Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

$\label{eq:pd} Pd(II) \text{-} Catalyzed oxidative dearomatization of indoles:$

substrate-controlled synthesis of indolines and indolones

Xinxin Fang, Shang Gao, Zijun Wu, Hequan Yao* and Aijun Lin*

State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China

*E-mail: ajlin@cpu.edu.cn; hyao@cpu.edu.cn; cpuhyao@126.com

1. General information	1
2. General procedure for the preparation of N-acylindole substrates	1
3. Characterization of the N-acylindole substrates	2
4. General procedure of Pd(II)-catalyzed Wacker cyclization/ dearomatization of indoles	.12
5. Further functionalization of dearomatized products	.12
6. Optimization for synthesis of indolones	.15
7. General procedure of Pd(II)-catalyzed oxidative dearomatization of 2-substituted indoles	.16
8. Preliminary asymmetric study	.16
9. Characterization of the dearomatized products	.19
10. NOE analysis of 2n	.29
11. Crystal structures of 2q and 4a	.31
12. ¹ H and ¹³ C NMR spectra of title compounds	.33

1. General information

Reagents and solvents: $Pd(OAc)_2$ and 4,5-diaza-9-fluorenone (DAF) are commercially available. PE refers to petroleum ether b. p. 60-90 °C, EA refers to ethyl acetate and DCM refers to dichloromethane. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated.

Chromatography: Flash column chromatography was carried out using commercially available 200-300 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA, they are listed as volume/volume ratios.

Data collection: ¹H and ¹³C NMR spectra were collected on BRUKER AV-300 (300 MHz) spectrometer using CDCl₃ as solvent. Chemical shifts of ¹H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta = 0.00$ ppm) with the solvent resonance as an internal standard (CDCl₃: $\delta = 7.26$ ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of ¹³C NMR were reported in ppm with the solvent as the internal standard (CDCl₃: $\delta = 77.16$ ppm). High Resolution Mass measurement was performed on Agilent Q-TOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. Melting point (m. p.) was measured on a microscopic melting point apparatus.

2. General procedure for the preparation of N-acylindole substrates

As shown in **Scheme S1**, *N*-acylindole substrates were synthesized from the corresponding phenylhydrazine hydrochlorides as starting materials via Fisher indole synthesis followed by *N*-acylation.

(i) Fisher indole synthesis; (ii) 2-methoxybenzoyl chloride, NaH, DMF; (iii) BBr₃, DCM.

The suspension of substituted phenylhydrazine hydrochloride (40 mmol) in AcOH (40 mL) was heated in 50 °C for 30 min, then butan-2-one (80 mmol, 2 equiv.) was added in one portion and the reaction mixture was refluxed for 3 h. After cooling to room temperature, AcOH was removed under vacum and the residue was dissolved in EA. The organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give gray residue, which was purified by flash chromatography on silica gel with PE/EA (v/v = 200:1 to 60:1) to afford the 2,3-disubstituted indoles.

To a solution of substituted 2,3-dimethyl-1H-indole (3.0 mmol) in DMF (10 mL) at 0 $^{\circ}$ C was added NaH (144 mg, 60% dispersion in mineral oil, 3.6 mmol). The reaction was stirred for 30 min, and 2-methoxybenzoyl chloride (0.45 mL, 3.6 mmol) was added slowly at 0 $^{\circ}$ C. The solution was stirred overnight at room temperature, then quenched with aqueous 6M HCl (20 mL) and extracted with EA (4 x 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel with PE/EA (v/v = 80:1 to 50:1) to produce **s1** (753 mg, 2.7 mmol, 90%) as a yellow solid.

To a solution of **s1** (3.0 mmol) in CH₂Cl₂ (10 mL) at 0 °C was added boron tribromide (1.1 mL, 1.0 M solution in DCM, 12 mmol) slowly under argon atmosphere. The solution was stirred overnight at room temperature. The reaction was quenched with cold water (20 mL) and extracted with DCM (50 mL×3). The combined organic layers were washed with saturated brine, dried with Na₂SO₄, concentrated *in vacuo* and purified by flash chromatography on silica gel with PE/EA (v/v = 500:1 to 300:1) to afford *N*-acylindole substrate **1**.

3. Characterization of the N-acylindole substrates

(2,3-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1a)

Yellow solid, m. p. 66 – 67 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.59 (s, 1H), 7.67 – 7.28 (m, 3H), 7.28 – 6.94 (m, 4H), 6.94 – 6.71 (m, 1H), 2.37 (s, 3H), 2.24 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 162.1, 136.5, 136.4, 132.9, 130.8, 122.9, 122.4, 119.2, 118.3, 118.3, 116.8, 115.3, 113.4, 12.6, 8.8 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₅NO₂-H]⁻ 264.1030, found 264.1026.

(2-hydroxyphenyl)(2,3,5-trimethyl-1H-indol-1-yl)methanone (1b)

Yellow solid, m. p. 84 – 85 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.80 (s, 1H), 7.64 – 7.58 (m, 2H), 7.42 (s, 1H), 7.29 – 7.26 (m, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.03 (dd, *J* = 8.5, 1.7 Hz, 1H), 6.95 (t, *J* = 7.4 Hz, 1H), 2.60 (s, 3H), 2.55 (s, 3H), 2.39 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 162.1, 136.2, 134.9, 133.0, 132.9, 132.0, 131.2, 124.4, 119.2, 118.4, 117.1, 115.3, 113.4, 21.5, 12.7, 8.8 ppm. HRMS (ESI) *m/z* calcd for [C₁₈H₁₇NO₂+H]⁺ 280.1332, found 280.1332.

(5-ethyl-2,3-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1c)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.43 (s, 1H), 7.36 – 7.31 (m, 2H), 7.13 (s, 1H), 7.05 – 6.90 (m, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.76 (dd, *J* = 8.5, 1.8 Hz, 1H), 6.72 – 6.61 (m, 1H), 2.58 (q, *J* = 7.6 Hz, 2H), 2.23 (s, 3H), 2.09 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 162.0, 138.6, 136.2, 134.9, 133.0, 132.9, 131.1, 123.2, 119.2, 118.3, 117.0, 115.4, 113.4, 28.9, 16.3, 12.6, 8.8 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₉H₁₉NO₂+H]⁺ 294.1489, found 294.1493.

(2-hydroxyphenyl)(5-isopropyl-2,3-dimethyl-1H-indol-1-yl)methanone (1d)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.45 (s, 1H), 7.41 – 7.36 (m, 2H), 7.18 (d, J = 1.8 Hz, 1H), 7.05 – 6.96 (m, 1H), 6.92 (d, J = 8.5 Hz, 1H), 6.84 (dd, J = 8.5, 1.8 Hz, 1H), 6.79 – 6.62 (m, 1H), 3.07 – 2.58 (m, 1H), 2.26 (s, 3H), 2.14 (s, 3H), 1.20 (s, 3H), 1.17 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 161.9, 147.7, 136.0, 132.3, 130.2, 122.3, 121.6, 120.0, 117.9, 117.7, 114.3, 113.7, 112.8, 29.3, 21.6, 11.9, 8.2 ppm. HRMS (ESI) *m*/*z* calcd for [C₂₀H₂₁NO₂+H]⁺ 308.1645, found 308.1649.

(5-fluoro-2,3-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1e)

Yellow solid, m. p. 79 – 80 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.38 (s, 1H), 7.46 – 7.40 (m, 1H), 7.31 (dd, J = 8.0, 1.7 Hz, 1H), 7.10 – 6.82 (m, 3H), 6.82 – 6.56 (m, 2H), 2.27 (s, 3H), 2.11 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 162.0, 160.8, 157.6, 136.5, 134.6, 132.6, 131.7, 119.3, 118.4, 116.6, 114.3, 114.2, 110.7, 110.3, 104.0, 103.7, 12.7, 8.7 ppm. HRMS (ESI) m/z calcd for $[C_{17}H_{14}FNO_2-H]^-$ 282.0936, found 282.0933.

