Supporting information

Aerobic Oxidation and EATA-Based Highly Enantioselective Synthesis of Lamenallenic Acid

Xingguo Jiang, ^a Yufeng Xue, ^a and Shengming Ma*^{a,b}

^{*a*} State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

^b Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China

E-mail: <u>masm@sioc.ac.cn</u> Fax: (+86)21-64167510

The initial attempts to construct the C=C		
double bond (concluding experimental	S1-11	
details and analytical data)		
Notes and references	S12	
¹ H, ¹³ C NMR and HPLC spectra of all the	S13-61	
products		

The initial attempts to construct the C=C double bond in laballenic acid

In order to construct the C=C double bond with a high E/Z ratio, we wished to prepare *E*-alkenyl iodide with a free terminal hydroxy group *E*-6 first, which could be transformed into (*E*)-10-dodecenol *E*-16 after cross coupling reaction with ZnMe₂. However, by applying the ZrCp₂Cl₂/DIBAL-H reduction and iodination protocol developed by Negishi et al.,¹ the reaction of terminal alkynol **5** afforded two extra by-products: protonolysis product **7** and the over-reduction product **8**, which were hard to be separated from each other by chromatography on silica gel (entry 1, Table S1). By-products still existed after adjusting the equiv. of ZrCp₂Cl₂ and DIBAL-H (entries 2 and 3, Table S1).

	<u> </u>	∽∕он	(1) ZrCp ₂ Cl ₂ (x equiv.) DIBAL-H (y equiv.) THF, 0 °C, 30min r.t., 1 h		н Е- 6		
	5		(2) I ₂ (z equiv.), -78 °C, 1 h r.t., 2.5 h		+ 7 I OH 8		
				Yield $(\%)^a$			
Entry	Х	У	Z	E- 6	7	8	
1	1.5	1.5	1.5	59	17	7	
2	2.1	2.1	2.5	58	3	18	
3	1.1	2.1	2.5	31	9	24	

Table S1 ZrCp₂Cl₂/DIBAL-H reduction and iodization of 10-undecynol 5.

^aNMR yield.

We reasoned that the hydroxyl group might assist the side reaction. Then its TBS ether **9** was treated with 1.1 equiv. each of $ZrCp_2Cl_2$ and DIBAL-H. No over reduction was observed, but protonolysis by-product **11** still existed (entry 1, Table S2). After enlarging the reaction scale from 0.5 mmol to 5.0 mmol, the ratio of *E*-10/11 was improved from 7.2:1 to 14.0:1 (entry 2, Table S2).

OTBS 9		(1) ZrCp DIBAL THF, (r.t., 1 (2) I ₂ (1, -78 ° r.t., 1	¹ ₂ Cl₂ (1.1 equiv.) ₋ -H (1.1 equiv.) 0 °C, 30 min ^a h 5 equiv.) C, 30 min ^b .5 h	E-10 + 0TBS 11		
Entry	Scale (mmol)	4Å MS	Yield of	Ratio of		
Entry 3	Scale (IIIII0I)	4A M5	<i>E</i> -10 (%)	<i>E-</i> 10 :11		
1	0.5	-	72	7.2:1		
2	5.0	-	62	14.0:1		
3	0.5	100 mg	70	6.6:1		

Table S2ZrCp₂Cl₂/DIBAL-H reduction and iodization of TBS-protected10-undecynol 9.

^{*a*}45 min for 5.0 mmol scale (entry 2); ^{*b*}1 h for 5.0 mmol scale (entry 2).

The cross coupling reaction of the mixture of this alkenyl iodide *E*-10 and 11 with 1.2 equiv. of Me₂Zn² with 10 mol% of Pd(PPh₃)₄ at room temperature afforded a 7.2:1 mixture of *E*-alkene *E*-12 and the protonolysis by-product 11 (entry 1, Table S3). When we reduced the loading of Pd(PPh₃)₄ to 5 mol% and raised the amount of Me₂Zn to 1.5 equiv., an 11.1:1 mixture of *E*-alkene *E*-12 and 11 was afforded at 40 °C for 5 hours (entry 2, Table S3), which are hard to be separated from each other due to their similar polarities on silica gel. We had to look for a better solution.

