## A theoretical study of the activation of nitromethane under applied electric fields

Yuan Wei,<sup>a</sup> Xinqin Wang,<sup>a</sup> Xin Wang,<sup>\*b</sup> Zhiqiang Tao,<sup>b</sup> Yingqi Cui,<sup>a</sup> Mingli Yang<sup>\*a</sup>

<sup>a</sup> Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China. E-mail: <u>myang@scu.edu.cn</u>

<sup>b</sup> College of Chemistry, Sichuan University, Chengdu, 610064, China. E-mail: <u>wangxin@scu.edu.cn</u>

## Contents

**Table S1** Geometric parameters of NM in singlet state at the equilibrium C–N bond lengths ( $r_{C-N} = 1.5$ Å) under different field strengths of 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 a.u. in the +x direction.

**Table S2** Geometric parameters of NM in singlet state at the equilibrium C–N bond lengths ( $r_{C-N} = 1.5$ Å) under different field strengths of 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 a.u. in the –x direction.

**Table S3** Energy of singlet and triplet NM in presence of an external field in the +x direction.

**Table S4** Energy of singlet NM in presence of an external field in the +x direction.

**Table S5** Energy of singlet and triplet NM in presence of an external field in the -x direction.

**Table S6** Energy of singlet NM in presence of an external field in the -x direction.

**Table S7** Energy of singlet and triplet NM in presence of an external field in the +y direction.

**Table S8** Energy of singlet NM in presence of an external field in the +y direction.

**Figure S1** Fukui functions of atom C, H, N, O in nitromethane under electric fields either in the +x or -x direction.

**Figure S2** Energy landscapes of NM under electric fields in the +y direction. The field strength is 0.00 (a), 0.01 (b), 0.02 (c), and 0.03 au (d).

| F/a.u.     | 0.00     | 0.01     | 0.02     | 0.03     | 0.04     | 0.05     |
|------------|----------|----------|----------|----------|----------|----------|
| R(1,2)     | 1.089    | 1.088    | 1.089    | 1.089    | 1.090    | 1.092    |
| R(1,3)     | 1.092    | 1.092    | 1.093    | 1.094    | 1.096    | 1.099    |
| R(1,4)     | 1.089    | 1.088    | 1.089    | 1.089    | 1.090    | 1.092    |
| R(1,5)     | 1.500    | 1.500    | 1.500    | 1.500    | 1.500    | 1.500    |
| R(5,6)     | 1.217    | 1.220    | 1.223    | 1.227    | 1.230    | 1.235    |
| R(5,7)     | 1.217    | 1.220    | 1.223    | 1.227    | 1.230    | 1.235    |
| A(2,1,3)   | 110.780  | 110.642  | 110.462  | 110.224  | 109.906  | 109.473  |
| A(2,1,4)   | 112.888  | 112.903  | 112.932  | 112.948  | 112.993  | 113.059  |
| A(2,1,5)   | 107.735  | 107.810  | 107.914  | 108.065  | 108.293  | 108.541  |
| A(3,1,4)   | 110.780  | 110.641  | 110.462  | 110.224  | 109.906  | 109.423  |
| A(3,1,5)   | 106.630  | 106.761  | 106.909  | 107.095  | 107.311  | 107.601  |
| A(4,1,5)   | 107.735  | 107.810  | 107.914  | 108.066  | 108.296  | 108.541  |
| A(1,5,6)   | 117.100  | 117.713  | 118.352  | 119.008  | 119.657  | 120.342  |
| A(1,5,7)   | 117.100  | 117.713  | 118.352  | 119.008  | 119.657  | 120.342  |
| A(6,5,7)   | 125.768  | 124.548  | 123.234  | 121.966  | 120.612  | 119.304  |
| D(2,1,5,6) | 152.013  | 151.969  | 151.986  | 152.025  | 152.090  | 152.226  |
| D(2,1,5,7) | -29.941  | -29.792  | -29.652  | -29.493  | -29.258  | -28.981  |
| D(3,1,5,6) | -89.023  | -89.120  | -89.181  | -89.241  | -89.326  | -89.397  |
| D(3,1,5,7) | 89.023   | 89.120   | 89.181   | 89.241   | 89.326   | 89.397   |
| D(4,1,5,6) | 29.941   | 29.792   | 29.652   | 29.493   | 29.258   | 28.981   |
| D(4,1,5,7) | -152.013 | -151.969 | -151.985 | -152.025 | -152.090 | -152.226 |