(5-chloro-2,3-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1f)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.36 (brs, 1H), 7.46 – 7.40 (m, 1H), 7.36 – 7.19 (m, 2H), 7.02 (d, *J* = 8.3 Hz, 1H), 6.90 (d, *J* = 1.5 Hz, 2H), 6.75 (t, *J* = 7.6 Hz, 1H), 2.27 (s, 3H), 2.11 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 162.1, 136.6, 134.7, 134.4, 132.6, 132.0, 128.0, 122.9, 119.3, 118.5, 118.0, 116.5, 114.6, 114.3, 12.6, 8.7 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₄ClNO₂-H]⁻ 298.0640, found 298.0642.

(5-bromo-2,3-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1g)

Yellow solid, m. p. 90 – 91 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.48 (s, 1H), 7.62 – 7.44 (m, 2H), 7.36 (dd, J = 8.0, 1.7 Hz, 1H), 7.15 – 7.10 (m, 2H), 6.93 (d, J = 8.8 Hz, 1H), 6.88 – 6.76 (m, 1H), 2.36 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 162.2, 136.7, 135.1, 134.2, 132.6, 132.5, 125.5, 121.0, 119.3, 118.5, 116.5, 115.6, 114.7, 114.5, 12.5, 8.7 ppm. HRMS (ESI) m/z calcd for [C₁₇H₁₄BrNO₂-H]⁻ 342.0135, found 342.0130.

(2,3-dimethyl-5-(trifluoromethyl)-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1h) Yellow solid, m. p. 73 – 74 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.53 (s, 1H), 7.73 (s, 1H), 7.59 – 7.53 (m, 1H), 7.38 – 7.28 (m, 2H), 7.20 – 6.98 (m, 2H), 6.98 – 6.64 (m, 1H), 2.40 (s, 3H), 2.28 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.8, 162.4, 137.8, 137.0, 134.7, 132.6, 130.3, 119.6, 119.6, 119.4, 118.6, 116.3, 115.8, 115.7, 115.0, 113.3, 110.0, 12.4, 8.6 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₄F₃NO₂-H]⁻ 332.0904, found 332.0908.

(7-fluoro-2,3-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1i)

Yellow solid, m. p. 66 – 67 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.80 (s, 1H), 7.53 – 7.47 (m, 1H), 7.34 – 7.18 (m, 2H), 7.18 – 6.91 (m, 2H), 6.97 – 6.60 (m, 2H), 2.33 (s, 3H), 2.25 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 162.4, 150.8, 147.5, 136.8, 133.8, 131.9, 131.9, 122.5, 122.4, 119.3, 118.2, 114.2, 114.2, 113.5, 109.6, 109.4, 11.8, 8.9 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₄FNO₂-H]⁻ 282.0936, found 282.0935.

(1,2-dimethyl-3H-benzo[e]indol-3-yl)(2-hydroxyphenyl)methanone (1j)

Yellow solid, m. p. 120 – 121 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.79 (s, 1H), 8.53 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.68 – 7.39 (m, 4H), 7.35 (dd, J = 8.0, 1.7 Hz, 1H), 7.30 – 7.20 (m, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 2.67 (s, 3H), 2.43 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 162.6, 136.8, 133.2, 131.2, 130.6, 128.7, 128.5, 126.0, 123.9, 123.6, 123.5, 119.4, 118.4, 116.8, 116.2, 113.8, 12.9, 12.1 ppm. HRMS (ESI) m/z calcd for [C₂₁H₁₇NO₂-H]⁻ 314.1187, found 314.1180.

(3,4-dihydro-1H-carbazol-9(2H)-yl)(2-hydroxyphenyl)methanone (1k)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.56 (s, 1H), 7.60 – 7.53 (m, 3H), 7.39 (d, J = 8.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.33 – 7.28 (m, 2H), 6.93 (t, J = 7.6 Hz, 1H), 3.39 – 2.44 (m, 4H), 1.99 (m, 4H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 161.7, 136.7, 136.1, 132.7, 130.1, 123.2, 122.7, 119.2, 118.3, 118.1, 118.0, 117.1, 114.1, 25.2, 23.6, 22.5, 21.2 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₉H₁₇NO₂+Na]⁺ 314.1151, found 314.1157.

(2-hydroxyphenyl)(7,8,9,10-tetrahydrocyclohepta[b]indol-5(6H)-yl)methanone (11) Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.65 (s, 1H), 7.51 – 7.24 (m, 3H), 7.16 – 7.06 (m, 2H), 7.05 – 6.89 (m, 2H), 6.75 (t, J = 7.6 Hz, 1H), 2.86 – 2.53 (m, 4H), 1.89 – 1.67 (m, 4H), 1.66 – 1.60 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 162.3, 139.3, 136.5, 136.0, 132.8, 130.2, 122.9, 122.3, 122.1, 119.3, 118.3, 117.9, 117.2, 113.2, 31.3, 28.6, 27.3, 27.0, 24.1 ppm. HRMS (ESI) m/z calcd for [C₂₀H₁₉NO₂-H]⁻ 304.1343, found 304.1336.

(6,7,8,9,10,11-hexahydro-5H-cycloocta[b]indol-5-yl)(2-hydroxyphenyl)methanone (1m)

Yellow solid, m. p. 128 – 129 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.65 (s, 1H), 7.58 – 7.32 (m, 3H), 7.26 – 7.09 (m, 2H), 7.09 – 6.91 (m, 2H), 6.82 (t, *J* = 7.6 Hz, 1H), 3.21 – 2.96 (m, 1H), 2.96 – 2.43 (m, 3H), 1.97 – 1.60 (m, 4H), 1.56 – 1.29 (m, 4H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 162.2, 137.6, 136.7, 136.4, 132.8, 129.6, 122.6, 122.2, 120.4, 119.3, 118.4, 118.1, 116.7, 113.6, 29.9, 29.8, 26.5, 25.8, 24.2, 22.8 ppm. HRMS (ESI) *m*/*z* calcd for [C₂₁H₂₁NO₂-H]⁻ 318.1500, found 318.1489.

(3-ethyl-2-methyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1n)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.49 (s, 1H), 7.40 – 7.31 (m, 3H), 7.15 – 6.81 (m, 4H), 6.81 – 6.16 (m, 1H), 2.60 (q, *J* = 7.5 Hz, 2H), 2.26 (s, 3H), 1.13 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 162.1, 136.7, 136.4, 132.9, 132.4, 129.9, 122.8, 122.3, 121.6, 119.3, 118.4, 116.9, 113.6, 17.4, 14.7, 12.4 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₇NO₂+H]⁺ 280.1332, found 280.1338.

(2-hydroxyphenyl)(3-isopropyl-2-methyl-1H-indol-1-yl)methanone (10)

Yellow solid, m. p. 61 – 62 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.88 (s, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.61 (t, *J* = 8.4 Hz, 2H), 7.39 – 7.23 (m, 3H), 7.23 – 7.10 (m, 1H), 6.94 (t, *J* = 7.6 Hz, 1H), 3.59 – 2.87 (m, 1H), 2.56 (s, 3H), 1.63 (d, *J* = 7.3 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 162.4, 137.1, 136.6, 133.0, 131.5, 128.8, 125.1, 122.6, 122.1, 120.0, 119.3, 118.5, 117.0, 113.7, 26.0, 22.4, 12.8 ppm. HRMS (ESI) *m/z* calcd for [C₁₉H₁₉NO₂+H]⁺ 294.1489, found 294.1495.

(2-ethyl-3-methyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (1p)

Yellow solid, m. p. 66 – 67 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.64 (s, 1H), 7.59 – 7.36 (m, 3H), 7.27 – 7.08 (m, 2H), 7.06 – 7.00 (m, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.90 – 6.72 (m, 1H), 3.06 – 3.03 (m, 1H), 2.78 – 2.73 (m, 1H), 2.27 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.2, 162.2, 139.3, 136.5, 132.8, 130.7, 122.8, 122.2, 119.3, 118.4, 118.4, 116.7, 114.5, 113.3, 18.9, 14.3, 8.6 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₇NO₂-H]⁻ 278.1187, found 278.1191.

