Electronic Supplementary Information (ESI)

Cobalt-Catalyzed Synthesis of Quinolines from the Redox-Neutral Annulation of Anilides and Alkynes

Qiangqiang Yan, ^a Zhengkai Chen, ^b Zhanxiang Liu, ^a Yuhong Zhang^{*,a,c}

^a ZJU-NHU United R&D Center, Department of Chemistry, Zhejiang University, Hangzhou 310027, China

^b Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China

^c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

E-mail: <u>yhzhang@zju.edu.cn</u>

Table of Contents

General Information	2
Optimization of the Reaction Conditions	3
Typical Procedure for the Product	4
Analytical Data for Products	5
MALDI-TOF	
Deuterium Labeling Experiment	20
References	21
Copies of ¹ H and ¹³ C NMR Spectra	22

General Information

All reactions were performed under air atmosphere in a 25 mL sealed tube. The other materials and solvents were purchased from common commercial sources and used without additional purification, if there is no special version. Starting materials, including diphenylacetylenes¹, [Cp*Co(CO)I₂]² were synthesized according to literature procedures. ¹H NMR spectra were recorded at 400 MHz using TMS as internal standard, ¹³C NMR spectra were recorded at 100 MHz using TMS as internal standard. The multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), triplet (t) and broad resonances (br). Mass spectroscopy data of the products were collected on an HRMS-TOF instrument.

Optimization of the Reaction Conditions ^[a]

	/NHAc	Ph Catalyst (1	10 mol %)	<>> ^N <><	
	+	Additive	e, Base		Ph
		Ph TFE, T	°C, 10h	Ph	
	1a	2a		3a	
Entry	Catalyst (mol %)	Additive (mol %)	Base (mol %)	T [º C]	Yield [%] ^[b]
1	$[{Cp*RhCl_2}_2]$	$Cu(OAc)_2(100)$	_	90	n. r .
2	$[(p-cymene)RuCl_2\}_2]$	KOAc(100)	Na ₂ CO ₃ (100)	90	n.r. ^[c]
3	$[Cp*Co(CO)I_2]$	_	KOAc(20)	90	trace
4	[Cp*Co(CO)I ₂]	_	Li ₂ CO ₃ (20)	90	15
5	$[Cp*Co(CO)I_2]$	$AgNTf_2(20)$	Li ₂ CO ₃ (20)	90	56
6	[Cp*Co(CO)I ₂]	AgOPiv(20)	Li ₂ CO ₃ (20)	90	30
7	$[Cp*Co(CO)I_2]$	AgOAc(20)	Li ₂ CO ₃ (20)	90	25
8	[Cp*Co(CO)I ₂]	AgOTf(20)	Li ₂ CO ₃ (20)	90	52
9	$[Cp*Co(CO)I_2]$	$Cu(OTf)_2(20)$	Li ₂ CO ₃ (20)	90	45
10	$[Cp*Co(CO)I_2]$	Sc(OTf) ₃ (20)	Li ₂ CO ₃ (20)	90	30
11	[Cp*Co(CO)I ₂]	FeCl ₃ (20)	Li ₂ CO ₃ (20)	90	trace
12	[Cp*Co(CO)I ₂]	$Mn(OAc)_2(20)$	Li ₂ CO ₃ (20)	90	trace
13	$[Cp*Co(CO)I_2]$	$ZnCl_2(20)$	Li ₂ CO ₃ (20)	90	trace
14	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	90	71
15	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	KOAc(20)	90	53
16	$[Cp*Co(CO)I_2]$	$Zn(OTf)_2(20)$	CaO(20)	90	62
17	[Cp*Co(CO)I ₂]	$Zn(OTf)_2(20)$	Na ₂ CO ₃ (20)	90	47
18	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	Cs ₂ CO ₃ (20)	90	25
19	$[Cp*Co(CO)I_2]$	$Zn(OTf)_2(20)$	Et ₃ N(20)	90	trace
20	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	76
21	[Cp*Co(CO)I ₂]	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	77 ^[d]
22	[Cp*Co(CO)I ₂]	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	130	76 ^[d]
23	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	64 ^[e]
24	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	n.r. ^[f]
25	$[Cp*Co(CO)I_2]$	$Zn(OTf)_2(20)$	Li ₂ CO ₃ (20)	120	52 ^[g]
26	[Cp*Co(CO)I ₂]	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	n.r. ^[h]
27	$[Cp*Co(CO)I_2]$	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	n.r. ^[i]
28	$Co(OAc)_2$	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	n.r.
29	CoBr ₂	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	n.r.
30	_	$Zn(OTf)_2(20)$	Li ₂ CO ₃ (20)	120	n.r.
31	[Cp*Co(CO)I ₂]	Zn(OTf) ₂ (20)	Li ₂ CO ₃ (20)	120	n.r. ^{[c}
]

^[a]Reaction conditions: **1a** (0.1mmol), 2a (0.15mmol), solvent (1.5 ml), 120 °C, 10 h, seal tube under air. ^[b]Isolated yield. ^[c]Without AgSbF₆. ^[d]Under N₂ atmosphere. ^[e]Under O₂ atmosphere.^[f] 1,4-dioxane as solvent. ^[g]DCE as solvent. ^[h]DMF as solvent. ^[i]Toluene as solvent.