**Table S1** Geometric parameters of NM in singlet state at the equilibrium C–N bond lengths ( $r_{C-N} = 1.5$ Å) under different field strengths of 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 a.u. in the +x direction.

| F/a.u.     | 0.00     | -0.01    | -0.02    | -0.03    | -0.04    | -0.05    |
|------------|----------|----------|----------|----------|----------|----------|
| R(1,2)     | 1.089    | 1.089    | 1.090    | 1.092    | 1.094    | 1.093    |
| R(1,3)     | 1.092    | 1.092    | 1.093    | 1.094    | 1.096    | 1.094    |
| R(1,4)     | 1.089    | 1.089    | 1.090    | 1.092    | 1.094    | 1.093    |
| R(1,5)     | 1.500    | 1.500    | 1.500    | 1.500    | 1.500    | 1.500    |
| R(5,6)     | 1.217    | 1.215    | 1.213    | 1.210    | 1.207    | 1.204    |
| R(5,7)     | 1.217    | 1.215    | 1.213    | 1.210    | 1.207    | 1.204    |
| A(2,1,3)   | 110.780  | 110.878  | 110.944  | 111.000  | 111.102  | 111.297  |
| A(2,1,4)   | 112.888  | 112.830  | 112.765  | 112.653  | 112.521  | 111.949  |
| A(2,1,5)   | 107.735  | 107.714  | 107.712  | 107.756  | 107.762  | 107.889  |
| A(3,1,4)   | 110.780  | 110.878  | 110.944  | 111.000  | 111.102  | 111.297  |
| A(3,1,5)   | 106.630  | 106.520  | 106.454  | 106.366  | 106.276  | 106.234  |
| A(4,1,5)   | 107.735  | 107.714  | 107.712  | 107.757  | 107.762  | 107.889  |
| A(1,5,6)   | 117.100  | 116.476  | 115.932  | 115.363  | 114.740  | 113.724  |
| A(1,5,7)   | 117.100  | 116.476  | 115.933  | 115.363  | 114.740  | 113.724  |
| A(6,5,7)   | 125.768  | 127.012  | 128.082  | 129.206  | 130.448  | 132.493  |
| D(2,1,5,6) | 152.013  | 152.011  | 152.158  | 152.259  | 152.215  | 151.786  |
| D(2,1,5,7) | -29.941  | -30.032  | -30.260  | -30.444  | -30.551  | -30.662  |
| D(3,1,5,6) | -89.023  | -88.978  | -88.791  | -88.648  | -88.617  | -88.776  |
| D(3,1,5,7) | 89.023   | 88.979   | 88.791   | 88.648   | 88.617   | 88.776   |
| D(4,1,5,6) | 29.941   | 30.032   | 30.260   | 30.444   | 30.551   | 30.662   |
| D(4,1,5,7) | -152.013 | -152.011 | -152.158 | -152.259 | -152.215 | -151.786 |

**Table S2** Geometric parameters of NM in singlet state at the equilibrium C–N bond lengths ( $r_{C-N} = 1.5$ Å) under different field strengths of 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 a.u. in the –x direction.