(2-hydroxyphenyl)(3-methyl-2-phenyl-1H-indol-1-yl)methanone (1q)

Yellow solid, m. p. 110 – 111 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.32 (s, 1H), 7.56 – 7.42 (m, 1H), 7.51 – 7.48 (m, 2H), 7.29 – 6.98 (m, 8H), 6.85 (dd, J = 8.4, 1.1 Hz, 1H), 6.64 – 6.53 (m, 1H), 2.25 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 161.9, 137.1, 136.4, 136.2, 132.6, 132.3, 130.8, 129.4, 128.4, 127.6, 124.4, 122.9, 119.3, 119.1, 117.9, 117.1, 116.9, 113.4, 9.5 ppm. HRMS (ESI) m/z calcd for [C₂₂H₁₇NO₂-H]⁻ 326.1187, found 326.1184.

(2,3-dimethyl-1H-indol-1-yl)(2-hydroxy-4-methylphenyl)methanone (1r)

Yellow solid, m. p. 91 – 92 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.62 (s, 1H), 7.36 (d, *J* = 7.7 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.12 – 6.92 (m, 3H), 6.83 (d, *J* = 1.7 Hz, 1H), 6.55 (dd, *J* = 8.2, 1.6 Hz, 1H), 2.34 (s, 3H), 2.31 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 162.5, 148.2, 136.6, 132.9, 132.8, 130.8, 122.9, 122.2, 120.5, 118.5, 118.3, 114.9, 114.4, 113.4, 22.1, 12.4, 8.8 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₇NO₂+H]⁺ 280.1332, found 280.1339.

(2,3-dimethyl-1H-indol-1-yl)(2-hydroxy-5-methylphenyl)methanone (1s)

Yellow solid, m. p. 61 – 62 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.23 (s, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.22 – 7.07 (m, 2H), 7.07 – 6.96 (m, 2H), 6.96 – 6.82 (m, 2H), 2.23 (s, 3H), 2.10 (s, 3H), 2.02 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 160.0, 137.4, 136.6, 132.9, 132.4, 130.8, 128.5, 123.0, 122.4, 118.3, 118.2, 116.6, 115.2, 113.4, 20.3, 12.6, 8.8 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₇NO₂+H]⁺ 280.1332, found 280.1338.

(2,3-dimethyl-1H-indol-1-yl)(4-fluoro-2-hydroxyphenyl)methanone (1t)

Yellow solid, m. p. 66 – 67 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.88 (s, 1H), 7.43 – 7.29 (m, 2H), 7.09 – 7.04 (m, 1H), 7.00 – 6.83 (m, 2H), 6.69 (dd, J = 10.2, 2.6 Hz, 1H), 6.51 – 6.37 (m, 1H), 2.27 (s, 4H), 2.13 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 169.3, 165.9, 164.7, 164.6, 136.4, 135.4, 135.2, 132.8, 130.8, 123.0, 122.4, 118.4, 115.4, 113.2, 107.7, 107.4, 105.4, 105.1, 12.4, 8.7 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₄FNO₂-H]⁻ 282.0936, found 282.0938.

(4-chloro-2-hydroxyphenyl)(2,3-dimethyl-1H-indol-1-yl)methanone (1u)

Yellow solid, m. p. 80 – 81 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.32 (s, 1H), 7.45 – 7.27 (m, 3H), 7.22 – 7.08 (m, 1H), 7.08 – 7.01 (m, 2H), 6.98 (d, *J* = 8.6 Hz, 1H), 2.27 (s, 3H), 2.16 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 160.4, 136.1, 132.5, 131.7, 130.9, 124.1, 123.4, 122.8, 119.9, 118.4, 116.0, 113.3, 12.7, 8.8 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₄ClNO₂+H]⁺ 345.1155, found 345.1156.

(4-bromo-2-hydroxyphenyl)(2,3-dimethyl-1H-indol-1-yl)methanone (1v)

Yellow solid, m. p. 60 – 61 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.60 (s, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.25 – 7.12 (m, 2H), 7.09 – 7.03 (m, 1H), 7.00 – 6.88 (m, 2H), 6.84 (dd, J = 8.5, 1.9 Hz, 1H), 2.25 (s, 3H), 2.12 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 162.6, 143.3, 137.5, 136.1, 132.4, 119.6, 118.8, 118.2, 115.9, 115.4, 114.8, 113.0, 12.5, 8.7 ppm. HRMS (ESI) m/z calcd for [C₁₇H₁₄BrNO₂-H]⁻ 342.0135, found 342.0136.

(2-hydroxyphenyl)(2-methyl-1H-indol-1-yl)methanone (3a)

Yellow solid, m. p. 54 – 55 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.39 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.04 – 6.80 (m, 4H), 6.63 (t, *J* = 7.6 Hz, 1H), 6.28 (s, 1H), 2.29 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 161.0, 136.4, 136.1, 135.4, 131.6, 128.3, 121.6, 121.4, 118.8, 118.1, 117.2, 115.4, 112.3, 107.3, 13.8 ppm. HRMS (ESI) *m/z* calcd for [C₁₆H₁₃NO₂+H]⁺ 252.0887, found 252.0881.

(2,5-dimethyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (3b)

Yellow solid, m. p. 70 – 71 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.39 (s, 1H), 7.36 – 7.28 (m, 2H), 7.12 (s, 1H), 7.02 – 6.92 (m, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 6.78 – 6.62 (m, 2H), 6.23 (s, 1H), 2.31 (s, 3H), 2.25 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 161.6, 137.2, 136.0, 135.1, 132.3, 131.6, 129.3, 123.6, 119.5, 118.7, 117.9, 116.2, 112.8, 107.9, 20.8, 14.6 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₅NO₂+H]⁺ 266.1093, found 266.1090.

(5-fluoro-2-methyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (3c)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.26 (s, 1H), 7.36 – 7.31 (m, 1H), 7.19 (dd, J = 8.0, 1.7 Hz, 1H), 6.96 – 6.92 (m, 2H), 6.86 (dd, J = 9.0, 4.4 Hz, 1H), 6.74 – 6.52 (m, 2H), 6.22 (s, 1H), 2.26 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 162.2, 160.8, 157.6, 139.3, 136.8, 133.6, 132.6, 130.4, 130.3, 119.4, 118.5, 116.4, 114.4, 114.3, 110.6, 110.3, 108.2, 108.2, 105.6, 105.3, 15.0 ppm. HRMS (ESI) m/z calcd for [C₁₆H₁₂FNO₂+H]⁺ 270.0802, found 270.0804.

(5-chloro-2-methyl-1H-indol-1-yl)(2-hydroxyphenyl)methanone (3d)

Yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.29 (s, 1H), 7.48 – 7.30 (m, 1H), 7.26 (s, 1H), 7.23 – 7.12 (m, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.83 (s, 2H), 6.68 (t, J = 7.6 Hz, 1H), 6.22 (s, 1H), 2.29 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 161.8, 138.6, 136.4, 135.1, 132.1, 130.1, 127.6, 122.3, 119.1, 118.9, 118.1, 115.7, 113.9, 107.1, 14.5 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₆H₁₂ClNO₂+H]⁺ 286.0507, found 286.0510.

(2-hydroxyphenyl)(2-methyl-1H-indol-1-yl)methanone (3e)

Yellow solid, m. p. 129 – 130 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.45 (s, 1H), 7.57 – 7.45 (m, 1H), 7.38 – 7.34 (m, 1H), 7.33 – 7.20 (m, 4H), 7.18 – 7.06 (m, 5H), 6.89 (d, J = 8.3 Hz, 1H), 6.72 (s, 1H), 6.56 (t, J = 7.6 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 1 73.8, 162.3, 141.3, 138.2, 136.7, 132.6, 129.5, 128.6, 127.9, 127.9, 124.2, 123.1, 121.0, 119.3, 118.0, 116.8, 113.3, 109.4 ppm. HRMS (ESI) *m/z* calcd for [C₂₁H₁₅NO₂ NO₂+H]⁺ 314.1093, found 314.1090.

(4-chloro-2-hydroxyphenyl)(2-methyl-1H-indol-1-yl)methanone (3f)

Yellow solid, m. p. 134 – 135 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.29 (s, 1H), 7.45 – 7.35 (m, 2H), 7.33 (d, *J* = 2.8 Hz, 1H), 7.15 – 6.98 (m, 4H), 6.39 (s, 1H), 2.36 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 160.5, 137.3, 136.4, 131.6, 129.5, 124.2, 123.1, 123.0, 120.2, 120.0, 117.5, 113.4, 109.1, 15.1 ppm. HRMS (ESI) *m/z* calcd for [C₁₆H₁₂ClNO₂+H]⁺ 286.0501, found 286.0510.