Typical Procedure for the Product

To an oven-dried 25 mL sealed tube, amides 1 (0.1 mmol), alkynes 2 (0.15 mmol), $[Cp*Co(CO)I_2]$ (4.5 mg, 0.01 mmol), AgSbF₆ (6.8 mg, 0.02 mmol), Zn(OTf)₂ (7.2 mg, 0.02 mmol), Li₂CO₃ (1.5 mg, 0.02 mmol) and TFE (1.5 mL) were added under air atmosphere. The mixture was stirred for 10 h at 120 °C. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 5/1 with triethylamine), to afford the desired product 3 and 4.

Analytical Data for Products

2-methyl-3,4-diphenylquinoline (3a)

 $R_f = 0.52$ (hexane/EtOAc = 5/1); light yellow solid; yield: 76%(22.4mg); m.p = 166-168 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.15 (d, J = 8.4 Hz, 1H), 7.70 (t, J = 7.6Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.28-7.18 (m, 6H), 7.10-7.05 (m, 4H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.8, 146.9, 146.8, 138.5, 136.7, 134.1, 130.1, 130.1, 129.3, 128.4, 127.9, 127.7, 127.3, 126.9, 126.7, 126.3, 125.9, 25.3.HRMS (EI-TOF): Calculated for C₂₂H₁₇N [M]⁺ 295.1361, found :295.1358.

2,6-dimethyl-3,4-diphenylquinoline(3b)

 $R_f = 0.48$ (hexane/EtOAc = 5/1); light yellow solid; yield: 73%(22.5mg); m.p = 164-166 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, *J* = 8.5 Hz, 1H), 7.53 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.25-7.13 (m, 7H), 7.09-7.03 (m, 4H), 2.52 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.8, 146.2, 145.5, 138.8, 136.9, 135.6, 134.1, 131.4, 130.1, 130.1, 128.2, 127.9, 127.7, 127.2, 126.8, 126.2, 125.4, 25.3, 21.8. HRMS (EI-TOF) calcd for C₂₃H₁₉N (M⁺): 309.1517, found: 309.1521.

6-isopropyl-2-methyl-3,4-diphenylquinoline(3c)

R_f = 0.53 (hexane/EtOAc = 5/1); light yellow solid; yield: 71%(23.9mg); m.p = 129-131 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.07 (d, J = 8.4 Hz, 1H), 7.62 (dd, J = 8.4, 2.0 Hz, 1H), 7.28-7.16 (m, 7H), 7.11-7.03 (m, 4H), 2.98-2.92 (m, 1H) 2.55 (s, 3H), 1.22 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.8, 146.2, 145.5, 138.8, 136.9, 135.8, 134.1, 131.4, 130.1, 130.1, 128.2, 127.9, 127.7, 127.2, 126.8, 126.2, 125.4, 25.2, 21.8. HRMS (EI-TOF) calcd for C₂₅H₂₃N (M⁺): 337.1830, found: 337.1833

6-tert-butyl-2-methyl-3,4-diphenylquinoline(3d)

R_f = 0.5 (hexane/EtOAc = 5/1); light yellow solid; yield: 74%(25.9mg); m.p = 147-149 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.08 (d, J = 8.8 Hz, 1H), 7.79 (dd, J = 8.8, 1.6 Hz, 1H), 7.43 (d, J = 1.7 Hz, 1H), 7.29-7.15 (m, 6H), 7.10 (d, J = 7.6 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 2.53 (s, 3H), 1.27 (s, 9H).¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.0, 148.7, 146.8, 145.4, 139.8, 136.9, 134.0, 130.1, 128.1, 128.0, 127.9, 127.6, 127.2, 126.8, 125.8, 121.6, 35.0, 31.1, 25.2. HRMS (EI-TOF) calcd for C₂₆H₂₅N (M⁺): 351.1987, found: 351.1991

6-methoxy-2-methyl-3,4-diphenylquinoline(3e)

 $R_f = 0.39$ (hexane/EtOAc = 5/1); light yellow solid; yield: 82%(26.6mg); m.p = 157-160 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, J = 9.2 Hz, 1H), 7.36 (dd, J = 9.2, 2.8 Hz, 1H), 7.27-7.14 (m, 6H), 7.10-7.04 (m, 4H), 6.76 (d, J = 2.8 Hz, 1H), 3.70 (s, 3H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.3, 155.2, 145.7, 143.0, 138.8, 137.0, 134.4, 130.0, 130.0, 127.9, 127.8, 127.2, 127.2, 126.8, 121.3, 104.8, 55.4, 25.0. HRMS (EI-TOF) calcd for C₂₃H₁₉NO (M⁺): 325.1467, found: 325.1470.

