tert-Butyl nitrite-mediated vicinal sulfoximation of alkenes with sulfinic acids: a highly efficient approach toward α -sulfonyl ketoximes

Fei Chen, +^a Neng-Neng Zhou, +^a Jun-Long Zhan, ^a Bing Han, *^a and Wei Yu*^a

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China hanb@lzu.edu.cn; yuwei@lzu.edu.cn

Supporting Information

• Contents	page
• General	S2
General experimental procedure	S2
• Follow-up transformations of α -sulfonyl ketoxime	S2
• References	S4
Analytical Data for Products	S4
• ORTEP Plot, Crystal Data and Refinement Results for $4u$ and $5v$	S16
 Copies of ¹H and ¹³C Spectra 	S18

General:

All reagents were purchased from commercial suppliers and used without further purification. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. Melting points were determined without correction on a digital melting-point apparatus. ¹H NMR (400 MHz) and ¹³C NMR (100.6 MHz) spectra were recorded in CDCl₃, DMSO–*d*₆ and Acetone–*d*₆. Chemical shifts (δ) are reported in ppm using TMS as internal standard and spin-spin coupling constants (*J*) are given in Hz. EI-MS spectra were measured on a TRACE DSQ spectrometer by direct inlet at 70 eV. The high-resolution mass spectra (HRMS) were measured on a Bruker Daltonics APEX II 47e spectrometer by ESI. Data collections for crystal structure were performed at room temperature (293 K) using MoK α radiation on a Bruker APEXII diffractometer. Integration of the frames and data reduction was carried out using SAINT. The structure was solved by direct methods using SHELXS-97.

General experimental procedure:

Typical experimental procedure for TBN-mediated vicinal sulfoximation of alkenes:

A 25 mL oven-dried round-bottom flask were charged with sulfinic acids 2 (0.3 mmol, 1.0 equiv.), CHCl₃ (2 ml), pyridine (0.3 mmol, 1.0 equiv.), alkenes 1 (0.6 mmol, 2.0 equiv.) and TBN (0.6 mmol, 2.0 equiv.) under Argon (1 atm). The round-bottom flask was then sealed and the mixture was stirred at room temperature for 5 h. Upon completion of the reaction, the solvent was then removed under vacuo. The residue was purified with chromatography column on silica gel (gradient eluent of EtOAc/petroleum ether: 1/20 to 1/1) to give the corresponding products **4** or **5** in yields listed in Table 2 and Table 3. The identity and purity of the product was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

Follow-up transformations of α-sulfonyl ketoxime:

Acetylation of 4a to synthesize product 6

The mixture of 4a (0.5 mmol), acetic anhydride (1.0 mmol, 2.0 equiv.), was stirred at

room temperature to 100 °C for 3h. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and washed with H_2O (10 mL) and brine (10 mL). The organic layers were dried over anhydrous Na_2SO_4 and evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford the product **6** with hexane/ethyl acetate as the eluent.¹

Deoximation of 4a to synthesize product 7

To a stirred solution of **4a** (0.2 mmol) in DCM saturated with water prior to use (1 mL, DCM was saturated by shaking with equal amount of water and allowed to settle for 30 minutes before draining the aqueous layer) was added Dess-Martin periodinane (0.22 mmol) at room temperature. As soon as the reaction was complete (as indicated by TLC), the reaction mixture was diluted with 5% aqueous sodium hydroxide solution (5 mL) and DCM (20 mL) followed by water (10 mL). The organic layer was washed with water (10 mL), dried over sodium sulphate and evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford the product **7** with hexane/ethyl acetate as the eluent.²

Beckman rearrangement of 4a to synthesize product 8

To a solution of **4a** (0.2 mmol) in anhydrous CH₃CN (1 mL), 0.1 mL of BF₃•OEt₂ in CH₃CN (borontrifluoride etherate in CH₃CN solvent, 0.2 mol/L) was added. The mixture was refluxed for 3 h under an Argon atmosphere. After the reaction had been completed, the organic layer was diluted with 10 mL of ethyl acetate, washed with water and brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography with hexane/ethyl acetate as the eluent.³

Synthesis of (3-phenyl-2-(phenylsulfonyl)-2H-azirine) 9 from 4a

To a solution of **4a** (1 mmol) in methylene chloride (5 mL) was added triethylamine (0.56 mL, 4 mmol). The solution was cooled to 0 °C under an Argon atmosphere, and trifluoroacetic anhydride (0.17 mL, 1.2 mmol) was added dropwise. The reaction was stirred for 0.5 h then quenched with water. The organic layer was separated and dried (MgSO₄). The drying agent was removed by filtration and the solvent was evaporated. The resulting crude product was purified by silica gel column chromatography with

hexane/ethyl acetate as the eluent.⁴

References:

[1] L.-F. Ran, Z.-H. Ren, Y.-Y, Wang and Z.-H. Guan, Green Chem., 2014, 16, 112.

[2] S. S. Chaudhari and K. G. Akamanchi, Tetrahedron Lett., 1998, 39, 3209.