(4-bromo-2-hydroxyphenyl)(2-methyl-1H-indol-1-yl)methanone (3g)

Yellow solid, m. p. 95 – 96 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.56 (s, 1H), 7.36 (d, *J* = 7.7 Hz, 1H), 7.24 – 7.12 (m, 2H), 7.06 – 7.01 (m, 1H), 6.99 – 6.90 (m, 2H), 6.86 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.34 (s, 1H), 2.35 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 162.1, 137.0, 136.6, 133.2, 130.7, 129.0, 122.4, 122.4, 122.3, 121.3, 119.7, 114.9, 112.9, 108.3, 14.5 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₆H₁₂BrNO₂+H]⁺ 330.0017, found 330.0015.

4. General procedure of Pd(II)-catalyzed Wacker cyclization/

dearomatization of indoles

A sealed tube was charged with *N*-acylindole substrate **1** (0.2 mmol, 1 equiv.), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), ligand (0.04 mmol, 20 mol%), and 1,4-dioxane (2 mL) under O₂ atmosphere. The reaction mixture was vigorously stirred at 80 °C (oil temperature) for 48 h. After cooling to room temperature, the reaction mixture was diluted with EA (10 mL) and filtered through a plug of Celite. The filtrate was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel with PE/EA ($\nu/\nu = 300$:1 to 100:1, TLC: $R_f = 0.2 - 0.6$, PE/EA = 20:1) to afford dearomatized product **2**.

5. Further functionalization of dearomatized products

5.1 Transformation of C3-exo double bonds

A sealed tube was charged with **2a** (0.2 mmol, 1 equiv.), RuCl₃ (0.006 mmol, 3 mol%), NaIO₄ (1.2 mmol, 6 equiv.), and CH₃CN/H₂O/CCl₄ (2 mL, v/v/v = 1.6:1:1) at room temperature for 1 h. The reaction mixture was diluted with EA (10 mL), quenched with aqueous sodium thiosulfate and filtered through a plug of Celite. The filtrate was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel with PE/EA (v/v = 50:1 to 20:1, TLC: R_f = 0.3, PE/EA = 20:1) to afford **4a**.

5a-methyl-5aH-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12-dione (4a)

35.5 mg, 67% yield, pale yellow solid, m. p. 117 – 118 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, *J* = 8.3 Hz, 1H), 7.96 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.82 – 7.71 (m, 1H), 7.67 – 7.63 (m, 1H), 7.53 – 7.35 (m, 1H), 7.27 – 7.14 (m, 1H), 7.14 – 6.90 (m, 2H), 1.60 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 193.6, 157.7, 155.5, 150.0, 138.5, 135.3, 128.5, 125.2, 125.0, 123.4, 120.8, 118.2, 118.1, 117.2, 90.7, 20.5 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₆H₁₁NO₃+H]⁺ 266.0812, found 266.0811.

5.2 Cross coupling of 2g with phenylboronic acid

A sealed tube was charged with **2g** (0.2 mmol, 1 equiv.), phenylboronic acid (0.24 mmol, 1.2 equiv.), Pd(PPh₃)₄ (0.004 mmol, 2 mol%), K₃PO₄ (0.4 mmol, 2 equiv.), and DME/H₂O (2 mL, v/v = 4:1) under argon atmosphere at 65 °C for 8 h. The reaction mixture was diluted with EA (10 mL) and filtered through a plug of Celite. The filtrate was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel with PE/EA (v/v = 200:1 to 150:1, TLC: R_f = 0.5, PE/EA = 20:1) to afford **5**.

5a-methyl-6-methylene-8-phenyl-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (5)

57.0 mg, 84% yield, white solid, m. p. 102 – 103 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 1H), 8.10 (dd, J = 7.8, 1.7 Hz, 1H), 7.77 (d, J = 1.9 Hz, 1H), 7.63 – 7.57 (m, 3H), 7.55 – 7.43 (m, 3H), 7.37 (d, J = 7.2 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 5.84 (s, 1H), 5.58 (s, 1H), 1.67 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 155.1, 146.5, 140.6, 140.5, 137.8, 134.7, 129.9, 128.8, 128.3, 127.3, 127.0, 126.4, 122.8, 119.6, 118.8, 117.6, 116.5, 106.2, 95.7, 25.5 ppm. HRMS (ESI) m/z calcd for [C₂₃H₁₇NO₂+Na]⁺ 362.1152, found 362.1151.

5.3 Cross coupling of 2v with phenylacetylene

A sealed tube was charged with 2v (0.2 mmol, 1 equiv.), Pd(PPh₃)₂Cl₂ (0.004 mmol, 2 mol%), CuI (0.008 mmol, 4 mol%), phenylacetylene (0.4 mmol, 2 equiv.), and Et₃N (2 mL). The reaction mixture was then vigorously stirred under argon atmosphere at 90 °C (oil temperature) for 4 h. After cooling to room temperature, the reaction mixture was diluted with EA (20 mL) and filtered through a plug of celite. The mixture was concentrated *in vacuo* and purified by flash chromatography on silica gel with PE/EA (v/v = 300:1 to 100:1, TLC: R_f = 0.4, PE/EA = 20:1) to afford the desired product **6**.

5a-methyl-6-methylene-3-(phenylethynyl)-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (6)

56.6 mg, 78% yield, yellow solid, m. p. 129 – 130 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.57 – 7.53 (m, 3H), 7.40 – 7.30 (m, 5H), 7.27 – 7.20 (m, 1H), 7.15 (t, J = 7.5 Hz, 1H), 5.78 (s, 1H), 5.54 (s, 1H), 1.68 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.4, 154.9, 146.4, 141.1, 131.8, 130.8, 129.7, 128.9, 128.4, 128.2, 126.0, 125.8, 124.5, 122.5, 121.0, 120.4, 118.4, 116.3, 106.1, 95.6, 92.7, 88.3, 25.5 ppm. HRMS (ESI) m/z calcd for $[C_{25}H_{17}NO_2+H]^+$ 364.1332, found 364.1336.

6. Optimization for synthesis of indolones

Ĺ		Pd/Oxidant Solvent, O ₂		ò	
	3a		4a		
Entry	Cat.	Oxidant	Solvent	Т	Yield
			(2 mL)	(°C)	$(\%)^b$
1	Pd(OAc) ₂	p-BQ	DMF	80	trace
2	Pd(OAc) ₂	CuCl	DMF	80	48
3	PdCl ₂	CuCl	DMF	80	48
4	Pd(PPh ₃) ₂ Cl ₂	CuCl	DMF	80	44
5	Pd(dppf)Cl ₂	CuCl	DMF	80	45
6	$Pd(OAc)_2$	CuCl ₂	DMF	80	47
7	Pd(OAc) ₂	CuBr	DMF	80	trace
8	$Pd(OAc)_2$	Cu(OAc) ₂	DMF	80	35
9	Pd(OAc) ₂	AgSbF ₆	DMF	80	36
10	Pd(OAc) ₂	CuCl	DME	80	68
11	Pd(OAc) ₂	CuCl	THF	80	56
12	$Pd(OAc)_2$	CuCl	DMA	80	31
13	Pd(OAc) ₂	CuCl	MeOH	80	39
14	Pd(OAc) ₂	CuCl	DCM	80	32
15	Pd(OAc) ₂	CuCl	1,4-Dioxane	80	39
16	Pd(OAc) ₂	CuCl	Toluene	80	34
17	Pd(OAc) ₂	CuCl	DME	70	67
18	Pd(OAc) ₂	CuCl	DME	60	70
19	Pd(OAc) ₂	CuCl	DME	50	72
20	Pd(OAc) ₂	CuCl	DME	40	75
21	$Pd(OAc)_2$	CuCl	DME	rt	27
22 ^c	Pd(OAc) ₂	CuCl	DME	40	69
23^d	Pd(OAc) ₂	CuCl	DME	40	trace

Table S1 Screening of reaction conditions^{*a,b*}

^{*a*} Reaction conditions: **3a** (0.2 mmol), catalyst (10 mol%), oxidant (1 equiv.), DME (2 mL), O₂, 12 h. ^{*b*} Isolated yield. ^{*c*} Under air atmosphere. ^{*d*} Under argon atmosphere.