6-ethoxy-2-methyl-3,4-diphenylquinoline(3f)

 $R_f = 0.57$ (hexane/EtOAc = 5/1); light yellow solid; yield: 63%(21.3mg); m.p = 149-

151 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.02 (d, J = 9.2 Hz, 1H), 7.35 (dd, J = 9.2, 2.8 Hz, 1H), 7.24-7.16 (m, 6H), 7.10-7.04 (m, 4H), 6.76 (d, J = 2.8 Hz, 1H), 3.90 (q, J = 14.0, 6.8 Hz, 2H), 2.50 (s, 3H), 1.36 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.6, 155.1, 145.6, 143.0, 138.9, 137.0, 134.3, 130.0, 130.0, 127.9, 127.8, 127.2, 126.8, 121.5, 105.7, 63.6, 25.1, 14.6.

HRMS (EI-TOF) calcd for C₂₄H₂₁NO (M⁺): 339.1623, found: 339.1626

6-fluoro-2-methyl-3,4-diphenylquinoline(3g)

 R_f = 0.46 (hexane/EtOAc = 5/1); light yellow solid; yield: 68%(21.2mg); m.p = 166-168 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11 (t, *J* = 7.4 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.26-7.17 (m, 6H), 7.11 (t, *J* = 8.2 Hz, 1H), 7.08-7.04 (m, 4H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.1 (d, *J*_{C-F} = 244.7 Hz), 156.2, 145.0, 145.0, 143.1, 137.3, 135.3, 129.9 (d, *J*_{C-F} = 9.0 Hz), 128.8 (d, *J*_{C-F} = 2.6 Hz), 128.8, 128.7, 126.9, 126.8, 126.4, 118.1 (d, *J*_{C-F}= 25.8 Hz), 108.9 (d, *J*_{C-F}= 23.1 Hz), 24.3. HRMS (EI-TOF): Calculated for C₂₂H₁₅F₂N [M]⁺ 313.1267, Found 313.1270.

6-chloro-2-methyl-3,4-diphenylquinoline(3h)

 $R_f = 0.5$ (hexane/EtOAc = 5/1); light yellow solid; yield: 72%(23.7mg); m.p = 200-201 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, J = 8.8 Hz, 1H), 7.62 (dd, J = 8.8, 2.0 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.29-7.16 (m, 6H), 7.08-7.03 (m, 4H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.3, 145.9, 145.4, 138.2, 136.1, 134.9, 131.7, 130.3, 130.0, 129.9, 128.0, 127.9, 127.6, 127.1, 127.0, 125.4, 25.4. HRMS (EI-TOF) calcd for C₂₂H₁₆ClN (M⁺): 329.0971, found: 329.0973.

6-bromo-2-methyl-3,4-diphenylquinoline(3i)

R_f = 0.5 (hexane/EtOAc = 5/1); light yellow solid; yield: 76%(28.3); m.p = 197-200 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.98 (d, J = 8.8 Hz, 1H), 7.75 (dd, J = 8.8, 2.4 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.30-7.15 (m, 6H), 7.09-7.03 (m, 4H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.5, 145.8, 145.6, 138.2, 136.0, 134.9, 132.6, 130.4, 130.0, 130.0, 129.9, 128.7, 128.0, 127.6, 127.5, 127.1, 119.9, 25.5.. HRMS (EI-TOF) calcd for C₂₂H₁₆BrN (M⁺): 373.0466, found: 373.0470

6-iodo-2-methyl-3,4-diphenylquinoline(3j)

 $R_f = 0.53$ (hexane/EtOAc = 5/1); light yellow solid; yield: 63%(26.5mg); m.p = 205-206 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.92 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.84-7.82 (m, 2H), 7.28-7.18 (m, 6H), 7.07-7.02 (m, 4H), 2.51 (s, 3H) ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.7, 146.0, 145.6, 138.2, 137.9, 136.0, 135.3, 134.8, 130.4, 130.0, 129.9, 128.2, 128.0, 127.9, 127.6, 127.0, 91.6, 25.5. HRMS (EI-TOF) calcd for $C_{22}H_{16}IN$ (M⁺): 421.0327, found: 421.0332.

ethyl 2-methyl-3,4-diphenylquinoline-6-carboxylate(3k)