[3] N. An, H.-J. Pi, L.-F. Liu, W.-T. Du and W.-P. Deng, Chin. J. Chem., 2011, 29, 947.

[4] K. L. Stevens, D. K. Jung, M. J. Alberti, J. G. Badiang, G. E. Peckham, J. M. Veal, M.

Cheung, P. A. Harris, S. D. Chamberlain and M. R. Peel, Org. Lett., 2005, 7, 4753.

Analytical Data for Products:

1-phenyl-2-(phenylsulfonyl)ethan-1-one oxime (4a)

White solid; (72 mg, 87%); mp: 123–124 °C; $R_f = 0.17$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.13 (brs, 1H), 7.84 (d, J = 7.6 Hz, 2H), 7.61 (m, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.41–7.47 (m, 2H), 7.34–7.40 (m, 3H), 4.75 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃): δ 148.0, 139.5, 133.8, 133.5, 133.0, 128.8, 128.6, 128.5, 122.6, 52.7; MS *m/z* (relative intensity, %): 275 (8.12), 211 (40.7), 196 (40.9), 143 (58.0), 105 (88.5), 103 (69.1), 77 (100); ESI–HRMS: *m/z* Calcd for [C₁₄H₁₃NO₃S+Na]⁺: 298.0508, found 298.0509.

1-phenyl-2-tosylethan-1-one oxime (4b)

White solid; (74 mg, 86%); mp: 139–141 °C; $R_f = 0.21$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, DMSO– d_6): δ 11.77 (s, 1H), 7.61–7.65 (m, 4H), 7.35–7.37 (m, 5H), 4.90 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100.6 MHz, DMSO– d_6): δ 145.6, 144.3, 136.9, 134.5, 129.4, 128.9, 128.2, 127.8, 126.4, 51.5, 21.0; MS m/z (relative intensity, %): 289 (0.1), 227 (27.2), 134 (23.3), 121 (30.8), 103 (100), 77 (29.6); ESI–HRMS: m/z Calcd for [C₁₅H₁₅NO₃S+Na]⁺: 312.0665, found 312.0667.

1-(4-methoxyphenyl)-2-tosylethan-1-one oxime (4c)

White solid; (83 mg, 87%); mp: 140–141 °C; $R_f = 0.06$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.27 (brs, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.70 (s, 2H), 3.83 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 161.0, 147.5, 144.8, 136.6, 129.4, 128.5, 128.1, 126.1, 114.0, 55.3, 52.7, 21.6; MS *m/z* (relative intensity, %): 319 (0.1), 240 (11.2), 135 (100), 133 (21.9), 91 (7.4), 77 (6.7); ESI–HRMS: *m/z* Calcd for [C₁₆H₁₇NO₄S+Na]⁺:342.0770, found 342.0772.

1-(3-methoxyphenyl)-2-tosylethan-1-one oxime (4d)

White solid; (79 mg, 83%); mp: 104–105 °C; $R_f = 0.21$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.54 (brs, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.16–7.28 (m, 5H), 6.92–6.95(m, 1H), 4.71 (s, 2H), 3.80 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 159.6, 147.8, 144.9, 136.5, 135.0, 129.6, 129.4, 128.4, 119.2, 115.8, 111.2, 55.3, 52.9, 21.6; MS *m/z* (relative intensity, %): 319 (39.4), 255 (20.8), 238 (19.3), 157 (32.8), 147 (16.2), 139(41.6), 133(100), 91 (23.0); ESI–HRMS: *m/z* Calcd for $[C_{16}H_{17}NO_4S+Na]^+$: 342.0770, found 342.0768.

1-(2-methoxyphenyl)-2-tosylethan-1-one oxime (4e)

White solid; (75 mg, 78%); mp: 112–114 °C; R_f = 0.27 (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.19 (brs, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.30–7.34 (m, 1H), 7.23–7.26 (m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 6.91–6.95 (m, 1H), 6.74 (d, J = 8.0 Hz, 1H), 4.93 (s, 2H), 3.73 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 157.0, 148.7, 144.3,

136.7, 131.1, 130.8, 129.2, 128.2, 122.9, 120.8, 110.8, 55.3, 53.3, 21.6; MS *m/z* (relative intensity, %): 319(1.6), 304 (9.0), 240 (3.6), 135 (100), 91(12.2); ESI–HRMS: *m/z* Calcd for $[C_{16}H_{17}NO_4S+Na]^+$: 342.0770, found 342.0773.

1-(4-chlorophenyl)-2-tosylethan-1-one oxime (4f)

White solid; (79 mg, 82%); mp: 144–145 °C; $R_f = 0.30$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, Acetone– d_6): δ 11.03 (brs, 1H), 7.67–7.73 (m, 4H), 7.34–7.39 (m, 4H), 4.86 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100.6 MHz, Acetone– d_6): δ 146.7, 145.7, 138.3, 135.4, 134.6, 130.3, 129.24, 129.17, 52.5, 21.6; MS *m/z* (relative intensity, %): 323 (7.4), 261(11.6), 259 (12.4), 157 (69.9), 139 (100), 91 (55.3); ESI–HRMS: *m/z* Calcd for $[C_{15}H_{14}CINO_3S+Na]^+$: 346.0275, found 346.0276.