7. General procedure of Pd(II)-catalyzed oxidative dearomatization of

2-substituted indoles

A sealed tube was charged with *N*-acylindole substrate **3** (0.2 mmol, 1 equiv.), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), CuCl (0.2 mmol, 1 equiv.), and DME (2 mL) under O_2 atmosphere. The reaction mixture was vigorously stirred at 40 °C (oil temperature) for 12 h. After cooling to room temperature, the reaction mixture was diluted with EA (10 mL) and filtered through a plug of Celite. The filtrate was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel with PE/EA (v/v = 50:1 to 40:1, TLC: $R_f = 0.5 - 0.6$, PE/EA = 20:1) to afford dearomatized product **4**.

8. Preliminary asymmetric study

Table S2 Preliminary asymmetric study a-c

Entry	Ligand	Additive	Solvent	Temperature	Yield (%)	ee (%)	
1	L1	/	1,4-dioxane	80 °C	trace	/	
2	L2	/	1,4-dioxane	80 °C	30	5	
3	L3	/	1,4-dioxane	80 °C	75	2	
4 ^d	L4	/	1,4-dioxane	80 °C	43	6	
5	L5	/	1,4-dioxane	80 °C	41	2	
6	L6	/	1,4-dioxane	80 °C	40	8	
7	L7	/	1,4-dioxane	80 °C	21	18	
8	L8	/	1,4-dioxane	80 °C	25	16	

9	L9	/	1,4-dioxane	80 °C	18	9
10	L10	/	1,4-dioxane	80 °C	trace	/
11 ^d	L7	pyridine	1,4-dioxane	80 °C	43	36
12	L7	4,5-diaza-9-fluorenone	1,4-dioxane	80 °C	60	7
13	L7	2,2'-bipyridine	1,4-dioxane	80 °C	41	4
14	L7	pyridine	DME	80 °C	20	14
15	L7	pyridine	DMF	80 °C	trace	/
16	L7	pyridine	DMA	80 °C	35	7
17	L7	pyridine	MeOH	80 °C	trace	/
18	L7	pyridine	NMP	80 °C	trace	/
19	L7	pyridine	toluene	80 °C	56	11
20	L7	pyridine	1,4-dioxane	50 °C	39	31

^{*a*} Reaction conditions: **1a** (0.1 mmol), $Pd(OAc)_2$ (10 mol%) and ligand (12 mol%) in solvent (2 mL) for 26 h under O₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} The ee values of the products were determined by chiral-phase HPLC analysis. ^{*d*} Pyridine (20 mol%) was added.

Optically active-**2a** (Table S1 entry 11)

HPLC data for compound **2a**: CHIRALCEL OJ-H, *i*-PrOH: Hexane = 15:85, $[\alpha]_D^{20} = +51.7$ (c = 0.3, EA), 0.5 mL/min, 210 nm, 36% ee.

5a-methyl-6-methylene-5aH-benzo[*5*,*6*][*1*,*3*]*oxazino*[*3*,*2-a*]*indol-12*(*6H*)*-one* (*2a*) 41.0 mg, 78% yield, white solid, m. p. 49 – 50 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, *J* = 8.1 Hz, 1H), 8.06 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.66 – 7.42 (m, 2H), 7.39 – 7.33 (m, 1H), 7.13 (m, 2H), 7.16 – 7.10 (m, 1H), 5.75 (s, 1H), 5.53 (s, 1H), 1.64 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 155.1, 146.5, 141.2, 134.7, 130.7, 128.3, 125.8, 124.5, 122.7, 121.1, 118.7, 117.6, 116.3, 106.1, 95.4, 25.4 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₃NO₂+H]⁺ 264.1019, found 264.1017.

5a,8-dimethyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (2b)

41.6 mg, 75% yield, yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.84 (m, 2H), 7.35 – 7.29 (m, 1H), 7.20 (d, *J* = 1.7 Hz, 1H), 7.04 – 6.96 (m, 2H), 6.91 (d, *J* = 8.2 Hz, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.20 (s, 3H), 1.49 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.6, 155.0, 146.5, 139.0, 134.5, 134.2, 131.5, 128.2, 125.8, 122.7, 121.4, 118.8, 117.5, 116.0, 105.7, 95.5, 25.4, 21.2 ppm. HRMS (ESI) *m/z* calcd for [C₁₈H₁₅NO₂+H]⁺ 278.1176, found 278.1180.

8-ethyl-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (2c)

44.2 mg, 76% yield, yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 1H), 7.97 (dd, J = 7.8, 1.7 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.30 (d, J = 1.8 Hz, 1H), 7.21 – 7.02 (m, 2H), 6.98 (dd, J = 8.2, 1.1 Hz, 1H), 5.67 (s, 1H), 5.44 (s, 1H), 2.58 (q, J = 7.6 Hz, 2H), 1.57 (s, 3H), 1.17 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.7, 155.1, 146.7, 140.8, 139.2, 134.5, 130.5, 128.2, 125.9, 122.7, 120.2, 118.8, 117.5, 116.2, 105.6, 95.5, 28.7, 25.4, 15.8 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₉H₁₇NO₂+H]⁺ 292.1332, found 292.1337.

8-isopropyl-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H) -one (2d)

51.3 mg, 84% yield, white solid, m. p. 79 – 80 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (dd, J = 8.3, 1.5 Hz, 1H), 8.01 – 7.93 (m, 1H), 7.45 – 7.34 (m, 1H), 7.32 (d, J = 1.9 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.2 Hz, 1H), 5.68 (s, 1H), 5.43 (s, 1H), 2.89 – 2.80 (m, 1H), 1.56 (s, 3H), 1.19 (d, J = 1.5 Hz, 3H), 1.17 (d, J = 1.5 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.7, 155.1, 146.8, 145.5, 139.3, 134.5, 129.2, 128.2, 125.8, 122.7, 118.8, 118.7, 117.5, 116.2, 105.6, 95.6, 34.0, 25.4, 24.2 ppm. HRMS (ESI) *m*/*z* calcd for [C₂₀H₁₉NO₂+H]⁺ 306.3704, found 306.3706.

8-fluoro-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2e)

39.9 mg, 71% yield, white solid, m. p. 69 – 70 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.19 (dd, J = 8.8, 4.7 Hz, 1H), 8.05 (dd, J = 7.7, 1.7 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.30 – 7.12 (m, 2H), 7.11 – 6.98 (m, 2H), 5.76 (s, 1H), 5.60 (s, 1H), 1.66 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 158.2, 157.7, 154.9, 145.9, 134.7, 128.2, 127.4, 122.9, 118.6, 117.6, 117.4, 117.3, 117.3, 108.1, 107.8, 107.5, 95.6, 25.4 ppm. HRMS (ESI) m/z calcd for [C₁₇H₁₂FNO₂+H]⁺ 282.0925, found 282.0922.

8-chloro-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2f)

38.6 mg, 65% yield, yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.6 Hz, 1H), 7.96 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.48 – 7.34 (m, 2H), 7.23 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.09 – 7.04 (m, 1H), 7.01 – 6.85 (m, 1H), 5.68 (s, 1H), 5.50 (s, 1H), 1.56 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 155.0, 145.5, 139.6, 134.8, 130.6, 129.7, 128.3, 127.4, 122.9, 121.2, 118.5, 117.6, 117.3, 107.5, 95.6, 25.4 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂CINO₂+H]⁺ 298.0629, found 298.0633.

8-bromo-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2g)

40.9 mg, 60% yield, white liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.57 (d, *J* = 2.0 Hz, 1H), 7.48 – 7.32 (m, 2H), 7.13 – 7.03 (m, 1H), 7.03 – 6.92 (m, 1H), 5.68 (s, 1H), 5.50 (s, 1H), 1.56 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 155.0, 145.4, 140.1, 134.9, 133.4, 128.3, 127.8, 124.1, 122.9, 118.5, 117.7, 117.6, 117.2, 107.6, 95.5, 25.4 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₂BrNO₂+H]⁺ 342.0124, found 342.0129.

