Supporting Information

Synthesis of triphenylphosphine-based microporous organic nanotube frameworks supported Pd catalysts with excellent catalytic activity

Yang Xu, Tianqi Wang, Zidong He, Aiqing Zhong, Wei Yu, Buyin Shi and Kun Huang*

School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China.

Figure S1. ¹H NMR spectra of (A) PGM and (B) poly(GM-g-LA).

Figure S2. ${}^{31}P{}^{1}H$ NMR spectra of (A) DPPS monomer mixed with (B) copolymer precursors in [D₈]THF.

Figure S3. ¹³C NMR spectra of (A) PGM, (B) poly(GM-g-LA) and (C) poly(GM-g-LA-g-S/DPPS).

Figure S4. DLS analysis of poly(GM-g-LA-g-S/DPPS) bottlebrush polymer precursor in THF. Z-Average = 52 nm. PDI = 0.211.

Figure S5. XRD pattern of MONFs-PPh₃@Pd.

Figure S6. (A) TEM image and (B) N₂ sorption isotherm of MONFs-PPh₃@Pd-2. Pore size distribution was calculated by using the DFT methods provided inset.

Figure S7. Nitrogen adsorption and desorption isotherms of (A) MONFs-PPh₃-1 and (C) MONFs-PPh₃-2. Pore size distributions calculated using DFT methods (slit pore

models, differential pore volumes. pore width) of (B) MONFs-PPh₃-1 and (D) MONFs-PPh₃-2.

Figure S8. ¹H NMR characterization of (A) poly(GM-g-LA-g-S/DPPS) [precursor-1] and (B) S/DPPS block fragment from the precursor-1.

Figure S9. TEM images of (A) MOP-PPh₃@Pd and (B) MOP-PPh₃@Pd after 1st catalysis cycle.

Figure S10. (A) Nitrogen adsorption and desorption isotherms; (B) Pore size distribution calculated using DFT methods (slit pore models, differential pore volumes. pore width) of MOP-PPh₃@Pd.

Figure S11. Recyclability and reusability of the MONFs-PPh₃@Pd-1 for the model reaction.

Figure S12. XPS spectra of Pd species in MONFs-PPh₃@Pd-1 after 5 runs.

Figure S13. TEM image of MONFs-PPh₃@Pd-1 after 5 runs.

Figure S14. TGA analysis of MONFs-PPh₃@Pd-1.

Samples	S _{BET} [m²/g] ^{a)}	S_{micro} [m²/g] b)	S _{meso} [m²/g] ^{c)}	V _{Total} [cm ³ /g] ^{d)}	Dp [nm] ^{e)}
MONFs-PPh ₃ -1	542	179	363	0.73	1.27/3.17
MONFs-PPh ₃ @Pd-1	538	136	402	0.70	1.17/3.17
MONFs-PPh ₃ -2	763	225	538	1.21	1.28/4.76
MONFs-PPh ₃ @Pd-2	696	262	434	1.07	1.17/4.76
MOP-PPh ₃ @Pd	486	212	274	0.65	1.16/

Table S1. Porous properties comparison of different MONFs-based and MOP-based materials.

^{a)} BET specific surface area calculated from N₂ adsorption isotherm at 77.4 K; ^{b)} Microporous surface area calculated from t-plots; ^{c)} Mesoporous surface area; ^{d)} Total pore volume at $P/P_0 = 0.998$; ^{e)} Pore size calculated by density functional theory (DFT) methods (Microporous pore size/ Mesoporous pore size).