1-(2-chlorophenyl)-2-tosylethan-1-one oxime (4g)

Colourless oil; (74 mg, 76%); (Z/E mixture; 1:0.7); $R_f = 0.21$ (hexanes/ethyl acetate 3:1); Major: ¹H NMR (400 MHz, CDCl₃): δ 8.95 (brs, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.33–7.36 (m, 2H), 7.27–7.32 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 4.83 (s, 2H), 2.38 (s, 3H); Minor: ¹H NMR (400 MHz, CDCl₃): 8.67 (brs, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.27–7.32 (m, 6H), 4.36 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 147.9, 146.8, 145.0, 144.8, 136.8, 135.8, 133.2, 132.3, 131.8, 131.1, 130.9, 130.7, 130.6, 130.5, 129.7, 129.8, 129.7, 129.4, 128.2, 128.0, 126.9, 126.5, 60.5, 54.0, 21.58, 21.55; MS *m/z* (relative intensity, %): 323 (1.4), 288 (100), 259 (34.7), 242 (34.2), 157 (79.5), 139 (97.3), 137 (86.1), 91 (54.8); ESI–HRMS: *m/z* Calcd for [C₁₅H₁₄CINO₃S+Na]⁺: 346.0275, found 346.0276.

1-(3-bromophenyl)-2-tosylethan-1-one oxime (4h)

White solid; (82 mg, 75%); mp: 107–108 °C; $R_f = 0.38$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.37 (brs, 1H), 7.66–7.71 (m, 3H), 7.57 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.20–7.26 (m, 3H), 4.69 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 146.7, 145.1, 136.3, 135.6, 132.6, 130.0, 129.6, 129.4, 128.4, 125.4, 122.7, 52.5, 21.6; MS *m/z* (relative intensity, %): 368(1.8), 304 (9.9), 303 (35.8), 197 (26.6), 183 (33.7), 157 (100), 155 (37.9), 139 (96.4), 102 (26.4), 77 (71.9); ESI–HRMS: *m/z* Calcd for [C₁₅H₁₄BrNO₃S+Na]⁺: 389.9770, found 389.9771.

(Z)-1-(4-methoxyphenyl)-2-tosylpropan-1-one oxime (4i)

White solid; (43 mg, 43%); mp: 133–134 °C; $R_f = 0.29$ (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃): δ 8.85 (brs, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.30 (q, J = 7.2 Hz, 1H), 3.81 (s, 3H), 2.40 (s, 3H), 1.59 (d, J = 7.2 Hz, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 160.1, 151.6, 144.8, 134.3, 129.8, 129.5, 129.3, 124.2, 113.5, 65.2, 55.2, 21.6, 14.0; ESI–HRMS: m/z Calcd for [C₁₇H₁₉NO₄S+H]⁺: 334.1108, found 334.1110.

(E)-1-(4-methoxyphenyl)-2-tosylpropan-1-one oxime (4i')

White solid; (35 mg, 35%); mp: 113–114 °C; $R_f = 0.35$ (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃): δ 8.94 (brs, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 5.32 (q, J = 7.2 Hz, 1H), 3.84 (s, 3H), 2.40 (s, 3H), 1.51 (d, J = 7.2 Hz, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 160.6, 152.9, 144.8, 136.0, 129.9, 129.5, 128.8, 125.5, 113.8, 57.5, 55.3, 21.6, 12.2; ESI–HRMS: m/z Calcd for [C₁₇H₁₉NO₄S+H]⁺: 334.1108, found 334.1109.

1,2-diphenyl-2-tosylethan-1-one oxime (4j)

White solid; (83 mg, 76%); mp: 132–133 °C; $R_f = 0.25$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.32 (s, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 7.2 Hz, 2H), 7.27–7.32 (m, 6H), 7.18–7.22 (m, 4H), 5.19 (s, 1H), 2.40 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 152.0, 144.7, 135.1, 133.0, 130.9, 129.9, 129.6, 129.28, 129.25, 129.2, 128.5, 128.3, 127.6, 75.3, 21.6; MS *m/z* (relative intensity, %): 365 (0.2), 210 (100), 193 (20.0), 179 (25.2), 132 (27.5), 91 (13.8), 77 (11.2); ESI–HRMS: *m/z* Calcd for [C₂₁H₁₉NO₃S+Na]⁺: 388.0978, found 388.0979.