5a-methyl-6-methylene-8-(trifluoromethyl)-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol -12(6H)-one (2h)

35.1 mg, 53% yield, white solid, m. p. 94 – 95 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, *J* = 8.4 Hz, 1H), 7.96 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.69 (d, *J* = 1.8 Hz, 1H), 7.53 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.14 – 7.02 (m, 1H), 6.98 (d, *J* = 8.2 Hz, 1H), 5.77 (s, 1H), 5.55 (s, 1H), 1.57 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.2, 155.0, 145.3, 143.5, 135.1, 128.4, 127.9, 127.9, 127.8, 127.8, 126.7, 126.2, 125.9, 123.0, 122.3, 118.4, 118.3, 118.3, 118.2, 117.7, 116.1, 108.0, 95.7, 25.4 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₂F₃NO₂+H]⁺ 332.0893, found 332.0896.

10-fluoro-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2i)

34.8 mg, 62% yield, yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (dd, J = 7.7, 1.7 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.31 – 7.21 (m, 1H), 7.13 – 6.93 (m, 4H), 5.70 (s, 1H), 5.48 (s, 1H), 1.56 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 156.3, 154.6, 152.3, 148.9, 146.3, 146.2, 134.5, 130.0, 129.9, 128.8, 126.0, 125.9, 123.0, 119.4, 119.1, 117.3, 116.9, 116.9, 107.0, 96.4, 25.6 ppm. HRMS (ESI) m/z calcd for [C₁₇H₁₂FNO₂+H]⁺ 282.0925, found 282.0929.

13a-methyl-14-methylene-13a,14-dihydro-8H-benzo[e]benzo[5,6][1,3]oxazino[3,2-a]indol-8-one (2j)

38.8 mg, 62% yield, yellow solid, m. p. 115 – 116 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.47 (d, J = 8.9 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 7.8, 1.7 Hz, 1H), 7.89 – 7.65 (m, 2H), 7.59 – 7.21 (m, 3H), 7.14 – 6.87 (m, 2H), 6.05 (s, 1H), 5.66 (s, 1H), 1.58 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 155.2, 147.4, 141.0, 134.7, 132.1, 131.4, 129.5, 129.3, 128.3, 128.0, 124.8, 123.1, 122.8, 118.8, 118.0, 117.6, 116.1, 108.4, 95.6, 25.5 ppm. HRMS (ESI) *m*/*z* calcd for [C₂₁H₁₅NO₂+H]⁺ 314.1176, found 314.1176.

2,3-dihydrobenzo[5,6][1,3]oxazino[2,3-k]carbazol-10(1H)-one (2k)

38.2 mg, 66% yield, yellow solid, m. p. 90 – 91 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (t, J = 8.5 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.15 (t, J = 7.8 Hz, 1H), 7.03 – 6.94 (m, 2H), 6.88 (d, J = 8.2 Hz, 1H), 6.24 (t, J = 4.3 Hz, 1H), 2.56 – 2.46 (m, 2H), 2.37 – 2.25 (m, 1H), 2.06 – 1.71 (m, 1H), 1.63 – 1.40 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 154.7, 141.9, 135.0, 134.5, 128.7, 128.0, 126.3, 124.3, 123.6, 122.1, 119.5, 116.9, 114.4, 93.0, 29.2, 23.3, 15.4 ppm. HRMS (ESI) *m/z* calcd for [C₁₉H₁₅NO₂+H]⁺ 290.1176, found 290.1177.

3,4-dihydro-1H-benzo[5,6][1,3]oxazino[3,2-a]cyclohepta[b]indol-11(2H)-one (2l) 44.3 mg, 73% yield, white solid, m. p. 124 – 125 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 1H), 7.99 – 7.84 (m, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.27 (s, 1H), 7.16 (t, J = 7.7 Hz, 1H), 7.10 – 6.85 (m, 3H), 6.56 – 6.52 (m, 1H), 2.92 – 2.80 (m, 1H), 2.39 – 2.32 (m, 1H), 2.25 – 2.15 (m, 1H), 1.91 – 1.55 (m, 4H), 1.54 – 1.29 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 154.6, 141.6, 140.3, 134.7, 129.3, 128.2, 126.7, 125.6, 124.3, 122.7, 119.7, 119.6, 117.5, 115.7, 98.0, 32.9, 27.8, 26.5, 26.3 ppm. HRMS (ESI) m/z calcd for [C₂₀H₁₇NO₂+H]⁺ 304.1332, found 304.1338.

2,3,4,5-tetrahydrobenzo[5,6][1,3]oxazino[3,2-a]cycloocta[b]indol-12(1H)-one (2m) 40.6 mg, 64% yield, white solid, m. p. 159 – 160 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, *J* = 8.0 Hz, 1H), 7.95 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.45 – 7.28 (m, 2H), 7.21 – 7.16 (m, 1H), 7.06 – 6.97 (m, 3H), 6.38 – 6.32 (m, 1H), 3.34 – 3.04 (m, 1H), 2.60 – 2.35 (m, 1H), 2.25 – 2.17 (m, 1H), 1.88 – 1.30 (m, 6H), 1.38 – 1.27 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 154.3, 140.1, 137.5, 134.5, 129.3, 128.0, 127.2, 124.3, 123.3, 122.7, 119.9, 119.1, 117.5, 116.3, 98.3, 37.7, 28.4, 25.4, 23.3, 20.6 ppm. HRMS (ESI) *m*/*z* calcd for [C₂₁H₁₉NO₂+H]⁺ 318.1489, found 318.1489.

(Z/E)- 6-ethylidene-5a-methyl-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (2n)

Inseparable mixture, Z/E = 1.6:1, 41.6 mg, 75% yield, pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.19 – 8.17 (m, 0.7H) (minor), 8.10 – 8.07 (m, 1H) (major), 7.95 – 7.92 (m, 1.7H), 7.52 – 7.49 (m, 0.8H), 7.35 – 7.10 (m, 4.6H), 7.06 – 6.95 (m, 2.7H), 6.93 – 6.88 (m, 2.3H), 6.14 – 6.06 (q, J = 7.5 Hz, 1H) (major), 6.04 – 5.96 (q, J = 7.4 Hz, 0.6H) (minor), 2.02 – 1.98 (m, 5H), 1.55 (s, 3H) (major), 1.44 (s, 2H) (minor) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.0, 157.7, 155.0, 154.8, 141.2, 139.9, 138.5, 137.4, 134.6, 134.5, 129.3, 129.2, 128.2, 128.1, 127.2, 126.3, 124.6, 124.4, 124.3, 122.7, 122.6, 121.3, 120.0, 119.7, 118.8, 117.6, 117.5, 116.1, 116.1, 96.1, 95.6, 25.7, 23.1, 14.2, 13.9 ppm. HRMS (ESI) m/z calcd for [C₁₈H₁₅NO₂+Na]⁺ 300.0995, found 300.0997.

5a-methyl-6-(propan-2-ylidene)-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-on e (2o)

35.5 mg, 61% yield, white solid, m. p. 90 – 91 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.23 – 8.18 (m, 1H), 7.94 (dd, J = 7.7, 1.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.16 – 7.11 (m, 1H), 7.03 – 6.94 (m, 2H), 6.93 – 6.84 (m, 1H), 2.15 (s, 3H), 2.04 (s, 3H), 1.54 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 154.7, 140.5, 134.5, 133.4, 131.2, 128.2, 128.0, 127.8, 124.4, 124.1, 122.6, 118.9, 117.5, 115.9, 96.6, 23.3, 23.1, 23.0 ppm. HRMS (ESI) m/z calcd for [C₁₉H₁₇NO₂+H]⁺ 292.1332, found 292.1333.