R_f = 0.46 (hexane/EtOAc = 5/1); ight yellow solid; yield: 61%(22.4mg); m.p = 163-164 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.29-8.27 (m, 2H), 8.14 (d, J = 9.6 Hz, 1H), 7.27-7.20 (m, 6H), 7.10-7.04 (m, 4H), 3.87 (s, 3H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.9, 160.5, 149.0, 147.8, 138.2, 136.0, 134.9, 130.1, 130.0, 129.8, 129.0, 128.8, 128.0, 127.9, 127.6, 127.4, 127.1, 125.6, 52.3, 25.8. HRMS (EI-TOF) calcd for C₂₅H₂₁NO₂ (M⁺): 367.1572 , found: 367.1571. 2-methyl-6-nitro-3,4-diphenylquinoline(31)

R_f = 0.57 (hexane/EtOAc = 5/1); light yellow solid; yield: 48%(16.3mg); m.p = 188-189 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.47-8.44 (m, 2H), 8.22 (d, J = 8.8 Hz, 1H), 7.31-7.22 (m, 6H), 7.10-7.05 (m, 4H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.4, 149.1, 148.4, 145.2, 137.5, 136.0, 135.2, 130.4, 130.0, 129.8, 128.2, 128.2, 127.4, 125.6, 123.8, 122.7, 25.9. HRMS (EI-TOF) calcd for C₂₂H₁₆N₂O₂ (M⁺): 340.1212, found: 340.1215

2,7-dimethyl-3,4-diphenylquinoline(3m)

R_f = 0.52 (hexane/EtOAc = 5/1); light yellow solid; yield: 58%(17.9mg); m.p = 173-175 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.90 (s, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.27-7.14 (m, 7H), 7.09-7.04 (m, 4H), 2.56 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.7, 147.1, 146.5, 139.5, 138.7, 136.9, 133.3, 130.1, 130.1, 128.1, 127.8, 127.7, 127.6, 127.2, 126.8, 126.3, 124.3, 25.3, 21.8. HRMS (EI-TOF) calcd for C₂₃H₁₉N (M⁺): 309.1517, found: 309.1515.

7-methoxy-2-methyl-3,4-diphenylquinoline (3n)

R_f = 0.46 (hexane/EtOAc = 5/1); light yellow solid; yield: 53%(17.2mg); m.p = 161-162 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.46 (d, J = 2.4 Hz, 1H), 7.38 (d, J = 9.2 Hz, 1H), 7.25-7.14 (m, 6H), 7.08-7.03 (m, 5H), 3.97 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.5, 158.0, 148.7, 146.6, 138.8, 136.9, 132.1, 130.3, 130.1, 127.9, 127.8, 127.7, 127.2, 126.7, 121.3, 118.8, 106.7, 55.6, 25.3. HRMS (EI-TOF) calcd for C₂₃H₁₉NO (M⁺): 325.1467, found: 325.1469.

2,6,7-trimethyl-3,4-diphenylquinoline(30)

R_f = 0.46 (hexane/EtOAc = 5/1); light yellow solid; yield: 47%(15.1mg); m.p = 163-166 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.88 (s, 1H), 7.24-7.15 (m, 7H), 7.09-7.03 (m, 4H), 2.50 (s, 3H), 2.47 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.7, 146.2, 145.8, 139.3, 139.0, 137.1, 135.7, 133.3, 130.2, 130.1, 128.1, 127.8, 127.6, 127.1, 126.7, 125.7, 124.7, 25.3, 20.4, 20.2. HRMS (EI-TOF) calcd for C₂₄H₂₁N (M⁺): 323.1674, found: 323.1678

8-fluoro-2-methyl-3,4-diphenylquinoline(3p)

 R_f = 0.6 (hexane/EtOAc = 5/1); light yellow solid; yield: 57%(17.8mg); m.p = 157-159 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11 (t, *J* = 7.4 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.26-7.17 (m, 6H), 7.11 (t, *J* = 8.2 Hz, 1H), 7.08-7.04 (m, 4H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.1 (d, *J*_{C-F} = 244.7 Hz), 156.2, 145.0, 145.0, 143.1, 137.3, 135.3, 129.9 (d, *J*_{C-F} = 9.0 Hz), 128.8 (d, *J*_{C-F} = 2.6 Hz), 128.8, 128.7, 126.9, 126.8, 126.4, 118.1 (d, *J*_{C-F} = 25.8 Hz), 108.9 (d, *J*_{C-F} = 23.1 Hz), 24.3. HRMS (EI-TOF): Calculated for C₂₂H₁₅F₂N [M]⁺ 313.1267, Found 313.1270.

2-methyl-3,4-diphenylbenzo[g]quinolone(3q)

R_f = 0.48 (hexane/EtOAc = 5/1); light yellow solid; yield: 63%(21.7mg); m.p = 157-159 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.69 (s, 1H) 8.08 (d, J = 8.4 Hz, 1H), 8.04 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.2Hz, 1H) 7.33-7.29 (m, 3H), 7.25-7.16 (m, 5H), 7.10 (d, J = 6.8 Hz, 2H) 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.4, 146.2, 143.7, 138.7, 136.9, 133.7, 133.6, 131.5, 130.2, 130.1, 128.5, 128.4, 128.3, 128.2, 128.0, 127.8, 127.4, 126.9, 126.3, 126.2, 126.1, 125.6, 26.1.

