Electrospun carbon nanofiber@CoS2 core/sheath hybrid as efficient all-

pH hydrogen evolution electrocatalyst

Electronic Supplementary Information

Huahao Gu,^a Yunpeng Huang,^a Lizeng Zuo,^a Wei Fan*^b and Tianxi Liu*^{a,b}

^a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R.
China. E-mail: txliu@fudan.edu.cn, Tel: +86-21-55664197; Fax: +86-21-65640293.
^b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, 2999 North Renmin

Road, Shanghai 201620, P. R. China. E-mail: weifan@dhu.edu.cn

Calculation of loading ratio of the CoS₂ in CNF@CoS₂ hybrid:

Making a hypothesis that the mass percentage of CNF in $CNF@CoS_2$ hybrid is x while that of CoS_2 in $CNF@CoS_2$ hybrid is y. Consequently, x + y = 1.

From the TGA curve of pure CoS_2 , it can be found that through a complex phase change process, pure CoS_2 remains 74.3% of its original weight. In addition, from the TGA curve of pure CNF, it can be concluded that CNF has almost burned out at 700 °C in air atmosphere. Consequently, for CNF@CoS₂ hybrid with the residue weight percentage of 55.6%, equation can be listed as follows, $y \times 74.3\% + x \times 0 = 1 \times 55.6\%$.

According to the above two equations, y can be calculated as 74.8 wt% while x is 25.2 wt%, illustrating that CoS_2 accounts for the mass ratio of 74.8 wt% in the $CNF@CoS_2$ hybrid.

Figure captions:

Fig. S1 FESEM image of CNF.

Fig. S2 FESEM image of CNF@CoS₂-3 hybrid and its corresponding EDS mapping images.

Fig. S3 FESEM image of CNF@CoS₂-9 hybrid in higher magnification.

Fig. S4 FESEM image of CoS₂.

Fig. S5 XRD patterns of the products collected after thermal treatment of CNF@CoS₂-3 hybrid at 700 °C and 900 °C.

Fig. S6 Plots showing the extraction of the double layer capacitance (C_{dl}) for CNF@CoS₂-1 and CNF@CoS₂-9 hybrids at 0.2 V.

Fig. S7 Nyquist plots of CNF@CoS₂-3 hybrid at various overpotentials in 0.5 M H₂SO₄.

Fig. S8 FESEM image of CNF@CoS₂-3 hybrid after cycling for 2000 s at low and high magnifications.

Fig. S9 FESEM image of CNF@CoS₂-3 hybrid after cycling test.

Fig. S10 Time dependence of the current density for pure CoS_2 modified GCE recorded at -0.17 V versus RHE in 0.5 M H₂SO₄ solution.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8

(residual Nafion solution in white arrow)

Fig. S10