDs determined by TGA and molecular weight.

4. Drug release.

Figure S17. Chromatograms of gemcitabine hydrogen chloride standard in pH 5.0 buffer solution with concentration ranging from 3 μ g mL⁻¹ to 150 μ g mL⁻¹.

Figure S18. Gemcitabine calibration curve correlating the concentration of gemcitabine in pH 5.0 buffer solution with the area under the peak as analyzed by HPLC.

The equation for the fitted linear plot is:

Area=107587*concentration+3799

Figure S19. Chromatograms of gemcitabine released from ND@PHEAGem₂₀-*co*-POEGMEA₄₀ in pH 5.0 buffer solution at different time intervals.

Figure S20. Chromatograms of gemcitabine hydrogen chloride standard in pH 7.4 buffer solution with concentration ranging from 3 μ g mL⁻¹ to 150 μ g mL⁻¹.

Figure S21. Gemcitabine calibration curve correlating the concentration of gemcitabine in pH 7.4 buffer solution with the area under the peak as analyzed by HPLC.

The equation for the fitted linear plot is:

Area=103482*concentration+50375

Figure S22. Chromatograms of gemcitabine released from ND@PHEAGem₂₀-*co*-POEGMEA₄₀ in pH 7.4 buffer solution at different time intervals.

Time	Area	Cumulative	Concentration	Area	Cumulative	Concentration
(h)	(pH 5.0)	Area	(µg mL ⁻¹)	(pH 7.4)	Area	(µg mL ⁻¹)
		(pH 5.0)			(pH 7.4)	
0.5	2105280	2105280	19.5	1259603	1259603	11.50
1	1047247	2152627	20.2	261001	1620694	15.0
1	104/34/	5152027	29.2	301081	1020084	13.0
1.5	924020	4076647	37.8	295647	1916331	17.8
2.5	1847349	5923996	55.0	511504	2427935	22.8
2.5	1505005	7500001	(0, 7)	401642	2000470	27.4
3.5	1585095	/509091	69.7	481643	2909478	27.4
55	2586274	10095365	93.8	866807	3776285	35.8
0.0	2000271	10090500	75.0	000007	3110203	55.0
9.5	2647907	12743272	118.4	1400160	5176445	49.4
10.5	(0(2)11	12420612	104.7	1040502	(217020	50.5
13.5	686341	13429613	124.7	1040583	6217028	59.5
24	146964	13576577	126.1	1656587	7873615	75 5
2 -T	140704	15576577	120.1	1050507	7075015	15.5
33	34409	13610986	126.4	808091	8681706	83.3
						-
48	10012	13620998	126.5	766779	9448485	90.7
60	nagligibla	13620008	126.5	286077	0734562	03 5
00	negingioie	13020770	120.3	2000//	2734302	75.5
84	negligible	13620998	126.5	353920	10088482	96.9
96	negligible	13620998	126.5	141799	10230281	98.3

Table S2. Peak areas at different time intervals and the corresponding concentration for drug release study of ND@PHEAGem₂₀-*co*-POEGMEA₄₀.

Drug content calculation by HPLC:

ND@PHEAGem₂₀-co-POEGMEA₄₀

Final drug concentration: 126.5 µg mL⁻¹

Concentration of NDs: 2 mg mL⁻¹

Drug content in NDs: 126.5/2 µg mg⁻¹=63.3 µg mg⁻¹

Drug content calculation by TGA and monomer ratio in polymer:

Ratio of HEAGem: OEGMEA in polymer: 1:2

Weight percentage of HEAGem: $\frac{1 * 463}{1 * 463 + 2 * 480} = 0.32$

Molecular weight of gemcitabine hydrogen chloride: 300 g mol⁻¹

0.25 * 0.32

Gemcitabine content if released completely: $463 \times 300 \times 1000 = 51.8 \ \mu g \ mg^{-1}$

Figure S23. Cumulative release of gemcitabine versus time from ND@PHEAGem₁₆-*b*-POEGMEA₃₈, ND@PHEAGem₁₀-*co*-POEGMEA₁₄, ND@PHEAGem₂-*co*-POEGMEA₁₈ and ND@PHEAGem₁₂-*co*-POEGMEA₂₈ in buffer solution with pH 5.0 and 7.4 with concentration of 2 mg mL⁻¹.

Figure S24. Cytotoxicity of Gemcitabine and polymer coated NDs.