2,3,4-triphenylquinoline(3r)

R_f = 0.61 (hexane/EtOAc = 5/1); light yellow solid; yield: 56%(20.1mg); m.p = 175-177 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.26 (d, J = 8.4 Hz, 1H), 7.75-7.71 (m, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.39-7.37 (m, 2H), 7.30-7.27 (m, 3H), 7.23-7.20 (m, 3H), 7.15-7.12 (m, 2H), 7.01-6.98 (m, 2H), 6.90-6.88 (m, 2H).¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.9, 147.7, 147.3, 141.1, 138.3, 136.9, 132.9, 131.3, 130.3, 129.9, 129.7, 129.4, 127.8, 127.7, 127.6, 127.3, 127.3, 126.6, 126.6, 126.6, 126.3.

HRMS (EI-TOF): Calculated for C₂₇H₁₉N [M]⁺ 357.1517, Found : 357.1520.

2-ethyl-3,4-diphenylquinoline(3s)

R_f = 0.53 (hexane/EtOAc = 5/1); light yellow solid; yield: 67%(20.7mg); m.p = 130-131 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.16 (d, J = 8.4 Hz, 1H), 7.71-7.67 (m, 1H), 7.48 (dd, J = 8.0, 0.8 Hz, 1H), 7.41-7.37 (m, 1H), 7.24-7.17 (m, 6H), 7.09-7.07 (m, 4H), 2.84 (q, J = 7.6 Hz, 2H), 1.23 (t, J= 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.3, 147.1, 146.9, 138.3, 136.9, 133.7, 130.3, 130.0, 129.1, 128.7, 127.7, 127.6, 127.1, 126.8, 126.6, 126.2, 125.8, 30.5, 13.8. HRMS (EI-TOF): Calculated for C₂₃H₁₉N [M]⁺ 309.1517, Found : 309.1519.

S

2-methyl-3,4-dip-tolylquinoline(4a)

 $R_f = 0.47$ (hexane/EtOAc = 5/1); light yellow solid; yield: 71%(22.9mg); m.p = 115-

116 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.07-7.02 (m, 4H), 6.98-6.93 (m, 4H), 2.53 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.1, 145.9, 145.8, 135.7, 135.2, 134.6, 133.1, 132.8, 128.9, 128.8, 127.9, 127.8, 127.6, 127.4, 125.7, 125.6, 124.7, 24.4, 20.2, 20.2.

HRMS (EI-TOF): Calculated for C₂₄H₂₁N [M]⁺ 323.1674, Found :323.1674.

3,4-bis(4-ethylphenyl)-2-methylquinoline(4b)

R_f = 0.62 (hexane/EtOAc = 5/1); light yellow solid; yield: 67%(23.5mg); m.p = 111-112 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.14 (d, J = 8.2 Hz, 1H), 7.68 (t, J = 7.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.08-7.03 (m, 4H), 7.00-6.94 (m, 4H), 2.60 (t, J = 7.6 Hz, 4H), 2.56 (s, 3H), 1.23-1.17 (m, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.1, 147.2, 146.6, 143.1, 142.6, 135.8, 134.3, 133.9, 130.1, 129.9, 129.1, 128.2, 127.3, 127.1, 126.8, 126.6, 125.8, 28.5, 28.5, 25.3, 15.4, 15.4. HRMS (EI-TOF): Calculated for C₂₆H₂₅N [M]⁺ 351.1987, Found: 351.1990.

3,4-bis(4-methoxyphenyl)-2-methylquinoline(4c)

R_f = 0.25 (hexane/EtOAc = 5/1); light yellow solid; yield: 73%(25.9mg); m.p = 176-178 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.10 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.02-6.94 (m, 4H), 6.84-6.76 (m, 4H), 3.79 (s, 3H), 3.78 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.5, 158.4, 158.2, 146.9, 146.7, 134.0, 131.3, 131.2, 131.1, 129.1, 129.0, 128.5, 126.7, 126.7, 125.7, 113.4, 113.2, 55.2, 55.1, 25.5. HRMS (EI-TOF): Calculated for C₂₄H₂₁NO₂ [M]⁺ 355.1572, Found :355.1575.

