Supporting Information

Palladium nanoparticles supported on carbazole functionalized mesoporous organic polymer: synthesis and their application as efficient catalysts for Suzuki-
 Miyaura cross coupling reaction

Ying Mu ${ }^{\text {a }}$

${ }^{a}$ College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
${ }^{\text {b }}$ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699
Qianjin Street, Changchun 130012, P. R. China
'State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
Emails: wuql@jlu.edu.cn (Q.Wu); suqing@jlu.edu.cn (Q. Su)

Table of Contents

Fig. S1 ${ }^{13} \mathrm{C}$ CP-MAS NMR of CzMOP andPd@CzMOP... 2
Fig. S2 Pore size distrution of Pd@CzMOP.. 3
Fig. S3 Reusability of Pd@CzMOP for Suzuki coupling reaction.. 3
Fig. S4 Effect of reaction time on Suzuki coupling reaction using Pd@CzMOP 4
Fig. S5 PdNPs size distribution and HR-TEM images of Pd@CzMOP after five
cycles. . 4

Fig. S6 SEM image of Pd@CzMOP after five cycles .5
Fig. S7 XPS spectra of Pd@CzMOP (metallic Pd) after five cycles. 5
Fig. S8 XRD patterns of Pd@CzMOP after five cycles 6
Table S1 Effect of the reaction condition on Suzuki coupling reaction using Pd@CzMOP 7
Table S2 Hot filtration test on Suzuki coupling reaction using Pd@CzMOP 7
Spectral Data 8

Fig. S1 ${ }^{13} \mathrm{C}$ CP-MAS NMR of CzMOP (top) and Pd@CzMOP (bottom).

Fig. S2 Pore size distrution of Pd@CzMOP.

Fig. S3 Reusability of Pd@CzMOP for Suzuki coupling reaction.

Fig. S4 Effect of reaction time on the percentage conversion in the Pd@CzMOP catalysed reaction.

Fig. S5 HR-TEM images of Pd@CzMOP after five cycles (a). Pd NPs size distribution of Pd@CzMOP after five cycles (b).

Fig. S6 SEM image of Pd@CzMOP for Suzuki coupling reaction after five cycles.

Fig. S7 XPS spectra of Pd@CzMOP (metallic Pd) after five cycles.

Fig. S8 XRD patterns of Pd@CzMOP for Suzuki coupling reaction after five cycles.

Table S1 Effect of the reaction condition on Suzuki coupling reaction using Pd@CzMOPa.

		$\begin{gathered} \\ \text { In } 2_{2} \\ \text { Pime } \\ \hline \text { Base } \\ \text { Soven } \end{gathered}$		
Entry	Solvent	Time (h)	Base	Yield(\%) ${ }^{\text {b }}$
1	DMF	6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	96
2	THF	6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	94
3	EtOH	6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	96
4	toluene	6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	91
5	dioxane	6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	88
6	DMF	6	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	90
7	DMF	6	KOH	85
8	DMF	3	$\mathrm{K}_{2} \mathrm{CO}_{3}$	85
9	DMF	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	35

${ }^{a} \mathrm{Phl}(0.5 \mathrm{mmol})$, phenylboronic acid (0.75 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv), Solvent (5 mL), and $\mathrm{Pd} @ \mathrm{CzMOP}$ $(5 \mathrm{mg}) .{ }^{b}$ Isolated yield based on Phl.

Table S2 Hot filtration test ${ }^{\text {a }}$

	${\text { Yield }(\%)^{b}}$	
Catalyst	3 h	$(3+3) \mathrm{h}$
Pd@CzMOP	85	85

${ }^{a} \mathrm{Phl}$ (0.5 mmol), phenylboronic acid (0.75 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv), Solvent (5 mL), and $\mathrm{Pd} @ \mathrm{CzMOP}$ $(5 \mathrm{mg}) .{ }^{b}$ Isolated yield based on Phl.

Spectral Data

1-iodo-4-methoxybenzene: White solid (yield, 97%). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.56(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

9-(4-methoxyphenyl)-9H-carbazole: White solid (yield, 90\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.12(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$ ppm.

4-(9H-carbazol-9-yl)phenol: White solid (yield, 93\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.14(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

2,4,6-tris(4-(9H-carbazol-9-yl)phenoxy)-1,3,5-triazine: White solid (yield, $86 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=8.10(\mathrm{~d}, J=4 \mathrm{~Hz}, 6 \mathrm{H}), 7.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 6 \mathrm{H}), 7.49$
(d, J = $8 \mathrm{~Hz}, 6 \mathrm{H}), 7.38(\mathrm{~d}, J=12 \mathrm{~Hz}, 6 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.

1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.63(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 4 \mathrm{H}), 7.50-7.44(\mathrm{t}$, $J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.40-7.35(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

[1,1'-biphenyl]-4-carbonitrile: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75-7.66(\mathrm{~m}, 4 \mathrm{H})$, 7.61-7.57 (m, 2H), 7.52-7.45 (m, 2H), 7.45-7.40 (m, 1H) ppm.

4-nitro-1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.76-$ 7.72 (m, 2H), 7.65-7.61 (m, 2H), 7.53-7.42 (m, 3H) ppm.

4-methoxy-1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57-7.51(\mathrm{~m}, 4 \mathrm{H})$, $7.44-7.38(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$ ppm.

4-bromo-1,1'-biphenyl: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.58-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.48-$ $7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.33(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

4,4'-dibromo-1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.59-7.53(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.44-7.38(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm}$.

4-methyl-1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60-7.55$ (d, J = 8 Hz , $2 \mathrm{H}), 7.52-7.46(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.39(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.27-7.23 (d, J = $8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

[1,1'-biphenyl]-4-ol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.62-7.57(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54-7.49(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65-6.59(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

9-phenylanthracene: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.51(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69-7.65(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.32(\mathrm{~m}$, 2H) ppm.

[1,1'-biphenyl]-4,4'-dicarbonitrile: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm}$.

3-phenylthiophene: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.26(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2-fluoro-1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.35$ (m, 7H), 7.35$7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.

[1,1'-biphenyl]-4-amine: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.50(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44-7.35(\mathrm{q}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}$,

2H) ppm.

ethyl [1,1'-biphenyl]-4-carboxylate: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13-8.09$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.60(\mathrm{q}, 4 \mathrm{H}), 7.50-7.43(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44-4.36(\mathrm{q}, 2 \mathrm{H}), 1.44-1.39(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

2,4-nitro-1,1'-biphenyl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.69(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.26-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.00 (d, J = $9.5 \mathrm{~Hz}, 1 \mathrm{H}$).

ॠのウ．