Pd Yield/% TOF/h⁻¹ Catalyst **Reaction conditions** Ref. Base mol% EtOH/H2O, 80°C, 99 55.0 1 KAPs(Ph-PPh₃)-Pd 0.60 $K_3PO_4 \cdot 3H_2O$ 3h, under N₂ EtOH/H2O, 80°C, <30 a) --2 Pd/MPP 0.20 K₂CO₃ 24h, in air EtOH/H₂O, 80°C, 100 585 3 Poly-NHC-2-Pd²⁺ 0.06 --3h, in air TBAB/H₂O, 80°C, 97 5.40 4 0.90 Pd/MIL-101 NaOMe 20h, under N_2 5 MOMP 4 0.50 K₂CO₃ H₂O, 80°C, 10h 92 18.4 6 Pd/POL-Ph₃P 2.00 K_2CO_3 Toluene, 80°C, 2h 96^{a)} --This EtOH/H2O, 80°C, 99 275 MONFs-PPh₃@Pd 0.12 K₂CO₃ 3h, under N₂ work

Table S2. Comparison of catalytic efficiency for catalytic Aryl chlorides model

 Suzuki-Miyaura coupling reaction with various Pd catalysts.

^{a)} These isolated yields were calculated based on the cross-coupling reaction between p-chloroacetophenone and phenylboronic acid.

Analytical data for compounds of the Suzuki-Miyaura coupling reactions.

Biphenyl

¹**H NMR (500 MHz, CDCl₃):** δ 7.59 (d, J = 7.5 Hz, 4H); 7.45 (t, J = 7.5 Hz, 4H); 7.35 (tt, 2H).

¹**H NMR (500 MHz, CDCl₃):** δ 8.04 (d, J = 8.5Hz, 2H); δ 7.69 (d, J = 8.5Hz, 2H); δ 7.64 (d, J = 8.5Hz, 2H); δ 7.44 (m, 3H); δ 2.64 (s, 3H).

4-Nitrobiphenyl

¹**H NMR (500 MHz, CDCl₃):** δ 8.30 (d, J = 8.5Hz, 2H); δ 7.74 (d, J = 8.5Hz, 2H); δ 7.62 (d, J = 7.5Hz, 2H); δ 7.50 (m, 3H).

3-Nitro-1,1'-biphenyl

¹**H NMR (500 MHz, CDCl₃):** δ 8.46 (d, J = 2.0Hz, 1H); δ 8.20 (dq, 1H); δ 7.91 (dq, 1H); δ 7.62 (m, 3H); δ 7.49 (t, J = 8.0Hz, 2H); δ 7.44 (m, 1H).

4-Methylbiphenyl

¹**H NMR (500 MHz, CDCl₃):** δ 7.58 (d, J = 8.0Hz, 2H); δ 7.49 (d, J = 8.0Hz, 2H); δ 7.43 (t, J = 7.5Hz, 2H); δ 7.31 (m, 1H); δ 7.25 (d, J = 8.0Hz, 2H); δ 2.39 (s, 3H).

¹**H NMR (500 MHz, CDCl₃):** δ 7.55 (m, 4H); δ 7.42 (d, J = 7.5Hz, 2H); δ 7.31 (t, J = 7.5 Hz, 1H); δ 6.98 (d, J = 9.0 Hz, 2H); δ 3.86 (s, 3H).

4-Trifluoromethylbiphenyl

¹**H NMR (500 MHz, CDCl₃):** δ 7.70 (s, 4H); δ 7.59 (d, J = 8.0Hz, 2H); δ 7.42 (m, 3H).

References

- 1. B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan and T. Li, *Adv Mater*, 2012, 24, 3390-3395.
- 2. Q. Song, Y. Jia, B. Luo, H. He and L. Zhi, *Small*, 2013, 9, 2460-2465.
- 3. S. Xu, K. Song, T. Li and B. Tan, J. Mater. Chem. A, 2015, 3, 1272-1278.
- B. Yuan, Y. Pan, Y. Li, B. Yin and H. Jiang, *Angewandte Chemie International Edition*, 2010, 49, 4054-4058.
- 5. C. Zhang, J.-J. Wang, Y. Liu, H. Ma, X.-L. Yang and H.-B. Xu, *Chemistry A European Journal*, 2013, **19**, 5004-5008.
- Y.-B. Zhou, C.-Y. Li, M. Lin, Y.-J. Ding and Z.-P. Zhan, *Advanced Synthesis & Catalysis*, 2015, 357, 2503-2508.