3,4-bis(4-fluorophenyl)-2-methylquinoline(4d)

R_f = 0.42 (hexane/EtOAc = 5/1); light yellow solid; yield: 61%(20.2mg); m.p = 121-123 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.17 (d, *J* = 8.2 Hz, 1H), 7.74-7.70 (m, 1H), 7.49-7.42 (m, 2H), 7.07-6.93 (m, 8H), 2.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.9 (d, *J*_{C-F} = 246.1 Hz), 161.7(d, *J*_{C-F} = 245.5 Hz), 157.7, 146.6, 146.4, 134.1 (d, *J*_{C-F} = 3.6 Hz), 133.4, 132.4 (d, *J*_{C-F} = 3.8 Hz), 131.7 (d, *J*_{C-F} = 8.1 Hz), 131.5 (d, *J*_{C-F} = 8.1 Hz), 129.6, 128.3, 126.4, 126.3, 126.3, 115.2 (d, *J*_{C-F} = 21.3 Hz), 115.0 (d, *J*_{C-F} = 21.2 Hz), 25.0.

HRMS (EI-TOF): Calculated for C₂₂H₁₅F₂N [M]⁺ 331.1173, Found :331.1172.

3,4-bis(4-chlorophenyl)-2-methylquinoline(4e)

R_f = 0.47 (hexane/EtOAc = 5/1); light yellow solid; yield: 57%(20.7mg); m.p = 183-184 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11 (d, J = 8.2 Hz, 1H), 7.71 (t, J = 7.4 Hz, 1H), 7.45-7.40 (m, 2H), 7.28-7.23 (m, 4H), 7.03-6.98 (m, 4H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.5, 147.1, 145.5, 136.9, 134.9, 133.6, 133.2, 132.9, 131.3, 131.3, 129.5, 128.8, 128.5, 128.3, 126.3, 126.2, 125.9, 25.4. HRMS (EI-TOF): Calculated for C₂₂H₁₅Cl₂N [M]⁺ 363.0582, Found :363.0583.

3,4-bis(4-bromophenyl)-2-methylquinoline(4f)

R_f = 0.42 (hexane/EtOAc = 5/1); light yellow solid; yield: 68%(30.7mg); m.p = 182-183 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.14 (d, J = 8.2 Hz, 1H), 7.74-7.70 (m, 1H), 7.45-7.39 (m, 6H), 6.97-6.95 (m, 4H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.4, 146.7, 145.8, 138.1, 135.3, 132.8, 131.7, 131.6, 131.5, 131.2, 129.7, 128.5, 126.4, 126.2, 125.8, 121.9, 121.5, 25.2.

HRMS (EI-TOF): Calculated for C₂₂H₁₅Br₂N [M]⁺ 450.9571, Found :450.9572.

3,4-bis(3-fluorophenyl)-2-methylquinoline(4g)

 R_f = 0.46 (hexane/EtOAc = 5/1); light yellow solid; yield: 52%(17.2mg); m.p = 102-104 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.20 (d, *J* = 8.2 Hz, 1H), 7.78 (t, *J* = 6.8 Hz, 1H), 7.55-7.48 (m, 2H), 7.39-7.26 (m, 2H), 7.05-6.85 (m, 6H), 2.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.7 (d, *J*_{C-F} = 245.3 Hz), 161.6 (d, *J*_{C-F} = 245.0 Hz), 161.55 (d, *J*_{C-F} = 245.7 Hz), 161.54 (d, *J* = 245.8 Hz), 156.7, 146.4, 139.7 (d, *J*_{C-F} = 6.5 Hz), 137.9 (d, *J*_{C-F} = 8.5 Hz), 132.1, 129.4, 129.4, 129.2, 129.2, 129.1, 129.0 (d, *J*_{C-F} = 2.3 Hz), 128.9, 128.8, 128.0, 125.6, 125.59, 125.1, 125.08, 116.5 (d, *J*_{C-F} = 21.3 Hz), 116.4 (d, *J*_{C-F} = 22.3 Hz), 113.8 (d, *J*_{C-F} = 20.6 Hz), 113.5 (d, *J*_{C-F} = 20.0 Hz), 24.5. HRMS (EI-TOF): Calculated for C₂₂H₁₅F₂N [M]⁺ 331.1173, Found 331.1171.

2-methyl-3,4-di(thiophen-2-yl)quinolone(4h)

 $R_f = 0.55$ (hexane/EtOAc = 5/1); light yellow solid; yield: 72%(22.1mg); m.p = 121-

123 °C; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.10 (d, J = 8.2 Hz, 1H), 7.778 (d, J = 8.2 Hz, 1H), 7.72 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.37 (d, J = 5.0 Hz, 1H), 7.31 (d, J = 5.2 Hz, 1H), 7.04-7.01 (m, 1H), 6.99-6.97 (m, 2H), 6.87 (dd, J = 3.4, 1.0 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 158.6, 147.2, 142.0, 138.8, 136.5, 129.9, 129.6, 128.8, 128.6, 128.3, 127.2, 126.7, 126.6, 126.6, 126.5, 126.4, 25.4.