Table S3 Cross coupling reaction of *E*-10 and Me₂Zn.

I~~~	<i>E-</i> 10 <i>E-</i> 10:11 = 7	14.0:1	OTBS +	Pd((x m y equiv. T	PPh ₃) ₄ nol%) ⁻ HF	+ E-12 + OTBS OTBS 11	
Entry	V	¥7	Time	Temp.	Yield of	Datio of E 19:11	
Епиу	Х	у	(h)	(°C)	<i>E</i> -12 (%)	Ratio of <i>E</i> -12.11	
1	10	1.2	6	r.t.	76	7.2:1	
2	5	1.5	5	40	88	11.1:1	

Furthermore, attempts to form the *trans* C=C bond by Wittig reaction of aldehyde **13** were tried and a 73/27 mixture of the Z and E isomers of **14** was afforded (Scheme S1). Then, Na/ NH₃ (l) reduction was applied to construct this *trans* C=C double bond.³ Only 6% of the product **16** was detected by NMR analysis. With Li/NH₃ (l) reduction,⁴ 86% yield of 10-dodecenol **16** was obtained with 83/17 of E/Z ratio, which was still NOT good enough for a highly stereoselective synthesis.

Scheme S1 Attempts to construct the *trans* C=C bond.

Experimental details and analytical data for the initial attempts to construct the C=C double bond

(E)-11-Iodo-10-undecen-1-ol^{1a} (E-6) (jxg-4-164)

To a flame dried Schlenk tube were added $ZrCp_2Cl_2$ (307.3 mg, 1.05 mmol) and anhydrous THF (1.5 mL). DIBAL-H (1M in toluene, 1.05 mL, 1.05 mmol) was added dropwise at 0 °C under Ar atmosphere. After 30 min, a solution of **5** (84.4 mg, 0.5 mmol) in THF (0.5 mL) was added dropwise. The mixture was then allowed to warm

up to room temperature. After being stirred for 1 h, the resulting mixture was cooled to -78 °C followed by addition of a solution of I_2 (317.8 mg, 1.25 mmol) in THF (0.8 mL) dropwise. After being stirred at -78 °C for 1 h, the resulting mixture was warmed up to room temperature and stirred for 2.5 h until the completion of the reaction as monitored by TLC. After being cooled to -78 °C, 1M HCl (3 mL) was added to quench the reaction. Then Et₂O (20 mL) was added to separate the organic layer. The aqueous phase was extracted by ethyl ether (10 mL). The combined organic layer was washed sequentially with a saturated NaHCO₃ aqueous solution (10 mL), a saturated $Na_2S_2O_3$ aqueous solution (10 mL), and brine. After being dried over anhydrous Na₂SO₄, the mixture was filtrated and evaporated. 48 µL of mesitylene was added to the residue as the internal standard. 58% yield of $E-6^{5}$ 3% yield of 7,⁶ and 18% yield of $\mathbf{8}^7$ were detected by NMR analysis of the crude product. The mixture was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50/1) to afford a 65:1:20 mixture of *E*-6, 7 and 8 (118.1 mg) as an oil: *E*-6: ¹H NMR (400 MHz, CDCl₃) δ 6.55-6.46 (m, 1 H, =CH), 5.97 (d, J = 14.4 Hz, 1 H, =CH), 3.63 (t, J = 6.6 Hz, 2 H, OCH₂), 2.09-2.00 (m, 2 H, CH₂), 1.61-1.45 (m, 3 H, CH₂ + OH), 1.43-1.18 (m, 12 H, $12 \times CH_2$); ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 74.3, 62.95, 36.0, 32.7, 29.41, 29.2, 28.8, 28.3, 25.7, 7.4. The following signals are discernible for 7: ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.74 (m, 1 H, =CH), 5.03-4.89 (m, 2 H, =CH₂). The following signals are discernible for 8: ¹H NMR (400 MHz, CDCl₃) δ 3.19 (t, J = 7.0 Hz, CH₂), 1.82 (quint, J = 7.2 Hz, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 62.96, 33.5, 30.4, 29.5, 29.40, 29.34, 29.31, 28.5.