| F/a.u.       | 0.00   |        | 0.01   |        | 0.02   |        | 0.03   |        |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|
| r(C-<br>N)/Å | S      | Т      | S      | Т      | S      | Т      | S      | Т      |
| 1.3          | 17.066 |        | 17.038 |        | 18.731 |        | 17.244 |        |
| 1.35         | 8.665  |        | 8.704  |        | 10.440 |        | 9.0641 |        |
| 1.4          | 3.518  |        | 3.568  |        | 3.7134 |        | 3.931  |        |
| 1.45         | 0.829  |        | 0.859  |        | 2.477  |        | 1.102  |        |
| 1.5          | 0.000  |        | 0.000  |        | 0.000  |        | 0.000  |        |
| 1.55         | 0.556  |        | 0.506  |        | 1.788  |        | 0.391  |        |
| 1.6          | 2.126  |        | 2.018  |        | 1.740  |        | 1.295  |        |
| 1.7          | 7.219  |        | 7.014  |        | 6.360  |        | 5.274  |        |
| 1.8          | 13.656 |        | 13.412 |        | 12.333 |        | 10.483 |        |
| 1.9          | 20.454 |        | 20.260 |        | 18.771 |        | 16.062 |        |
| 2.0          | 27.015 |        | 26.995 |        | 25.143 |        | 21.493 |        |
| 2.1          | 32.989 |        | 33.285 |        | 31.165 |        | 26.545 |        |
| 2.2          | 38.205 |        | 38.967 |        | 36.731 |        | 31.085 |        |
| 2.3          | 47.100 |        | 43.960 |        | 41.802 |        | 35.078 |        |
| 2.4          | 52.979 |        | 48.218 |        | 46.408 |        | 38.532 |        |
| 2.5          | 55.824 | 66.827 | 58.144 | 75.111 | 50.572 | 83.082 | 41.440 | 90.416 |
| 2.6          | 57.591 | 65.055 | 61.440 | 73.478 | 54.338 | 81.468 | 43.812 | 89.231 |
| 2.7          | 58.689 | 63.760 | 63.774 | 72.281 | 57.732 | 80.785 | 45.658 | 89.695 |
| 2.8          | 59.395 | 62.834 | 65.426 | 71.411 | 60.800 | 79.993 | 46.990 | 87.596 |
| 2.9          | 59.876 | 62.175 | 66.609 | 70.800 | 63.572 | 78.885 | 47.835 | 86.933 |
| 3.0          | 60.225 | 61.729 | 67.480 | 70.143 | 66.071 | 78.511 | 48.225 | 86.847 |
| 3.1          | 60.493 | 61.407 | 68.134 | 70.118 | 68.334 | 78.188 | 48.201 | 86.912 |
| 3.2          | 60.712 | 61.200 | 68.644 | 69.926 | 70.359 | 78.115 | 47.809 | 86.454 |
| 3.3          | 60.896 | 61.072 | 69.053 | 69.782 | 72.152 | 78.132 | 47.090 | 86.430 |
| 3.4          | 61.054 | 61.014 | 69.393 | 69.710 | 73.693 | 77.936 | 46.104 | 86.401 |
| 3.5          | 61.193 | 61.001 | 69.688 | 69.669 | 74.961 | 77.883 | 44.877 | 86.349 |
| 3.6          | 61.318 | 61.018 | 69.954 | 69.517 | 75.931 | 77.891 | 43.449 | 86.269 |
| 3.7          | 61.430 | 61.055 | 70.187 | 69.591 | 76.578 | 77.860 | 41.846 | 86.204 |
| 3.8          | 61.533 | 61.105 | 70.431 | 69.573 | 76.903 | 77.857 | 40.105 | 86.148 |
| 3.9          | 61.626 | 61.174 | 70.682 | 69.549 | 76.942 | 77.874 | 38.208 | 86.081 |
| 4.0          | 61.712 | 61.223 | 71.791 | 69.517 | 76.721 | 77.901 | 36.178 | 86.027 |

**Table S3** Energy of singlet and triplet NM in presence of an external field in the +x direction.

| F/a.u.   | 0.00   | 0.01    | 0.02    | 0.03    | 0.04    | 0.05     |
|----------|--------|---------|---------|---------|---------|----------|
| r(C-N)/Å |        |         |         |         |         |          |
| 1.3      | 17.071 | -1.432  | -3.642  | -19.504 | -36.016 | -54.677  |
| 1.35     | 8.669  | -6.567  | -11.932 | -27.683 | -44.065 | -62.562  |
| 1.4      | 3.522  | -9.276  | -18.660 | -32.817 | -49.178 | -67.929  |
| 1.45     | 0.834  | -10.136 | -19.896 | -35.646 | -52.090 | -70.641  |
| 1.5      | 0.004  | -9.630  | -22.373 | -36.748 | -53.356 | -72.360  |
| 1.55     | 0.56   | -8.117  | -20.585 | -36.357 | -53.430 | -72.469  |
| 1.6      | 2.13   | -3.122  | -20.633 | -35.452 | -52.652 | -72.344  |
| 1.7      | 7.223  | 3.276   | -16.013 | -31.474 | -49.533 | -70.271  |
| 1.8      | 13.66  | 10.125  | -10.039 | -26.265 | -45.409 | -67.517  |
| 1.9      | 20.458 | 16.859  | -3.602  | -20.686 | -41.114 | -64.855  |
| 2.0      | 27.019 | 23.150  | 2.771   | -15.254 | -37.122 | -62.726  |
| 2.1      | 32.994 | 28.831  | 8.793   | -10.203 | -33.697 | -61.337  |
| 2.2      | 38.21  | 33.824  | 14.358  | -5.662  | -30.932 | -60.752  |
| 2.3      | 47.104 | 38.082  | 19.430  | -1.669  | -28.868 | -60.935  |
| 2.4      | 52.983 | 48.008  | 24.035  | 1.784   | -27.492 | -61.808  |
| 2.5      | 55.828 | 51.304  | 28.199  | 4.693   | -26.754 | -63.286  |
| 2.6      | 57.596 | 53.639  | 31.966  | 7.064   | -26.618 | -65.285  |
| 2.7      | 58.694 | 55.291  | 35.359  | 8.910   | -27.018 | -67.712  |
| 2.8      | 59.4   | 56.473  | 38.427  | 10.242  | -27.894 | -70.503  |
| 2.9      | 59.88  | 57.345  | 41.199  | 11.087  | -29.184 | -73.608  |
| 3.0      | 60.229 | 57.998  | 43.698  | 11.477  | -30.823 | -57.724  |
| 3.1      | 60.498 | 58.508  | 45.962  | 11.453  | -32.790 | -80.562  |
| 3.2      | 60.716 | 58.918  | 47.986  | 11.061  | -35.009 | -89.059  |
| 3.3      | 60.900 | 59.257  | 49.779  | 10.342  | -37.447 | -88.287  |
| 3.4      | 61.058 | 59.552  | 51.320  | 9.356   | -40.080 | -92.378  |
| 3.5      | 61.197 | 59.818  | 52.589  | 8.129   | -42.877 | -103.036 |
| 3.6      | 61.322 | 60.052  | 53.558  | 6.7009  | -48.848 | -110.593 |