HRMS (EI-TOF): Calculated for C₁₈H₁₃NS₂ [M]⁺ 307.0489, Found :307.0488.

2,4-dimethyl-3-phenylquinoline(4i)

 $R_f = 0.48$ (hexane/EtOAc = 5/1); Light yellow oil; yield: 61%(14.2mg); ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.07 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.56-7.40 (m, 4H), 7.22-7.20 (m, 2H), 2.43 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 157.6, 146.6, 141.3, 139.5, 134.9, 129.3, 129.1, 128.9, 128.7, 127.4, 126.7, 125.8, 124.1, 25.4, 15.9.

HRMS (EI-TOF): Calculated for C₁₇H₁₅N [M]⁺ 233.1204, Found: 233.1207.

2,4-dimethyl-3-p-tolylquinoline(4j)

 $R_f = 0.48$ (hexane/EtOAc = 5/1); Light yellow oil; yield: 64%(15.8mg); ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H), 2.43 (s, 3H), 2.39(s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 157.9, 146.5, 141.4, 137.0, 136.5, 134.9, 129.4, 129.2, 129.1, 128.8, 126.8, 125.7, 124.1, 25.4, 21.3, 15.9.

HRMS (EI-TOF): Calculated for C₁₈H₁₇N [M]⁺ 247.1361, Found :247.1358.

3-(4-ethylphenyl)-2,4-dimethylquinoline(4k)

 $R_f = 0.48$ (hexane/EtOAc = 5/1); Light yellow oil; yield: 63%(16.4mg); ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 2.78-2.72 (m, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 1.32 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 157.9, 146.4, 143.3, 141.5, 136.6, 135.0, 129.2, 129.0, 128.9, 128.1, 126.8, 125.7, 124.1, 28.6, 25.4, 16.0, 15.5. HRMS (EI-TOF): Calculated for C₁₉H₁₉N [M]⁺ 261.1517, Found :261.1519.

3-(4-butylphenyl)-2,4-dimethylquinoline(4l)

 $R_f = 0.5$ (hexane/EtOAc = 5/1); Light yellow oil; yield: 61%(17.6mg); ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.6 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 2.70 (t, J = 7.8 Hz, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 1.70-1.65 (m, 2H), 1.45-1.39 (m, 2H), 0.98(t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 157.9, 146.4, 142.0, 141.5, 136.6, 135.0, 129.2, 129.1, 128.8, 128.7, 126.8, 125.7, 124.1, 35.5, 33.6, 25.4, 22.5, 16.0, 14.0.

HRMS (EI-TOF): Calculated for C₂₁H₂₃N [M]⁺ 289.1830, Found :289.1833

3-(4-methoxyphenyl)-2,4-dimethylquinoline(4m)

 $R_f = 0.47$ (hexane/EtOAc = 5/1); Light yellow oil; yield: 66%(17.4mg); ¹H NMR

(400 MHz, CDCl₃, ppm) δ 8.07 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.13 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 8.2 Hz, 2H), 3.89 (s, 3H), 2.45 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) 158.9, 158.1, 146.3, 142.0, 134.7, 131.5, 130.4, 128.9, 128.9, 126.8, 125.8, 124.2, 114.1, 55.3, 25.3, 16.0. HRMS (EI-TOF): Calculated for C₁₈H₁₇NO [M]⁺ 263.1310, Found :263.1312.

2-methyl-3,4-dipropylquinoline(4n)

 $R_f = 0.48$ (hexane/EtOAc = 5/1); Light yellow oil; yield: 43%(9.8mg); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.98-7.92 (m, 2H), 7.59 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 3.04-2.99 (m, 2H), 2.79-2.75 (m, 2H), 2.74 (s, 3H), 1.71-1.56 (m, 4H), 1.13-1.04 (m, 6H).¹³C NMR (100 MHz, CDCl₃, ppm) 158.4, 146.2, 144.9, 131.9, 129.2, 127.9, 126.5, 125.4, 123.7, 31.7, 30.3, 24.2, 24.1, 23.7, 14.8, 14.7. HRMS (EI-TOF): Calculated for C₁₆H₂₁N [M]⁺ 227.1674, Found: 227.1671.

MALDI-TOF

Materials and methods

Chemicals

The used matrixes 2,5-dihydroxybenzoic acid (DHB) was obtained from Sigma and used without further purification.

Matrix Preparation

20 mg/ml solutions of the DHB were prepared in pure tetrahydrofuran(THF) under vortexing. Matrix solutions were prepared freshly each day.