To a flame dried Schlenk tube were added $ZrCp_2Cl_2$ (1.6084 g, 5.5 mmol) and anhydrous THF (12.5 mL). DIBAL-H (1M in Toluene, 5.5 mL, 5.5 mmol) was added

dropwise at 0 °C under Ar atmosphere. After 45 min, a solution of 9^8 (1.4130 g) in THF (2.5 mL) was added dropwise in 20 min. The mixture was then allowed to warm up to room temperature and stirred for 1 h and cooled to -78 °C, followed by addition of a solution of I₂ (1.9049 g, 7.5 mmol) in THF (7.5 mL) dropwise in 10 min at this temperature. After being stirred at -78 °C for 1 h, the resulting mixture was warmed up to room temperature and stirred at rt for 1.5 h until the completion of the reaction monitored by TLC. After being cooled to -78 °C, 1M HCl (30 mL) was added to quench the reaction. Et₂O (80 mL) was added to separate the organic layer. The aqueous phase was extracted by ethyl ether (20×3 mL). The combined organic layer was washed sequentially with a saturated NaHCO₃ aqueous solution (30 mL), a saturated Na₂S₂O₃ aqueous solution (30 mL), and brine. After being dried over anhydrous Na₂SO₄, the mixture was filtrated and evaporated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1) to afford a 14.0:1 mixture of E-10^{1c} and 11⁹ (1.3343 g) as an oil: E-10 (62% yield): ¹H NMR (400 MHz, CDCl₃) δ 6.56-6.46 (m, 1 H, =CH), 6.00-5.93 (d, J = 6.6 Hz, 1 H, =CH), 3.60 (t, J = 6.6 Hz, 2 H, OCH₂), 2.09-2.00 (m, 2 H, CH₂), 1.50 (m, 2 H, CH₂), 1.43-1.33 (m, 2 H, CH₂), 1.33-1.22 (m, 10 H, 5 × CH₂), 0.89 (s, 9 H, 3 × CH₃), 0.67 (s, $6 \text{ H}, 2 \times \text{CH}_3$; ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 74.3, 63.3, 36.0, 32.8, 29.5, 29.4, 29.3, 28.9, 28.3, 26.0, 25.8, 18.4, -5.3; IR (neat) v (cm⁻¹) 2927, 2855, 1606, 1463, 1388, 1361, 1254, 1097, 1006, 942, 834, 774; MS (ESI) m/z (%): 411 ((M+H)⁺). The following signals are discernible for 11: ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.74 (m, 1 H, =CH), 5.03-4.90 (m, 2 H, =CH₂).

The molar ratio of *E*-10:11 was 14.0:1. Thus *E*-10 in the product was calculated to be 1.3343 g × $(410.46 \times 14.0 / (410.46 \times 14.0 + 284.56 \times 1.0) = 1.2713$ g. Yield (*E*-10) = 1.2713 g / 410.46 / (1.4130 g / 282.54) × 100% = 62%.

(E)-tert-Butyldimethyl (10-dodecen-1-yloxy) silane² (E-12) (jxg-4-184, jxg-5-9)