5*a*-*ethyl*-*6*-*methylene*-5*aH*-*benzo*[5,6][1,3]*oxazino*[3,2-*a*]*indol*-12(6*H*)-*one* (2*p*) 36.0 mg, 65% yield, white solid, m. p. 72 – 73 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, J = 8.1 Hz, 1H), 7.96 (dd, J = 7.8, 1.9 Hz, 1H), 7.64 – 7.33 (m, 2H), 7.26 (t, J =7.8 Hz, 1H), 7.12 – 6.87 (m, 3H), 5.73 (s, 1H), 5.44 (s, 1H), 2.17 – 1.73 (m, 2H), 0.71 – 0.66 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 155.0, 144.5, 142.0, 134.7, 130.6, 128.2, 126.6, 124.4, 122.6, 120.6, 118.8, 117.4, 116.0, 106.8, 97.8, 30.8, 7.1 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₅NO₂+Na]⁺ 300.0995, found 300.0996.

6-methylene-5a-phenyl-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (2q) 19.5 mg, 30% yield, white solid, m. p. 174 – 175 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, J = 8.1 Hz, 1H), 7.85 (dd, J = 7.8, 1.7 Hz, 1H), 7.49 – 7.27 (m, 5H), 7.19 – 7.08 (m, 5H), 6.96 (t, J = 7.5 Hz, 1H), 5.69 (s, 1H), 5.58 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 155.4, 146.5, 142.6, 140.6, 134.7, 130.9, 128.8, 128.7, 128.3, 125.5, 124.9, 124.7, 122.9, 121.5, 119.7, 117.7, 115.5, 107.4, 96.7 ppm. HRMS (ESI) m/z calcd for [C₂₂H₁₅NO₂+H]⁺ 326.1176, found 326.1176.

3,5a-dimethyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (2r)

45.4 mg, 82% yield, white liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.79 (s, 1H), 5.66 (s, 1H), 5.43 (s, 1H), 2.29 (s, 3H), 1.56 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.1, 155.1, 146.7, 145.9, 130.7, 128.1, 125.8, 124.2, 124.0, 123.8, 121.0, 120.2, 117.8, 116.2, 105.7, 95.4, 25.4, 21.8 ppm. HRMS (ESI) m/z calcd for [C₁₈H₁₅NO₂+H]⁺ 278.1176, found 278.1175.

2,5a-dimethyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-one (2s)

41.6 mg, 75% yield, white solid, m. p. 65 – 66 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 2.2 Hz, 1H), 7.60 – 7.47 (m, 1H), 7.39 – 7.33 (m, 1H), 7.27 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.18 – 7.06 (m, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 5.74 (s, 1H), 5.51 (s, 1H), 2.35 (s, 3H), 1.63 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.1, 153.0, 146.6, 141.2, 135.4, 132.3, 130.7, 128.2, 125.8, 124.3, 121.0, 118.4, 117.3, 116.3, 105.9, 95.3, 25.3, 20.6 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₈H₁₅NO₂+H]⁺ 278.1176, found 278.1180.

3-fluoro-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2t)

39.9 mg, 71% yield, yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.25 (d, *J* = 8.1 Hz, 1H), 8.12 (dd, *J* = 8.7, 6.4 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.94 – 6.88 (m, 1H), 6.83 (dd, *J* = 9.4, 2.3 Hz, 1H), 5.81 (s, 1H), 5.57 (s, 1H), 1.72 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 164.8, 157.1, 146.1, 141.0, 130.8, 130.5, 130.3, 125.6, 124.5, 121.1, 116.2, 115.3, 110.7, 110.4, 106.2, 105.2, 104.8, 96.0, 25.4 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂FNO₂+Na]⁺ 304.0744, found 304.0743.

3-chloro-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2u)

34.5 mg, 58% yield, white solid, m. p. 103 – 104 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 2.7 Hz, 1H), 7.62 – 7.50 (m, 1H), 7.51 – 7.30 (m, 2H), 7.19 – 7.14 (m, 1H), 7.03 (d, J = 8.7 Hz, 1H), 5.78 (s, 1H), 5.53 (s, 1H), 1.66 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 146.1, 140.9, 134.5, 130.8, 128.1, 127.9, 125.8, 124.7, 121.1, 119.9, 119.1, 116.3, 106.2, 95.7, 25.4 ppm. HRMS (ESI) m/z calcd for [C₁₇H₁₂ClNO₂+Na]⁺ 320.0449, found 320.0450.

3-bromo-5a-methyl-6-methylene-5aH-benzo[5,6][1,3]oxazino[3,2-a]indol-12(6H)-o ne (2v)

38.2 mg, 56% yield, white solid, m. p. 75 – 76 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.12 (m, 3H), 7.05 (t, *J* = 7.5 Hz, 1H), 5.67 (s, 1H), 5.42 (s, 1H), 1.56 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 157.2, 155.5, 146.1, 141.0, 130.8, 129.5, 128.6, 126.2, 125.7, 124.6, 121.1, 120.9, 117.8, 116.3, 106.2, 95.9, 25.5 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₂BrNO₂+Na]⁺ 365.9925, found 365.9929.

5a-methyl-5aH-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12-dione (4a)

39.8 mg, 75% yield, pale yellow solid, m. p. 117 – 118 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, *J* = 8.3 Hz, 1H), 7.96 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.82 – 7.71 (m, 1H), 7.67 – 7.63 (m, 1H), 7.53 – 7.35 (m, 1H), 7.27 – 7.14 (m, 1H), 7.14 – 6.90 (m, 2H), 1.60 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 193.6, 157.7, 155.5, 150.0, 138.5, 135.3, 128.5, 125.2, 125.0, 123.4, 120.8, 118.2, 118.1, 117.2, 90.7, 20.5 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₆H₁₁NO₃+H]⁺ 266.0812, found 266.0811.

5a,8-dimethyl-12H-benzo[*5,6*][*1,3*]*oxazino*[*3,2-a*]*indole-6,12*(*5aH*)-*dione* (*4b*) 41.3 mg, 74% yield, white solid, m. p. 130 – 131 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, J = 8.3 Hz, 1H), 7.97 (dd, J = 7.8, 1.7 Hz, 1H), 7.55 – 7.54 (m, 1H), 7.58 – 7.40 (m, 2H), 7.16 – 7.03 (m, 2H), 2.33 (s, 3H), 1.60 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 193.7, 157.5, 155.6, 148.1, 139.6, 135.2, 128.4, 128.0, 124.9, 123.3, 120.9, 118.4, 118.1, 117.0, 90.9, 20.9, 20.5 ppm. HRMS (ESI) *m/z* calcd for [C₁₇H₁₃NO₃+Na]⁺ 302.0788, found 302.0785.

8-fluoro-5a-methyl-12H-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12(5aH)-dione (4c) 38.5 mg, 68% yield, white solid, m. p. 134 – 135 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.42 (dd, J = 9.6, 4.3 Hz, 1H), 8.04 (dd, J = 7.8, 1.7 Hz, 1H), 7.58 – 7.44 (m, 3H), 7.28 – 7.10 (m, 2H), 1.71 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 192.8, 161.1, 157.9, 157.4, 155.4, 146.4, 135.4, 134.9, 128.5, 128.0, 125.9, 125.6, 123.5, 118.9, 118.8, 118.1, 111.0, 110.7, 91.1, 20.5 ppm. HRMS (ESI) m/z calcd for [C₁₆H₁₀FNO₃+H]⁺ 284.0717, found 284.0717.

8-chloro-5a-methyl-12H-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12(5aH)-dione (4d) 34.7 mg, 58% yield, white solid, m. p. 173 – 174 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, *J* = 8.7 Hz, 1H), 8.13 – 8.00 (m, 1H), 7.81 (d, *J* = 2.2 Hz, 1H), 7.71 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.31 – 7.11 (m, 2H), 1.71 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 192.5, 157.6, 155.5, 148.4, 138.3, 135.6, 130.7, 128.6, 124.8, 123.6, 122.2, 118.5, 118.2, 118.0, 91.1, 20.5 ppm. HRMS (ESI) *m/z* calcd for [C₁₆H₁₀ClNO₃+Na]⁺ 322.0241, found 322.0238.

5a-phenyl-12H-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12(5aH)-dione (4e)

30.7 mg, 47% yield, white solid, m. p. 185 – 186 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.58 (d, J = 8.2 Hz, 1H), 7.94 (dd, J = 7.8, 1.7 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.56 (dd, J = 6.7, 3.0 Hz, 2H), 7.46 – 7.41 (m, 1H), 7.35 – 7.22 (m, 4H), 7.19 (d, J = 8.2 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 191.4, 158.4, 155.9, 150.9, 138.5, 135.2, 133.6, 129.9, 129.0, 128.4, 126.5, 125.9, 125.3, 123.5, 120.7, 119.2, 118.1, 116.7, 92.2 ppm. HRMS (ESI) m/z calcd for [C₂₁H₁₃NO₃+Na]⁺ 350.0788, found 350.0785.

