Facile one-pot solvent-free synthesis of hierarchical ZSM-5 for methanol to gasoline conversion

Ziyu Liu,^a Dan Wu,^{a,c} Shu Ren,^{a,d} Xinqing Chen,^{a,*} Minghuang Qiu,^a Guojuan Liu,^a Gaofeng Zeng,^a and Yuhan Sun, ^{a,b,*}

^a CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Reasearch Institute, Chinese Academy of Science, Shanghai, 201202, China. ^bShanghaiTech University, Shanghai, 201210,China. ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China. ^dShanghai University, Shanghai 200444, China *Corresponding author: chenxg@sari.ac.cn; sunyh@sari.ac.cn

Supporting information:

Materials:

Na₂SiO₃.9H₂O (99%, Shanghai Runjie Chemical Reagent Company), Fumed silca (Aladdin Chemical Regent Company), Tetrapropylammonium bromide (TPABr, 98%, Aladdin Chemical Regent Company), Tetraethylammonium bromide (TEABr, 98%, Adamas Chemical Regent Company), Tetrabutylammonium bromide (TBABr, 98%, Adamas Chemical Regent Company), NH₄Cl (99%, Shanghai Runjie Chemical Reagent Company), NAIO₂(99%, Shanghai Runjie Chemical Reagent Company), activated carbon (Macklin Chemical Regent Company), methanol (99%, Shanghai Runjie Chemical Reagent Company), DDI water was obtained from a Millipore system. All chemicals were analytical grade and were used as received without further purification.

Preparation of SH-ZSM-5

19.5 g of Na₂SiO₃·9H₂O, 5.2 g of fumed silica, 3.6 g of TPABr, 1.76 g of activated carbon and 6.3 g of NH₄Cl with different amount of NaAlO₂ (0.1~1.2 g) were mixed together one by one. After grinding for 20 s in a mechanical grinder, the mixture was transformed to an autoclave and heated at 180 °C for 24~48 h. After filtration at room temperature, drying at 100 °C and calcination at 550 °C, a series of

crystallized products of SH-ZSM-5 with different Si/Al ratio were obtained.

Characterization

The morphology of SH-ZSM-5 was examined by a scanning electron microscope (SEM, Hitachi, S4800). TEM, HTEM and selected-area electron diffraction patterns were measured by JEM-2100F, JEOL Ltd., Japan. X-ray diffraction (XRD) patterns were obtained using a X-ray diffractometer (Rigku, ultima IV, 40 kV, 40mA) with Cu K α (λ =1.5406 A) radiation. Thermal degradation measurements were performed on a Thermogravimetric analysis (TGA) (NETZSCH, STA 449F3). MAS NMR spectra were recorded on a Varian Infinity plus 400 spectrometer. The reference materials of NMR for the chemical shift (in ppm) were kaolinite for ${}^{29}Si$, Al(H₂O)₆³⁺ for ${}^{27}Al$. BET surface areas and pore size were measured by N2 adsorption-desorption isotherms (Micromeritics, physisorption analyzer, ASAP 2020). NH₃-TPD measurement were carried out on a TP5080 (Xianquan, Tianjin), the catalysts (0.2 g, 40~60 mesh) were pretreated at 500 °C in a N₂ flow for 60 min before the measurement, then by the adsorption of NH₃ at 100 °C for 30 min. After saturation, the catalyst was purged by N₂ flow for 30 min to remove the physically adsorbed NH₃ on the sample. And then, the desorption process of NH₃ was carried out from 100 to 600 °C with a heating rate of 10 °C/min.

Catalytic test: methanol to gasoline reaction (MTG)

MTG reaction was carried out with a fixed-bed tubular steel reactor with an inner diameter of 12 mm and a length of 550 mm at atmospheric pressure. 2.0 g of catalyst ($20 \sim 40$ mesh) was loaded in between two layers of quartz wool in each run. The sample was pretreated in flowing nitrogen at 400°C for 3 h and then cooled to 380 °C to carry out the reaction. Gaseous methanol was introduced into the reactor with the weight hourly space velocity (WHSV) of 1.0 h⁻¹. Products from the reactors were analyzed on-line by a GC-2014C gas chromatographs equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The vent gas

and cooled hydrocarbons from condenser were analyzed by FID-detector with HP-PLOR/Q capillary column, whereas CO_x in gas and methanol in cooled water were detected by TCD-detector with TDX-01 packed column.

Fig. S1. ²⁷Al MAS NMR spectrum of SH-ZSM-5 with different Si/Al ratio.

Fig. S2. ²⁹Si MAS NMR spectrum of SH-ZSM-5 with different Si/Al ratio.

Fig. S3. XRD patterns of prepared SH-ZSM-5 with different Si/Al ratio.

Fig. S4. SEM images of prepared SH-ZSM-5 with different Si/Al ratio.

0.2

0.0

0.4

0.6

P/P₀

0.8

1.0

Fig. S5. N_2 adsorption-desorption isotherms and PSD of SH-ZSM-5 zeolites with different Si/Al ratio.

Fig.S6 XRD patterns of prepared materials using TEABr and TBABr

The detail information of activated carbon used in this work:

Activated carbon is provided from Macklin Chemical Regent Company, and chemical compositions of AC are: Carbon (>99.5%), Heavy metals (Pb<0.01 ppm, Fe<0.01 ppm, Zn<0.1 ppm), Sulfur compounds (<0.15%). Fig.S6 describes the morphology of AC. It is shown that the particles of activated carbon are aggregated from the SEM images.

Fig. S7. SEM images of activated carbon

Samples	Si/Al	S _{BET} (m²/g)	S _{micro} (m ² /g)	S _{Ext} (m ² /g)	V _{sum} (cm ³ /g)	V _{micro} (cm ³ /g)
SH-ZSM-5-20	21.6	299	213	85.8	0.20	0.12
SH-ZSM-5-30	31.9	357	261	96.0	0.16	0.13
SH-ZSM-5-45	44.7	377	302	74.6	0.16	0.14
SH-ZSM-5-60	62.5	337	253	83.7	0.15	0.12
SH-ZSM-5-100	109.3	349	295	54.1	0.14	0.13

Table S1. Textural properties of the prepared hierarchical SH-ZSM-5 samples

Si/Al ratio was determined by XRF analysis.