Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

Soft-template Synthesis of Hydrophilic Metallic Zirconia Nanoparticles-Incorporated Ordered Mesoporous Carbon Composites and its Application in Phosphopeptides Enrichment

Lei zhang,^a Zhichao Xiong,^b Yajing Chen, ^a Li Peng, ^a Xiaodi Gao, ^a Bohao Yu, ^a Runsheng Zhang, ^c Lingyi zhang ^{a*} and Weibing Zhang ^{a*}

 ^a Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 200237, Shanghai, China.
 ^b Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R.China
 ^c Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai Public Security Bureau, Shanghai, P. R. China

weibingzhang@ecust.edu.cn

zhanglingyi@ecust.edu.cn

Contents

Effect of incubation condition on the enrichment of phosphopeptides2
Figure S1. Selected Area Electron Diffraction of TEM of zirconia/OMC composites
2
Figure S2. Ultrahigh Resolution Field Emission Scanning Electron Microscopy
(UHRFESEM) of zirconia/OMC composites3
Figure S3. The effect of incubation condition on the enrichment of phosphopeptides
3
Figure S4. The fourth enrichment of phosphopeptides by zirconia/OMC composites
which were stored in water about six months4
Table S1. The effect of incubation condition on three peaks of the enrichment of
phosphopeptides4
Table S2. Phosphopeptides identified of β -casein after enriched by zirconia/OMC
composites5

Table S3. Phosphopeptides identified of nonfat milk after enriched by zirconia/OMC composites ------5 Table S4. Identified phosphopeptides from nonfat milk enriched by Zirconia/OMC or other materials cited from the literatures using MAIDI-TOF MS------6

Effect of incubation condition on the enrichment of phosphopeptides

In order to improve the enrichment efficiency of phosphopeptides, different incubation conditions were studied. Six different loading buffers were used to enrichment the tryptic digests of β -casein. The three MS peaks of phosphopeptides (2061.72 m/z, 2555.96 m/z, 3122.09 m/z) were used to evaluate the enrichment results. As shown in Fig. S3 ESI † and Table S1 ESI †, the MS signal intensities of three MS peaks were gradually increased with the enlargement of the ratio of acetonitrile. When the content of TFA was increased, the intensities were reduced. So, the best load buffer condition was ACN-H₂O-TFA (90 : 5: 5, v/v/v).

Figure S1. Selected Area Electron Diffraction of TEM of zirconia/OMC composites

Figure S2. Ultrahigh Resolution Field Emission Scanning Electron Microscopy (UHRFESEM) of zirconia/OMC composites

Figure S3. The effect of incubation condition on the enrichment of phosphopeptides

Figure S4. The fourth enrichment of phosphopeptides by zirconia/OMC composites which were stored in water about six months

phosphopeptides				
Insubation condition	Peak of	Peak of	Peak of	
	2061.72 m/z	2555.96 m/z	3122.09 m/z	
90 % ACN-5 % TFA-5 % H ₂ O	35112	2077	9380	
85 % ACN-5 % TFA-10 % H ₂ O	27996	3202	2929	
80 % ACN-5 % TFA-15 % H ₂ O	38971	1884	594	
75 % ACN-5 % TFA-20 % H ₂ O	25033	1868	818	
90 % ACN-6 % TFA-4 % H ₂ O	12587	967	3821	
75 % ACN-6 % TFA-14 % H ₂ O	4008	1394	2128	

 Table S1. The effect of incubation condition on three peaks of the enrichment of

 phosphonentides

No.	Protein	Peptide sequence	Number of phosphoryl groups	Observed m/z
1	β-casein	FQ[pS]EEQQQTEDELQDK	1	2061.72
2	β-casein	FQ[pS]EEQQQTEDELQDKIHPF	1	2555.96
3	β-casein	RELEELNVPGEIVE[pS]L[pS][pS][p S]EESITR	4	3122.09
4	β-casein ^a	IEKFQ[pS]EEQQQTEDELQDK	1	2353.39
5	α-casein	TVD[Mo]ME[pS]TEVF	1	1252.57

Table S2. Phosphopeptides identified in tryptic digests of β-casein after enriched by metallic zirconia incorporated Ordered Mesoporous Carbon

 $\beta\text{-casein}^a: dephosphopeptide of } m/z:2432.05$

Table S3. Phosphopeptides identified in tryptic digests of proteins extracted from
nonfat milk after enriched by metallic zirconia incorporated Ordered Mesoporous
Carbon

		Curbon		
No.	Protein	Peptide sequence	Number of phosphoryl groups	Observed m/z
1	α-casein	TVD[Mo]ME[pS]TEVF	1	1252.57
2	β-casein	FQSEEQQQTEDELQDKIHPF	1	1277.57
3	α-casein	TVD[Mo]E[pS]TEVFTK	1	1482.53
4	α-casein	EQL[pS]T[pS]EENSKK	2	1539.49
5	β-casein	RELEELNVPGEIVESLSSSEESI TR	1	1561.20
6	α-casein	VPQLEIVPN[pS]AEER	1	1660.71
7	α-casein	YLGEYLIVPN [pS]AEER	1	1831.56
8	α-casein	DIG[pS]E[pS]TEDQAMEDIK	2	1927.59
9	α-casein	DIG[pS]E[pS]TEDQA[Mo]EDIK	2	1943.58
10	β-casein	FQ[pS]EEQQQTEDELQDK	1	2061.72
11	α-casein	Q*MEAE[pS]I[pS][pS] [pS]EEIVPN[pS]VEAQK	5	2703.83
12	α-casein	QMEAE[pS]I[pS][pS][pS]EEIVP NPN[pS]VEQK	5	2720.76
13	α-casein	ELEELNVPGEIVE[pS]L[pS][pS] [pS]EESITR	4	2966.00
14	α-casein	NANEEEYSIG[pS][pS][pS]EE[p S]AEVATEEVK	4	3007.74
15	β-casein	RELEELNVPGEIVE[pS]L[pS][p S][pS]EESITR	4	3122.04

		Selectivity	Phosopho		
Materials	Detection limit	(ratios of β -casein	peptides	Ref	
		and BSA)	identified		
Zirconia/OMC	1.5 fmol	1:300	15	This work	
ZrO ₂ -MSN	2.5 fmol	1:100	16	1	
ZrO ₂ -NP	-	-	9	1	
a-ZrO ₂ -NP	2 fmol	-	13	2	
SiO ₂ - ZrO ₂	-	-	14	3	

Table S4. Identified phosphopeptides from nonfat milk enriched by Zirconia/OMC or other materials cited from the literatures using MAIDI-TOF MS

[1] X. L. Zhang, F. Wang, Y. Xia, J. Chromatogr. A., 2013, 1306, 20-26.

[2] S. K. Kailasa, H. F. Wu, Anal. Bioanal. Chem., 2010, 396, 1115-1125.

[3] H. H. Wan, J. Y. Yan, L. Yu, Q. Y. Sheng, X. L. Zhang, X. Y. Xue, X. L. Li, X. M. Liang, *Analyst*, 2011, **136**, 4422-4430.