2-tosyl-2,3-dihydro-1H-inden-1-one oxime (4k)

White solid; (78 mg, 86%); (Z/E mixture; 1:0.62); $R_f = 0.12$ (hexanes/ethyl acetate 3:1); Major: ¹H NMR (400 MHz, Acetone– d_6): δ 10.81 (brs, 1H), 8.29 (d, J = 7.6 Hz, 1H), 7.70–7.73 (m, 2H), 7.30–7.39 (m, 4H), 7.22–7.28 (m, 1H), 4.59 (dd, J = 2.4 Hz, J = 8.4 Hz, 1H), 3.53–3.69 (m, 2H), 2.39 (s, 3H); Minor: ¹H NMR (400 MHz, Acetone– d_6): 10.30 (s, 1H), 7.70–7.73 (m, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.30–7.39 (m, 4H), 7.22–7.28 (m, 1H), 5.17 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 3.41–3.51 (m, 2H), 2.39 (s, 3H); ¹³C NMR (100.6 MHz, Acetone– d_6): δ 154.2, 153.3, 146.0, 145.4, 145.33, 145.27, 137.9, 137.0, 136.0, 134.3, 131.8, 131.0, 130.2, 130.1, 129.8, 129.7, 128.1, 127.8, 126.01, 125.98, 122.0, 66.2, 64.6, 32.3, 31.6, 21.6, 21.5,; MS m/z (relative intensity, %): 301 (1.9), 237 (67.2), 220 (41.5), 157 (24.1), 145 (81.2), 128 (100), 105 (32.3), 91 (22.4), 77 (19.0); ESI–HRMS: m/z Calcd for [C₁₆H₁₅NO₃S+Na]⁺: 324.0665, found 324.0668.

2-((4-chlorophenyl)sulfonyl)-1-phenylethan-1-one oxime (41)

White solid; (82 mg, 88%); mp: 101–102 °C; $R_f = 0.34$ (hexanes/ethyl acetate 3:1); ¹H

NMR (400 MHz, CDCl₃): δ 8.70 (brs, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.57 (m, *J* = 6.8 Hz, 2H), 7.34–7.43 (m, 5H), 4.74 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃): δ 147.6, 140.6, 137.7, 133.3, 130.1, 130.0, 129.1, 128.7, 126.5, 52.8; MS *m/z* (relative intensity, %): 309 (0.6), 230 (31.0), 128 (22.5), 111 (18.6), 105 (100), 77 (33.4); ESI–HRMS: *m/z* Calcd for [C₁₄H₁₂CINO₃S+Na]⁺: 332.0119, found 332.0117.

2-(naphthalen-2-ylsulfonyl)-1-phenylethan-1-one oxime (4m)

White solid; (82 mg, 84%); mp: 126–127 °C; $R_f = 0.21$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, Acetone– d_6): δ 10.81 (s, 1H), 8.40 (s, 1H), 8.01–8.40 (m, 3H), 7.84–7.87 (dd, J = 1.6, J = 8.4 Hz, 1H), 7.69–7.75 (m, 3H), 7.65–7.68 (m, 1H), 7.30–7.33 (m, 3H), 4.98 (s, 2H); ¹³C NMR (100.6 MHz, Acetone– d_6): δ 147.1, 138.1, 135.9, 135.4, 132.6, 130.5, 130.1, 129.7, 129.6, 129.5, 128.7, 128.4, 128.0, 127.2, 123.8, 52.3; MS m/z (relative intensity, %): 325 (19.1), 261 (28.1), 244 (74.0), 210 (43.9), 193 (43.8), 127(100), 103(42.3), 77 (30.2); ESI–HRMS: m/z Calcd for $[C_{18}H_{15}NO_3S+Na]^+$: 348.0665, found 348.0666.

2-(ethylsulfonyl)-1-phenylethan-1-one oxime (4n)

N_OH SO₂Et

White solid; (59 mg, 87%); mp: 106–108 °C; $R_f = 0.15$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 9.26 (brs, 1H), 7.74–7.76 (m, 2H), 7.38–7.44 (m, 3H), 4.60 (s, 2H), 3.15 (q, J = 7.6, 2H), 1.40 (t, J = 7.2, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 148.5, 133.7, 130.2, 128.7, 126.7, 49.5, 49.4, 6.3; MS m/z (relative intensity, %): 227 (5.3), 212 (9.6), 105 (100), 103 (23.1), 91 (13.2), 77 (30.1); ESI–HRMS: m/z Calcd for [C₁₀H₁₃NO₃S+Na]⁺: 250.0508, found 250.0510.

(Z)-1-tosylhexan-2-one oxime (4o)

Pale yellow solid; (20 mg, 25%); mp: 109–110 °C; $R_f = 0.30$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (brs, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.90 (s, 2H), 2.51 (t, J = 8.0 Hz, 2H), 2.44 (s, 3H), 1.44–1.51 (m, 2H), 1.28–1.38 (m, 2H), 0.91 (t, J = 7.6 Hz, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 152.4, 145.0, 135.4, 129.8, 128.4, 60.0, 27.4, 27.3, 22.7, 21.6, 13.7; ESI–HRMS: m/z Calcd for $[C_{13}H_{19}NO_3S+Na]^+$: 292.0978, found 292.0980.

