Supporting Information for:

Cobaltocenium-containing polybenzimidazole polymers for alkaline

anion exchange membrane applications

Nanjun Chen, Hong Zhu*, Yuhao Chu, Rui Li, Yang Liu, Fanghui Wang State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, School of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China <u>Tel:+86-10-64444919</u>; E-mail: zhuho128@126.com

Table of content

Fig. S1: H-D exchange experiment of $DMCp_2Co^+PF_6^-$ cations in H_2O/D_2O and D_2O/KOH . Fig. S2: H-D exchange experiment of $DCCp_2Co^+PF_6^-$ cations in H_2O/KOH and D_2O/KOH . Fig. S3: ¹³CNMR spectra for (a) Cp_2Co^+ (b) $DMCp_2Co^+PF_6^-$ (c) $DCCp_2Co^+PF_6^-$ in 1M KOH/D₂O at 80°C at various times.

Fig. S4: Mass spectra for (a) Cp_2Co^+ , (b) $DMCp_2Co^+PF_6^-$, and (c) $DCCp_2Co^+PF_6^-$

Fig.S5: Arrhenius plots of hydroxide conductivity of cobaltocenium-containing polybenzimidazole membranes.

Fig. S1: ¹HNMR spectra evidence for H-D exchange of $DMCp_2Co^+PF_6^-$ in 1mol/L (a) H₂O/KOH and (b) D₂O/KOH at 80°C after 2 days: It can be seen that the ¹H signal belongs to -CH₃ (2.02 ppm) in D₂O/KOH decreases. But the ¹H signals for H₂O/KOH show no change, indicating that the H-D exchange occurs mainly on –CH₃.

Fig. S2: ¹HNMR spectra evidence for H-D exchange of $DCCp_2Co^+PF_6^-$ in 1mol/L (a) H₂O/KOH and (b) D₂O/KOH at 80 °C after 2 days: There is no difference between the ¹HNMR spectra in (a) and (b), indicating that there is no H-D exchange in $DCCp_2Co^+PF_6^-$

Fig. S3: ¹³CNMR spectra of (a) Cp_2Co^+ , (b) $DMCp_2Co^+PF_6^-$, and (c) $DCCp_2Co^+PF_6^-$ in 1 M KOH/D₂O at 80°C at various times.

Fig. S4: Mass spectra of (a) Cp_2Co^+ , (b) $DMCp_2Co^+PF_6^-$, and (c) $DCCp_2Co^+PF_6^-$

Fig. S5: Arrhenius plots of hydroxide conductivity of cobaltocenium-containing polybenzimidazole membranes.

The calculation of the degree of degradation of cobaltocenium cations in alkaline medium

The ¹HNMR spectra were used to estimate the degree of degradation of the three cobaltocenium cations in alkaline medium. For example, as shown in Fig. 3(a). The degree of degradation can be calculated by the relative integrated intensities of the indicated ¹H resonances. $(S_a+S_b+S_c+S_d+S_e)/S_1$ can be used to estimate the degree of degradation of Cp₂Co⁺ in Fig. 3(a), where S_a, S_b, S_c, S_d, S_e and S₁ are the relative integrated intensities of the peaks marked with a, b, c, d, e, and 1, respectively.