3-chloro-5a-methyl-12H-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12(5aH)-dione (4f) 31.7 mg, 53% yield, white solid, m. p. 218 – 219 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 2.6 Hz, 1H), 7.77 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.41 (dd, *J* = 8.8, 2.7 Hz, 1H), 7.28 – 7.18 (m, 1H), 7.04 (d, *J* = 8.7 Hz, 1H), 1.62 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 193.0, 156.5, 154.0, 149.7, 138.6, 135.2, 128.9, 128.1, 125.3, 120.8, 119.6, 119.4, 117.3, 90.9, 20.5 ppm. HRMS (ESI) *m*/*z* calcd for [C₁₆H₁₀ClNO₃+Na]⁺ 322.0241, found 322.0251.

3-bromo-5a-methyl-12H-benzo[5,6][1,3]oxazino[3,2-a]indole-6,12(5aH)-dione (4g) 39.1 mg, 57% yield, white solid, m. p. 120 – 121 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.38 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.85 (dd, J = 7.8, 1.4 Hz, 1H), 7.80 – 7.74 (m, 1H), 7.39 – 7.27 (m, 3H), 1.71 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 192.9, 157.0, 155.9, 149.8, 138.6, 129.7, 129.5, 127.0, 125.3, 125.2, 121.4, 120.8, 117.2, 91.0, 20.6 ppm. HRMS (ESI) m/z calcd for $[C_{16}H_{10}BrNO_3+Na]^+$ 365.9736, found 365.9736.

11. Crystal structures of 2q and 4a

Figure S1. ORTEP plot of the crystal structure of 2q.

CCDC number	1508997
Empirical formula	C ₂₂ H ₁₅ NO ₂
Formula weight	325.35
Temperature	296 K
Wavelength	0.71073 Å
Space group	Pbca
Unit cell dimensions	a= 8.874(6) Å =90 °
	b= 13.733(9) Å =90 °
	c= 27.215(17) Å =90 °
Volume	3317(4) Å ³
Ζ	8
Density (calculated)	1.303 Mg/m ³
F(000)	1360.0
Completeness to theta = 25.010°	94.1%
Absorption correction	MULTI-SCAN
Max. and min. transmission	0.996 and 0.990
R indices (all data)	R= 0.0354(2726)
	wR2(reflections)= 0.0962(3390)

X-ray crystallographic data of 2q

Figure S2. ORTEP plot of the crystal structure of 4a.

CCDC number	1508996
Empirical formula	C ₁₆ H ₁₁ NO ₃
Formula weight	265.26
Temperature	296 K
Wavelength	0.71073 Å
Space group	P21/c
Unit cell dimensions	a= 8.269(3) Å =90 °
	b=9.296(4) Å $=93.281(4)$ °
	$c= 16.904(7) \text{ Å} =90 ^{\circ}$
Volume	1297.3(9) Å ³
Ζ	4
Density (calculated)	1.358 Mg/m ³
F(000)	552.0
Completeness to theta = 25.010°	91.1%
Absorption correction	MULTI-SCAN
Max. and min. transmission	0.991 and 0.989
R indices (all data)	R= 0.0372(2113)
	wR2(reflections)= 0.1039(2581)

X-ray crystallographic data of 4a

¹³C NMR (75 MHz, CDCl₃)

Br HO HO 1g ¹H NMR (300 MHz, CD Cl₃)

¹H NMR (300 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

-10.3201 -10.3201 -7.34565 -7.34565 -7.3455 -7.3465 -7.34555 -7.34555 -7.34555 -7.34555 -7.345555 -7.3455555 -7.34555555555555

S57

-10.4538 7.5321 7.5321 7.5321 7.5310 7.5365 7.3603 7.3603 7.35303 7.35303 7.35303 7.35303 7.35303 7.3572591 7.2591 7.2591 7.2592664 7.1275 7.1275 7.1044 7.1108 7.1108 7.1108 7.1275 7.10646 7.1108 7.10872 7.10872 7.0872 6.6901 6.53146.5314

-0.0000

² (8, 233) ² (8, 233) ² (8, 2125) ² (8, 2055) ² (8, 2055) ² (8, 2055) ² (1, 254) ² (1, 24) ² (1, 24) ² (1, 25) ² (1

8.0546 8.0546 7.79503 7.79548 7.79548 7.79504 7.79504 7.73358 7.74255 7.74255 7.74255 7.74255 7.73028 7.73028 7.71436 7.7145 7.71456 7.71456 7.71456 7.71747 7.7174

2c ¹H NMR (300 MHz, CD Cl₃)

2c ¹³C NMR (75 MHz, CDCl₃)

80067 800517 800517 800517 800517 77,9912 77,99555 77,99555 77,99555 77,9555 77,9555 77,1953 77,1953 77,1705 77,170

-1.5583

8.2169 8.2169 7.39574 7.39574 7.39574 7.39574 7.35580 7.75167 7.75167 7.75167 7.75167 7.75167 7.75167 7.75167 7.75167 7.75167 7.75168 7.75168 7.75168 7.75168 7.75168 7.75168 7.75168 7.75168 7.70681 7.706

-1.5720

---0.0000

$\begin{array}{c} 7.9979\\ 7.9729\\ 7.9728\\ 7.9728\\ 7.9728\\ 7.9728\\ 7.74235\\ 7.74235\\ 7.74235\\ 7.72507\\ 7.72507\\ 7.72507\\ 7.72507\\ 7.72507\\ 7.72507\\ 7.70974\\ 7.70974\\ 7.70974\\ 7.70974\\ 7.70325\\ 7.70434\\ 7.70325\\ 7.70434\\ 7.70236\\ 7.7026\\ 7.$

80508 80249 80249 7,74874 7,74874 7,74819 7,74819 7,74819 7,74919 7,711401 7,711401 7,71995 7,70985 7,70985 7,70985 7,70995 6,53500 6,53550 6,53550 6,53550 6,53550 6,53550 6,53550 6,53550 7,70995 6,53550 6,53550 7,70995 7,70995 6,53550 7,70995 7,70995 7,70995 7,70995 7,20079 7,

 8.0586

 7.7910

 7.7910

 7.7910

 7.7910

 7.7910

 7.7910

 7.7910

 7.7111

 7.7111

 7.7111

 7.7111

 7.7111

 7.7111

 7.7111

 7.7111

 7.7111

 7.7111

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

 7.711

-0.1706

 $<^{1.7475}_{1.7204}$

-1.5617

 $$2v$ $^1\!H$ NMR (300 MHz, CD Cl_3)

-1.7055

28.5888 28.5616 7.9552 7.95536 7.95536 7.95536 7.95348 7.79246 7.77549 7.775495 7.75521 7.755495 7.754464 7.7544564 7.754464 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.7544564 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.75521 7.76574 7.76574 7.76574 7.76574 7.76574 7.76574 7.76574 7.70575

~0.0005

4f ¹H NMR (300 MHz, CDCl₃) 0.2 1.10₄ 1.25₄ 1.04₄ 3.244 100. $1.08^{4}_{1.064}$ 1.03 6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm) 8.0 7.5 3.5 3.0 2.5 5 9.0 8. 5 2.0 1.5 1. 0 0.5 0.0 -0 ✓156,5055
✓156,5055
✓149,7173
✓149,7173
√138,6124
√138,1785
√138,1785
√128,8850
√128,8850
√128,8850
√128,3333
√119,6333
√119,6333
√119,6333
√119,6333
√119,6333
√119,4397
√119,4397
√119,4397
√119,4397
√1119,4397
√1119,4397 -193.0340-90.898477.479477.056576.6313-20.48824f ¹³C NMR (75 MHz, CDCl₃) 20 210 200 190 180 170 160 150 140 130 120 110 100 fl (ppm) 90 80 70 60 50 40 30 20 10 Ó

-1.6187