(E)-1-tosylhexan-2-one oxime (4o')

Pale yellow solid; (41 mg, 51%); mp: 105–106 °C; $R_f = 0.43$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.48 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.23 (s, 2H), 2.43–2.48 (m, 5H), 1.46–1.53 (m, 2H), 1.28–1.37 (m, 2H), 0.91 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 149.9, 144.9, 136.5, 129.6, 128.3, 53.2, 33.5, 28.0, 22.2, 21.7, 13.7; MS *m/z* (relative intensity, %): 269 (0.2), 227 (12.8), 163 (100), 157 (20.8), 146 (29.4), 139 (43.6), 105 (24.8), 91 (33.9), 77 (11.6); ESI–HRMS: *m/z* Calcd for [C₁₃H₁₉NO₃S+Na]⁺: 292.0978, found 292.0976.

4-hydroxy-1-tosylbutan-2-one oxime (4p)

N[°]OH HO

Colourless oil; (56 mg, 73%); (Z/E mixture; 0.74:1); $R_f = 0.10$ (hexanes/ethyl acetate 2:1); Major: ¹H NMR (400 MHz, acetone– d_6): δ 10.29 (s, 1H), 7.72–7.79 (m, 2H), 7.40–7.44 (m, 2H), 4.11 (s, 2H), 3.79–3.82 (m, 2H), 3.75–3.78 (m, 1H), 2.75–2.78 (m, 2H), 2.44 (s, 3H); Minor: ¹H NMR (400 MHz, acetone– d_6):10.05 (s, 1H), 7.72–7.79 (m, 2H), 7.40–7.44 (m, 2H), 4.40 (s, 2H), 3.79–3.82 (m, 2H), 3.64–3.67 (m, 1H), 2.61–2.64 (m, 2H), 2.43 (s, 3H); ¹³C NMR (100.6 MHz, Acetone– d_6): δ 150.1, 147.5, 145.5, 138.4, 137.5, 130.6, 130.4, 129.2, 129.1, 61.6, 60.0, 59.0, 54.2, 37.5, 31.9, 21.6; ESI–HRMS: m/z Calcd for [C₁₁H₁₅NO₄S+Na]⁺: 280.0614, found 280.0615.

N-(4-(hydroxyimino)-5-tosylpentyl)-N,4-dimethylbenzenesulfonamide (4q)

White solid; (79 mg, 60%); (Z/E mixture; 0.82:1); $R_f = 0.28$ (hexanes/ethyl acetate 1:1); Major: ¹H NMR (400 MHz, CDCl₃): δ 7.83 (brs, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.31–7.36 (m, 4H), 4.24 (s, 2H), 2.97–3.02 (m, 2H), 2.70 (s, 3H), 2.48–2.56 (m, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 1.80–1.86 (m, 2H); Minor: ¹H NMR (400 MHz, CDCl₃): δ 8.16 (brs, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.31–7.36 (m, 4H), 3.97 (s, 2H), 2.97–3.02 (m, 2H), 2.69 (s, 3H), 2.48–2.56 (m, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 1.80–1.86 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃): δ 151.3, 148.5, 145.1, 145.0, 143.38, 143.35, 136.5, 135.5, 134.3, 134.1, 129.9, 129.72, 129.66, 128.3, 128.1, 127.40, 127.37, 60.7, 53.9, 49.8, 49.4, 34.8, 34.5, 31.0, 25.6, 23.8, 22.9, 21.6, 21.4; ESI–HRMS: m/z Calcd for [C₂₀H₂₆N₂O₅S₂+H]⁺: 439.1356, found 439.1358.

3-(hydroxyimino)-4-tosylbutyl benzoate (4r)

White solid; (93 mg, 86%); (Z/E mixture; 0.8:1); $R_f = 0.15$ (hexanes/ethyl acetate 3:1); Major: ¹H NMR (400 MHz, CDCl₃): δ 8.03 (brs, 1H), 7.98–8.02 (m, 2H), 7.77–7.79 (m, 1H), 7.72–7.74 (m, 1H), 7.54–7.58 (m, 1H), 7.41–7.45 (m, 2H), 7.28–7.34 (m, 2H), 4.53–4.56 (m, 2H), 4.04 (s, 2H), 3.03 (t, J = 6.4 Hz, 2H), 2.42 (s, 3H); Minor: ¹H NMR (400 MHz, CDCl₃): 7.98–8.02 (m, 2H), 7.77–7.79 (m, 1H), 7.72–7.74 (m, 1H), 7.67 (brs, 1H), 7.54–7.58 (m, 1H), 7.41–7.45 (m, 2H), 7.28–7.34 (m, 2H), 4.53–4.56 (m, 2H), 4.32 (s, 2H), 2.96 (t, J = 6.4 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 166.4, 166.3, 149.1, 146.5, 145.2, 145.1, 136.2, 135.2, 133.14, 133.08, 129.9, 129.8, 129.7, 129.60, 129.55, 128.43, 128.38, 128.35, 128.2, 61.1, 60.8, 60.6, 53.5, 33.3, 27.6, 21.6; ESI–HRMS: m/z Calcd for [C₁₈H₁₉NO₅S+Na]+: 384.0876, found 384.0879.

