Supporting Information for

High porosity microspheres with functional groups sythesized by thiol-yne click suspension polymerization

Shengying Cai, †^{*a*} Zhulin Weng, † ^{*a*} Yaochen Zheng, *^{*a,b*} Bo Zhao,^{*a*} Zhengguo Gao ^{*a,b*} and Chao Gao*^{*a*}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China.

^b Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, P. R. China. **Figure S1.** Optical photographs of (a) epoxy-, (b) thioacetate-, (c) carboxy-, (d) tertamine-containing microspheres.

Figure S2. UV-Vis spectra of different Cu^{2+} ion contents in DMF solutions.

Figure S3. Work curve for DMF solutions of copper sulfate.

Figure S4. DSC results of liner epoxy-containing polythioether and various crosslinked microspheres prepared by thiol-click chemistry.

Figure S5. Freundlich adsorption isotherm models for the absorption of Cu^{2+} ions on the thioacetate-functional microspheres.

Table S1. Pore property of epoxy-containing microspheres (35 wt % PEG) measured

 by mercury porosimeter.

Figure. S1

Figure. S2

Figure. S3

Fig. S4

Figure. S5

Tabl	e S1
------	------

Total intrusion	Total pore	Average pore	Apparent	Porosity
volume	area	diameter	density	
1.5124 mL g ⁻¹	7.778 m ² g ⁻¹	0.78 µm	1.1040 g mL ⁻¹	62.45 %