MALDI-TOF MS spectrometry

To an oven-dried 25 mL sealed tube was added substrate acetanilide **1a** (0.2 mmol, 27.0 mg), acetanilide **2a** (0.3 mmol, 56.1 mg), $[Cp*Co(CO)I_2]$ (9.0 mg, 0.02 mmol), AgSbF₆ (13.6 mg, 0.04 mmol), Zn(OTf)₂ (14.4 mg, 0.04 mmol), Li₂CO₃ (3.0 mg, 0.04 mmol) and TFE (1.5 mL). The mixture was stirred for 20min at 120 °C. The mixture was then cooled to room temperature. 20µl aliquot of the corresponding mixtures was mixed with 20µl of the corresponding matrix solution. Then 2.5µl of the mixed solution was taken out and subsequently directly deposited onto the MALDI target, to dry in nature.

All MALDI-TOF mass spectra were acquired on a BRUKER ultraflexTM workstation (Bruker Daltonics, Germany). The system utilizes a pulsed modified Nd:YAG Laser(Smartbeam II), emitting at 355 nm. The extraction voltage was 25 kV in all cases.

Detected by MALDI-TOF:694.328 Exact Mass: 694.1046

Detected by MALDI-TOF:721.642 Exact Mass: 721.1854

Deuterium Labeling Experiment

Parrellel experiment

To an oven-dried 25 mL sealed tube was added substrate **1a** (0.2 mmol, 27.0 mg) or **1a**- d_5 (0.2 mmol, 28.0 mg), **2a** (0.3 mmol, 56.1 mg), [Cp*Co(CO)I₂] (9.0 mg, 0.02 mmol), AgSbF₆ (13.6 mg, 0.04 mmol), Zn(OTf)₂ (14.4 mg, 0.04 mmol), Li₂CO₃ (3.0 mg, 0.04 mmol) and TFE (1.5 mL). The mixture was stirred for 20min at 120 °C. These two mixtures were then cooled to room temperature and combined, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 5/1 with triethylamine) to afford the desired product. The ratio of product **3a/3a**- d_4 was analyzed by ¹H NMR.

To an oven-dried 25 mL sealed tube was added substrate 1a (0.1 mmol, 13.5 mg) and $1a-d_5$ (0.1 mmol, 14.0 mg), 2a (0.3 mmol, 56.1 mg), $[Cp*Co(CO)I_2]$ (9.0 mg,

0.02 mmol), AgSbF₆ (13.6 mg, 0.04 mmol), Zn(OTf)₂ (14.4 mg, 0.04 mmol), Li₂CO₃ (3.0 mg, 0.04 mmol) and TFE (1.5 mL). The mixture was stirred for 20min at 120 °C. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 5/1 with triethylamine) to afford the desired product. The ratio of product **3a/3a-d₄** was analyzed by ¹H NMR.

References

 M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, 4, 3199.
B. Sun, T. Yoshino, S. Matsunaga and M. Kanaia, *Adv. Synth. Catal.*, 2014, 356, 1491.

Copies of ¹H and ¹³C NMR Spectra

2-Methyl-3,4-diphenylquinoline(3a)

2-Methyl-3,4-diphenylquinoline(3b)

6-isopropyl-2-methyl-3,4-diphenylquinoline(3c)

6-tert-butyl-2-methyl-3,4-diphenylquinoline(3d)

6-ethoxy-2-methyl-3,4-diphenylquinoline(3f)

6-fluoro-2-methyl-3,4-diphenylquinoline(3g)

6-chloro-2-methyl-3,4-diphenylquinoline(3h)

6-bromo-2-methyl-3,4-diphenylquinoline(3i)

6-iodo-2-methyl-3,4-diphenylquinoline(3j)

2-methyl-6-nitro-3,4-diphenylquinoline (31)

2-Methyl-3,4-diphenylquinoline(3m)

7-methoxy-2-methyl-3,4-diphenylquinoline(3n)

2,6,7-trimethyl-3,4-diphenylquinoline(3o)

8-fluoro-2-methyl-3,4-diphenylquinoline(3p)

2-methyl-3,4-diphenylbenzo[g]quinolone(3q)

2,3,4-triphenylquinoline(3r)

2-ethyl-3,4-diphenylquinoline(3s)

2-methyl-3,4-dip-tolylquinoline(4a)

3,4-bis(4-ethylphenyl)-2-methylquinoline(4b)

3,4-bis(4-methoxyphenyl)-2-methylquinoline(4c)

3,4-bis(4-fluorophenyl)-2-methylquinoline(4d)

3,4-bis(4-chlorophenyl)-2-methylquinoline(4e)

3,4-bis(4-bromophenyl)-2-methylquinoline(4f)

3,4-bis(3-fluorophenyl)-2-methylquinolisne(4g)

S49

2,4-dimethyl-3-phenylquinoline(4i)

2,4-dimethyl-3-p-tolylquinoline(4j)

3-(4-ethylphenyl)-2,4-dimethylquinoline(4k)

3-(4-butylphenyl)-2,4-dimethylquinoline(4l)

2-methyl-3,4-dipropylquinoline(4n)