2-tosylcyclopentan-1-one oxime (4s)

White solid; (55 mg, 73%); mp: 119–120 °C; $R_f = 0.17$ (hexanes/ethyl acetate 3:1); ¹H

NMR (400 MHz, CDCl₃): δ 8.76 (brs, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.07 (dd, *J* = 3.2 Hz, *J* = 8.0 Hz, 1H), 2.54–2.63 (m, 1H), 2.46–2.51 (m, 1H), 2.44 (s, 3H), 2.37–2.42 (m, 1H), 2.06–2.14 (m, 1H), 1.90–1.97 (m, 1H), 1.72–1.80 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃): δ 159.2, 145.0, 134.6, 129.7, 129.2, 67.0, 27.4, 27.2, 22.1, 21.7; MS *m/z* (relative intensity, %): 253 (0.6), 189 (100), 172 (43.3), 139 (49.9), 103 (49.5), 91 (71.2); ESI–HRMS: *m/z* Calcd for [C₁₂H₁₅NO₃S+Na]⁺: 276.0665, found 276.0666.

2-tosylcycloheptan-1-one oxime (4t)

White solid; (64 mg, 76%); (Z/E mixture; 0.42:1); $R_f = 0.27$ (hexanes/ethyl acetate 3:1); Major: 1H NMR (400 MHz, acetone– d_6): δ 9.98 (s, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.24–7.28 (m, 2H), 3.81 (dd, J = 6.8 Hz, J = 12 Hz, 1H), 2.92–2.97 (m, 1H), 2.30 (s, 3H), 2.14–2.21 (m, 1H), 1.77–1.87 (m, 3H), 1.65–1.73 (m, 2H), 1.16–1.24 (m, 3H); Minor: 1H NMR (400 MHz, acetone– d_6): 9.68 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.24–7.28 (m, 2H), 4.92 (dd, J = 6.8 Hz, J = 12 Hz, 1H), 2.28 (s, 3H), 2.25–2.27 (m, 1H), 2.14–2.21 (m, 1H), 1.91–1.93 (m, 1H), 1.77–1.87 (m, 4H), 0.89–1.00 (m, 3H); ¹³C NMR (100.6 MHz, acetone– d_6): δ 155.7, 153.7, 145.3, 137.5, 136.8, 130.4, 130.2, 129.8, 69.7, 61.4, 31.8, 31.7, 31.5, 31.0, 27.1, 26.1, 26.0, 25.8, 25.6, 25.4, 21.60, 21.58; ESI–HRMS: m/z Calcd for $[C_{14}H_{19}NO_3S+Na]^+$: 304.0978, found 304.0981.

2-tosylcyclooctan-1-one oxime (4u)

White solid; (71 mg, 75%); (Z/E mixture; 0.09:1); $R_f = 0.30$ (hexanes/ethyl acetate 3:1); Major: ¹H NMR (400 MHz, acetone– d_6): δ 10.01 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.62 (dd, J = 3.6 Hz, J = 12.4 Hz, 1H), 2.65–2.70 (m, 1H), 2.30 (s, 3H), 2.11–2.17 (m, 1H), 2.05–2.09 (m, 1H), 1.96–2.03 (m, 1H), 1.91–1.93 (m, 1H), 1.62–1.68 (m, 1H), 1.47–1.57 (m, 3H), 1.35–1.42 (m, 1H), 1.16–1.23 (m, 1H), 1.01–1.09 (m, 1H); Minor: ¹H NMR (400 MHz, acetone– d_6): 9.81 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 H 8.0 Hz, 2H), 4.78 (dd, J = 6.0 Hz, J = 10.8 Hz, 1H), 2.39–2.42 (m, 1H), 2.29 (s, 3H), 2.05–2.09 (m, 2H), 1.96–2.03 (m, 2H), 1.62–1.68 (m, 1H), 1.47–1.57 (m, 3H), 1.35–1.42 (m, 1H), 1.16–1.23 (m, 1H), 1.01–1.09 (m, 1H); ¹³C NMR (100.6 MHz,): δ 155.7, 145.3, 136.4, 130.3, 129.9, 70.4, 27.2, 26.3, 26.0, 25.8, 25.6, 21.6, 21.2; MS *m/z* (relative intensity, %): 295 (0.1), 231 (15.3), 203 (48.8), 140 (100), 139 (32.8), 91 (21.2); ESI–HRMS: *m/z* Calcd for [C₁₅H₂₁NO₃S+Na]⁺: 318.1134, found 318.1135.