To a flame dried Schlenk tube were added Pd(PPh₃)₄ (57.8 mg, 0.05 mmol), E-10 (205.8 mg, 0.5 mmol), and anhydrous THF (2.5 mL) sequentially under Ar atmosphere at room temperature. Me₂Zn (0.6 mL, 0.6 mmol, 1M in toluene) was added dropwise. The reaction was then conducted at room temperature for 6 h until the completion of the reaction monitored by TLC (petroleum ether). H₂O (10 mL) was added to guench the reaction. Then ethyl acetate (20 mL) was added to separate the organic layer. The aqueous phase was extracted by ethyl acetate (5 mL \times 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether) to afford a 7.2:1 mixture of E-12 and 11 (123.2 mg) as an oil: *E*-12 (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 5.47-5.34 (m, 2 H, CH=CH), 3.60 (t, J = 6.8 Hz, 2 H), 2.00-1.90 (m, 2 H, CH₂), 1.66-1.62 (m, 3 H, CH₃), 1.55-1.45 (m, 2 H, CH₂), 1.38-1.20 (m, 12 H, $6 \times$ CH₂), 0.90 (s, 9 H, $3 \times$ CH₃), 0.05 (s, 6 H, $2 \times$ CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 131.7, 124.5, 63.3, 32.9, 32.6, 29.6, 29.48, 29.44, 29.2, 26.0, 25.8, 18.4, 17.9, -5.3. The following signals are discernible for 11: ¹H NMR (400 MHz, CDCl₃) δ 5.86-5.75 (m, 1 H, =CH), 5.02-4.90 (m, 2 H, =CH₂), 2.04 (q, J = 7.1 Hz, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 114.1, 33.8, 29.59, 29.1, 28.9.

The molar ratio of *E*-**12**:**11** was 7.2:1. Thus *E*-**10** in the substrate was calculated to be 205.8 mg × ($410.46 \times 14.0 / (410.46 \times 14.0 + 284.56 \times 1.0) = 196.1$ mg. The molar ratio of *E*-**12**:**11** was 7.2:1. Thus *E*-**12** in the product was calculated to be 123.2 mg × ($298.59 \times 7.2 / (298.59 \times 7.2 + 284.56 \times 1.0) = 108.8$ mg. Yield (*E*-**12**) = 108.8 mg / 298.59 / (196.1 mg / 410.46) × 100% = 76%.

To a flame dried Schlenk tube were added Pd(PPh₃)₄ (29.0 mg, 5 mol%), E-10 (205.3 mg, 0.5 mmol), and anhydrous THF (2.5 mL) sequentially under Ar atmosphere at room temperature. Me₂Zn (0.75 mL, 0.75 mmol, 1 M in toluene) was added dropwise in 5 min. The reaction was then conducted at 40 °C for 5 h until the completion of the reaction monitored by TLC (petroleum ether). When the reaction mixture was cooled to room temperature, 1M HCl (3 mL) was added to quench the reaction. Ethyl acetate (20 mL) was added to separate the organic layer. The aqueous phase was extracted by ethyl acetate (5 mL \times 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl ether = 500/1) to afford a 11.1:1 mixture of *E*-12 and 11 (136.3 mg) as an oil: E-12 (88% yield): ¹H NMR (400 MHz, CDCl₃) δ 5.47-5.35 (m, 2 H, CH=CH), 3.60 (t, J = 6.8 Hz, 2 H), 2.00-1.89 (m, 2 H, CH=CHCH₂), 1.67-1.61 (m, 3 H, CH₃), 1.56-1.46 (m, 2 H, CH₂), 1.38-1.21 (m, 12 H, 6 × CH₂), 0.90 (s, 9 H, 3 × CH₃), 0.05 (s, $6 \text{ H}, 2 \times \text{CH}_3$; ¹³C NMR (100 MHz, CDCl₃) δ 131.7, 124.5, 63.3, 32.9, 32.6, 29.6, 29.48, 29.44, 29.2, 26.0, 25.8, 18.4, 17.9, -5.3; IR (neat) v (cm⁻¹) 2926, 2855, 1463, 1387, 1361, 1254, 1098, 1007, 965, 834, 774; MS (ESI) m/z (%): 299 ((M+H)⁺); HRMS calcd for $C_{19}H_{39}OSi$ ([(M+H)⁺]): 299.2765; found: 299.2765. The following signals are discernible for 11: ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.75 (m, 1 H, =CH), 5.02-4.90 (m, 2 H, =CH₂), 2.04 (q, J = 6.9 Hz, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 114.1, 33.8, 29.6, 29.1, 28.9.