4-methyl-N-(2-tosylcyclohexyl)-N-(tosyloxy)benzenesulfonamide (5v)

White solid; (111 mg, 64%); mp: 143–144 °C; R_f = 0.26 (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (s, 2H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.27 (s, 2H), 7.20 (s, 2H), 4.52 (t, *J* = 8.0 Hz, 1H), 4.02 (t, *J* = 8.0 Hz, 1H), 2.46 (s, 3H), 2.44 (s, 3H), 2.42 (s, 3H), 1.50–1.72 (m, 6H), 1.05–1.54 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃): δ 145.9, 145.4, 144.3, 136.0, 132.5, 132.4, 130.4, 130.3, 129.63, 129.58, 129.54, 129.45, 128.9, 63.7, 27.9, 27.5, 24.3, 23.8, 21.9, 21.8, 21.6; ESI–HRMS: *m/z* Calcd for [C₂₇H₃₁NO₇S₃+Na]⁺: 600.1155, found 600.1154.

methyl-2-(hydroxyimino)-3-tosylpropanoate (4w)

White solid; (74 mg, 91%); mp: 109–110 °C; $R_f = 0.09$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 10.03 (brs, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 4.59 (s, 2H), 3.77 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 162.4, 145.2, 141.4, 136.5, 129.8, 128.3, 53.1, 51.4, 21.6; MS *m/z* (relative intensity, %): 271 (3.3), 240 (7.7), 235 (100), 207 (42.5), 155 (74.6), 139 (50.8), 91 (100), 65 (17.3); ESI–HRMS: *m/z* Calcd for [C₁₁H₁₃NO₅S+Na]⁺: 294.0407, found 294.0408.

(1S*,2S*,4S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl-2-(hydroxyimino)-3-tosylpropan oate (4x)

White solid; (92 mg, 78%); mp: 116–117 °C; $R_f = 0.26$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 10.30 (brs, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.72–4.74 (m, 1H), 4.55 (dd, J = 12.8 Hz, J = 25.2 Hz, 2H), 2.43 (s, 3H), 1.69–1.81 (m, 4H), 1.56–1.62 (m, 1H), 1.07–1.18 (m, 2H), 0.98 (s, 3H), 0.862 (s, 3H), 0.856 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 161.5, 145.0, 141.8, 136.5, 129.7, 128.2, 83.7, 51.4, 48.9, 46.9, 44.9, 38.4, 33.6, 26.9, 21.6, 20.0, 19.8, 11.4; ESI–HRMS: m/z Calcd for [C₂₀H₂₇NO₅S+H]⁺: 394.1683, found 394.1685.

N-(3-(hydroxyimino)-4-tosylbutyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (4z)

White solid; (60 mg, 45%); (Z/E mixture; 0.75:1); $R_f = 0.10$ (hexanes/ethyl acetate 3:1); Major: ¹H NMR (400 MHz, CDCl₃): δ 8.46 (brs, 1H), 7.70–7.81 (m, 4H), 7.27–7.36 (m, 4H), 4.14 (dd, J = 2.4 Hz, J = 8.0 Hz, 2H), 4.09 (s, 2H), 3.49 (q, J = 6.8 Hz, 2H), 2.91 (t, J = 6.4 Hz, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.04 (dd, J = 2.4 Hz, J = 4.4 Hz, 1H); Minor: ¹H NMR (400 MHz, CDCl₃): δ 8.01 (brs, 1H), 7.70–7.81 (m, 4H), 7.27–7.36 (m, 4H), 4.37 (s, 2H), 4.14 (dd, J = 2.4 Hz, J = 8.0 Hz, 2H), 3.49 (q, J = 6.8 Hz, 2H), 2.77 (t, J = 6.4 Hz, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.04 (dd, J = 2.4 Hz, J = 4.4 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃): δ 149.2, 146.9, 145.1, 145.0, 143.8, 143.8, 136.3, 135.6, 135.3, 135.2, 129.9, 129.7, 129.53, 129.51, 128.2, 128.1, 127.74, 127.69, 76.1, 76.0, 74.3, 59.8, 52.6, 42.6, 42.1, 36.2, 36.0, 31.6, 25.4, 21.6, 21.5; MS m/z (relative intensity, %): 448 (0.09), 293 (22.1), 278 (7.7), 223 (15.6), 222 (100), 211 (3.2), 156 (11.7), 155 (96.1); ESI–HRMS: m/z Calcd for [$C_{21}H_{24}N_2O_5S_2+H$]*: 449.1199, found 449.1202.

3-(tosylmethyl)-4,5-dihydroisoxazole (4aa)

White solid; (32 mg, 44%); mp: 57–58 °C; $R_f = 0.22$ (hexanes/ethyl acetate 3:1); ¹H NMR

(400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.38 (t, *J* = 10.0 Hz, 2H), 4.18 (s, 2H), 3.19 (t, *J* = 10.0 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 149.3, 145.5, 134.8, 130.0, 128.2, 69.8, 55.0, 36.5, 21.6; MS *m/z* (relative intensity, %): 239 (4.5), 238 (5.8), 177 (1.1), 176 (12.0), 175 (100), 157 (9.0), 155 (25.5), 145 (15.9), 139 (16.8); ESI–HRMS: m/z Calcd for [C₁₁H₁₃NO₃S+H]⁺: 240.0689, found 240.0687.

1-phenyl-2-(phenylsulfonyl)ethan-1-one O-acetyl oxime (6)

White solid; (147 mg, 93%); mp: 117–118 °C; R_f = 0.28 (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.6 H, 2H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.63 (t, 1H), 7.47–7.52 (m, 3H), 7.37–7.45 (d, 2H), 4.76 (s, 2H), 1.97 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃): δ 167.2, 153.5, 139.1, 134.2, 132.2, 131.4, 129.2, 128.8, 128.5, 127.7, 54.4, 19.3; MS *m/z* (relative intensity, %): 317 (0.1), 259 (6.2), 211 (67.4), 194 (31.3), 143 (49.1), 125 (54.3), 103 (100), 77 (89.6); ESI–HRMS: *m/z* Calcd for [C₁₆H₁₅NO₄S+Na]⁺: 340.0614, found 340.0616.

1-phenyl-2-(phenylsulfonyl)ethan-1-one (7)

White solid; (32 mg, 61%); mp: 94–95 °C; $R_f = 0.39$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.94 (m, 4H), 7.54–7.68 (m, 2H), 7.49–7.53 (m, 2H), 7.45–7.46 (m, 2H), 4.74 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃): δ 188.0, 138.7, 135.7, 134.3, 134.2, 129.24, 129.17, 128.8, 128.5, 63.4; MS *m/z* (relative intensity, %): 260 0.5),196 (21.7), 105 (100), 77 (52.3); ESI–HRMS: *m/z* Calcd for $[C_{14}H_{12}O_3S+Na]^+$: 283.0399, found 283.0397.

N-phenyl-2-(phenylsulfonyl)acetamide (8)

White solid; (51 mg, 92%); mp: 115–116 °C; $R_f = 0.18$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 8.54 (brs, 1H), 7.93 (d, J = 7.6 Hz, 2H), 7.68 –7.72 (m, 1H), 7.56–7.60 (m, 2H), 7.49 (d, J = 7.6 Hz, 2H), 7.32–7.36 (m, 2H), 7.14–7.18 (m, 1H), 4.19 (s,

2H); ¹³C NMR (100.6 MHz, CDCl₃): δ 158.4, 137.8, 136.9, 134.7, 129.6, 129.1, 128.1, 125.2, 120.2, 62.9; MS *m/z* (relative intensity, %): 275 (47.7), 210 (13.6), 141 (16.1), 93 (100), 77 (33.4); ESI–HRMS: *m/z* Calcd for [C₁₄H₁₃NO₃S+Na]⁺: 298.0508, found 298.0510.

3-phenyl-2-(phenylsulfonyl)-2H-azirine (9)

White solid; (172 mg, 67%); mp: 108–109 °C; $R_f = 0.52$ (hexanes/ethyl acetate 3:1); ¹H NMR (400 MHz, CDCl₃): δ 7.94–8.00 (m, 4H), 7.68–7.72 (m, 2H), 7.58–7.63 (m, 4H), 3.63 (s, 1H); ¹³C NMR (100.6 MHz, CDCl₃): δ 161.1, 138.5, 134.9, 133.9, 131.1, 129.5, 129.3, 128.3, 121.4, 48.2; ESI–HRMS: m/z Calcd for $[C_{14}H_{11}NO_2S+Na]^+$: 280.0403, found 280.0405.

ORTEP Plot, Crystal Data and Refinement Results for Compounds 4u and 5v: ORTEP plot for compound 4u:

Figure S1. Compound **4u**, thermal ellipsoids are drawn at 30% probability level. **ORTEP plot for compound 5v:**

Crystal Data and Refinement Results for Compounds 4u and 5v:

Compound number	4u	5v
Formula	$C_{15}H_{21}NO_3S$	C ₂₇ H ₃₁ NO ₇ S ₃
Fw	295.39	577.71
Temp	293.64 (10)	294.74 (10)
Crystal system	Monoclinic	Monoclinic
Space group	C 1 2/c 1	P 1 21/c 1
a Å	25.9610 (17)	21.226 (3)
b Å	5.7930 (3)	8.2493 (7)
c Å	22.2512 (17)	16.985 (2)
α°	90.00	90.00
β°	114.088(9)	109.610(14)
γ°	90.00	90.00
V Å ³	3055.0 (3)	2801.5 (6)
Z	8	4
Density(calcd) g⋅cm ⁻³	1.284	1.370
Absorb.coeff. mm ⁻¹	0.219	0.310
F(000)	1264	1216
Index ranges	$-32 \le h \le 19$ $-6 \le k \le 7$ $-27 \le l \le 26$	$-27 \le h \le 28$ $-10 \le k \le 10$ $-22 \le l \le 22$
refln./restr./param.	2998/0/183	6637/0/347
GOF	1.032	1.073
[<i>l</i> > 2σ(<i>l</i>)]	<i>R</i> ₁ =0.0626 w <i>R</i> ₂ =0.1744	<i>R</i> ₁ = 0.0909 w <i>R</i> ₂ = 0.2645
CCDC numbers	1481286	1481285

 Table S1. The crystal data and refinement results of compounds 4u and 5v.