The molar ratio of *E*-12:11 was 11.1:1. Thus *E*-12 in the substrate was calculated to be 205.3 mg × ($410.46 \times 14.0 / (410.46 \times 14.0 + 284.56 \times 1.0) = 195.6$ mg. The molar ratio of *E*-12:11 was 11.1:1. Thus *E*-12 in the product was calculated to be 136.3 mg × (298.59 × 11.1 / (298.59 × 11.1 + 284.56 × 1.0) = 125.5 mg. Yield (*E*-12) = 125.5 mg / 298.59 / (195.6 mg / 410.46) × 100% = 88%.

(*Z*/*E*)-Methyl 10-dodecenate (14) (jxg-1-101)

To a flame dried Schlenk tube were added (CH₃CH₂)Ph₃P⁺Br⁻ (241.8 mg, 0.65 mmol) and anhydrous THF (2 mL). After the mixture was cooled to -78 °C, n-BuLi (2.5 M in toluene, 0.24 mL, 0.60 mmol) was added dropwise in 5 min. The resulting mixture was then warmed up to room temperature and stirred for 1 h. After being cooled to -78 °C again, a solution of 13¹⁰ (99.7 mg, 0.5 mmol) in THF (2 mL) was added dropwise. The reaction was then allowed to warm up to 0 °C and stirred for 45 min until the completion of the reaction monitored by TLC (petroleum ether/ethyl acetate = 5/1). The colour of the mixture changed from orange to white. A saturated NH₄Cl solution (2 mL) was added to quench the reaction at 0 °C. Ethyl ether (20 mL) and H₂O (10 mL) were added. The aqueous phase was extracted by ethyl ether (5 mL \times 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30/1) to afford 14^{11} (Z/E = 73/27) (81.9 mg, 77%) as an oil: **14** (Z): ¹H NMR (400 MHz, CDCl₃) δ 5.48-5.33 (m, 2 H, CH=CH), 3.67 (s, 3 H, CH₃), 2.30 (t, J = 7.6 Hz, 2 H), 2.06-1.99 (m, 2 H, CH₂), 1.67-1.56 (m, 5 H, CH₃ + CH₂), 1.39-1.20 (m, 10 H, $5 \times$ CH₂); ¹³C NMR (100 MHz, CDCl₃) § 174.3, 130.8, 123.6, 51.4, 34.0, 29.47, 29.29, 29.19, 29.16, 29.1, 26.8, 24.9, 12.7; IR (neat) v (cm⁻¹) 3013, 2926, 2855, 1741, 1456, 1363, 1259, 1195, 1170, 1017; MS (EI) m/z (%): 212 (M⁺, 5.44), 55 (100). The following signals are discernible for **14** (*E*): ¹H NMR (400 MHz, CDCl₃) δ 1.99-1.92 (m, 2 H, CH₂); ¹³C NMR (400 MHz, CDCl₃) δ 131.6, 124.5, 32.5, 29.52, 29.26, 29.17, 29.0, 17.9.

(*Z*/*E*)-10-Dodecenal (3) (jxg-1-111)

To a flame dried Schlenk tube were added 14 (Z/E = 73/27) (743.4 mg, 3.5 mmol) and CH₂Cl₂ (10.5 mL). DIBAL-H (1 M in Toluene, 3.68 mL, 3.68 mmol) was added dropwise at -78 °C in 10 min. The reaction was carried out at -78 °C for 2 h until the completion of the reaction monitored by TLC (petroleum ether/ethyl ether = 20/1). A saturated potassium sodium tartrate aqueous solution (10 mL) was added to quench the reaction at -78 °C. The mixture was warmed up to room temperature and stirred. CH₂Cl₂ (20 mL) was added to separate the organic layer. The aqueous phase was extracted by ethyl ether (10 mL \times 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50/1) to afford 3^{12} (Z/E = 73/27) (513.9 mg, 81%) as an oil: 3 (Z): ¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, J = 2.0 Hz, 1 H, CHO), 5.48-5.33 (m, 2 H, CH=CH), 2.42 (td, J₁ = 7.4, $J_2 = 2.0$ Hz, 2 H, CH₂), 2.06-1.99 (m, 2 H, CH₂), 1.67-1.57 (m, 5 H, CH₃ + CH₂), 1.39-1.22 (m, 10 H, 5 × CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 130.7, 123.6, 43.9, 29.50, 29.28, 29.27, 29.13, 29.09, 26.7, 22.0, 12.7; IR (neat) v (cm⁻¹) 3013, 2924, 2854, 2714, 1727, 1463, 1405, 1368, 1259, 1014; MS (EI) m/z (%): 182 (M⁺, 0.83), 55 (100). The following signals are discernible for **3** (*E*): ¹H NMR (400 MHz, CDCl₃) δ 1.99-1.92 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 131.5, 124.5, 32.5, 29.46, 29.24, 29.03, 17.9.

(E/Z)-10-Dodecen-1-ol⁴ (16) (jxg-1-150)

To a flame dried Schlenk tube was introduced NH₃ (gas) at -78 °C to collect 10 mL of NH₃ liquid. A solution of **15**⁴ (182.0 mg) in a mixed solvent (7.2 mL, THF/[']BuOH = 5/3 by volume). Then Li rod (70.1 mg, 10.0 mmol) was added. The resulting mixture was stirred at -78 °C for 2.5 h and warmed up to -40 °C with stirring for 8 h until the completion of the reaction as monitored by TLC (petroleum ether/ethyl acetate = 5/1). A saturated NH₄Cl solution (2 mL) was added to quench the reaction. The flask was opened to air overnight to allow the NH₃ (l) to evaporate completely.

Et₂O (20 mL) and H₂O (10 mL) were added. The aqueous phase was extracted by ethyl ether (10 mL × 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15/1) to afford **16**⁴ (*E*/*Z* = 83/17) (158.7 mg, 86%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 5.47-5.34 (m, 2 H, CH=CH), 3.62 (t, *J* = 6.6 Hz, 2 H, OCH₂), 1.99-1.92 (m, 2 H, CH₂), 1.77 (brs, 1 H, OH), 1.64 (dd, 3 H, *J*₁ = 3.4 Hz, *J*₂ = 1.0 Hz, CH₃), 1.62-1.50 (m, 2 H, CH₂), 1.39-1.22 (m, 12 H, 6×CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 131.6, 124.5, 62.9, 32.7, 32.5, 29.56, 29.53, 29.41, 29.38, 29.1, 26.7, 25.7, 17.9. The following signals are discernible for **16** (*Z*): ¹H NMR (400 MHz, CDCl₃) δ 2.06-2.00 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 1.00 (m, 2 H, CH₂); ¹³C

Notes and references

(a) Z. Huang and E.-i. Negishi, Org. Lett., 2006, 8, 3676; (b) D. W. Hart and J. Schwartz, J. Am. Chem. Soc., 1974, 96, 8115; some other reports to synthesize E-alkenyl iodides: (c) A. Kalivretenos, J. K. Stille and L. S. Hegedus, J. Org. Chem., 1991, 56, 2883; (d) G. Hikosaka, Y. Hattori and H. Makabe, Tetrohedron: Asymmetry, 2014, 25, 1367; (e) A. Darwish and J. M. Chong, Tetrahedron, 2012, 68, 654.

- 2. P. Wipf and M. J. Soth, Org. Lett., 2002, 4, 1787.
- 3. J. Wang, J. Chen, C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed., 2012, 51, 2382.
- 4. M. J. Cryle, P. Y. Hayes and J. J. De Voss, Chem. Eur. J., 2012, 18, 15994.
- 5. J. K. Stille and J. H. Simpson, J. Am. Chem. Soc., 1987, 109, 2138.
- 6. D. Peng, M. Zhang and Z. Huang, Chem. Eur. J., 2015, 21, 14737.
- 7. M. Bérubé, F. Kamal, J. Roy and D. Poirier, Synthesis, 2006, 18, 3085.
- 8. X. Lu, S. Cseh, H. S. Byun, G. Tigyi and R. Bittman, J. Org. Chem., 2003, 68, 7046.
- 9. S. C. Sinha, A. Sinha-Bagchi and E. Keinan, J. Org. Chem., 1993, 58, 7789.
- 10. P. D. Gokhale, V. S. Dalavoy, A. S. C. Prakasa Rao, U. R. Nayak and S. Dev, *Synthesis*, 1974, 718.
- 11. X. Guan, M. B. Fisher, D. H. Lang, Y.-M. Zheng, D. R. Koop and A. E. Rettie, *Chem. Biol. Interact.*, 1998, **110**, 103.
- 12. G. W. Kabalka, S. Yu and N.-S. Li, Can. J. Chem., 1998, 76, 800.

PPM C - 36.039 - 26.039 - 26.889 - 29.382 - 29.383 - 28.385 - 2 Married Woman Ē 20-905.59-000.77 ----686.67 ----872.47 ----872.47 ----100 Feb 5 2015 SOLVENT: dd:3 Na = 100 520737 MHz F1 = 100 520737 MHz F2 = 399.722015 MHz jxg-1-180-C-400M 662.941 -150 OTBS E-10 OTBS 11 E-10:11 = 14.0:1 + 200 Ì

l

I

Instrument:U3000 Sequence:20160303

Page 1 of 1

20160223/Integration

Chrometoon (c) Dionex Version 7.2.0.3765

		Chron	natogram	and Resul	lts		
Injectio	n Details						
Injection Vial Num Injection Calibrati Instrume Process Injection	n Name: mber: n Type: ion Level: ent Method: ing Method: n Date/Time:	jxg-4-153+-adrh A62w RD1 Unknown 20160223-DAD2 20160223 201九月/16 12:26	/38 214 0.7 20		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	73.21 5.00 UV_VIS_1 214.0 4 1.0000 1.0000	
Chroma	atogram 🔹						
20.0	20160303 #684 [man	ipulated] jx	g-4-153+-adrh	A62w38 214 0.7	7 20		UV_VIS_1
15.0	MM		•	~~~	1-49.333	r ² - 58.123	
-5.0-							
-10.0							min
0.0) 10.0	20.0	30.0	40.0	50.0	60.0	70.0 73
No.	Retention Time min 49,333 58,123	Area mAU*min 33.397 34,002	Height mAU 14.385 11.453	Relative Area % 49.55 50.45			
Total:		67.400	25.838	100.00			

.

20160223/Integration

Chromeleon (c) Dionex Version 7.2.0.3765

Instrument:U3000 Sequence:20160303

Page 1 of 1

(R_a)-(-)-2

Chromeleon (c) Dionex Version 7.2.0.3765

ĥ

20160223/Integration

Instrument:U3000 Sequence:20160303

Chromatogram and Results Injection Details jxg-4-153+-adrh A62w38 214 0.7 20 RD1 Injection Name: Run Time (min): 73.21 5.00 UV_VIS_1 Injection Volume: Channel: Vial Number: Injection Type: Calibration Level: Unknown Wavelength: 214.0 20160223-DAD2 Instrument Method: Bandwidth: 4 20160223 20/九月/16 12:26 1.0000 Processing Method: Dulution Factor: Injection Date/Time: Sample Weight 1.0000 Chromatogram UV_VIS_1 jxg-4-153+-adrh A62w38 214 0.7 20 mAU 15.0 1 - 49.333 2 - 58.123 10.0 5.0 0.0 -5.0 min 10.0 -70.0 73.2 10.0 20.0 30.0 40.0 50.0 60.0 0.0 Integration Results No. Retention Time Area Height Relative Area min nAU*min mAU % 49.333 33.397 14.385 49.55 58.123 34.002 11.453 50.45 Total: 67.400 25.838 100.00

.

20160223/Integration

1

2

Chromeleon (c) Dionex Version 7.2.0.3765

Page 1 of 1