**Table S4** Energy of singlet NM in presence of an external field in the +x direction.

| F/a.u.       | 0.00   |        | -0.01  |        | -0.02  |        | -0.03  |        |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|
| r(C-<br>N)/Å | S      | Т      | S      | Т      | S      | Т      | S      | Т      |
| 1.3          | 17.066 |        | 17.220 |        | 17.597 |        | 18.261 |        |
| 1.35         | 8.665  |        | 8.773  |        | 9.083  |        | 9.656  |        |
| 1.4          | 3.518  |        | 3.580  |        | 3.815  |        | 4.253  |        |
| 1.45         | 0.829  |        | 0.859  |        | 0.998  |        | 1.249  |        |
| 1.5          | 0.000  |        | 0.000  |        | 0.000  |        | 0.000  |        |
| 1.55         | 0.556  |        | 0.493  |        | 0.342  |        | 0.025  |        |
| 1.6          | 2.126  |        | 2.000  |        | 1.638  |        | 0.912  |        |
| 1.7          | 7.219  |        | 6.881  |        | 5.938  |        | 4.142  |        |
| 1.8          | 13.656 |        | 12.966 |        | 11.233 |        | 8.103  |        |
| 1.9          | 20.454 |        | 19.276 |        | 16.610 |        | 12.033 |        |
| 2.0          | 27.015 |        | 25.239 |        | 21.607 |        | 15.656 |        |
| 2.1          | 32.989 |        | 30.555 |        | 26.070 |        | 18.946 |        |
| 2.2          | 38.205 |        | 35.141 |        | 29.987 |        | 21.947 |        |
| 2.3          | 47.100 |        | 45.441 |        | 33.410 |        | 24.718 |        |
| 2.4          | 52.979 |        | 48.646 |        | 36.376 |        | 27.273 |        |
| 2.5          | 55.824 | 66.827 | 50.550 | 64.311 | 38.943 | 56.126 | 29.632 | 41.596 |
| 2.6          | 57.591 | 65.055 | 51.649 | 60.964 | 41.046 | 52.620 | 31.826 | 39.606 |
| 2.7          | 58.689 | 63.760 | 52.266 | 58.422 | 42.774 | 49.976 | 33.842 | 38.074 |
| 2.8          | 59.395 | 62.834 | 52.638 | 56.516 | 44.145 | 48.000 | 36.183 | 36.698 |
| 2.9          | 59.876 | 62.175 | 52.869 | 55.129 | 45.166 | 46.519 | 38.875 | 35.595 |
| 3.0          | 60.225 | 61.729 | 53.025 | 54.110 | 45.929 | 45.641 | 39.377 | 34.707 |
| 3.1          | 60.493 | 61.407 | 53.141 | 53.362 | 46.467 | 44.470 | 37.785 | 34.568 |
| 3.2          | 60.712 | 61.200 | 53.235 | 52.800 | 46.795 | 43.748 | 36.162 | 33.561 |
| 3.3          | 60.896 | 61.072 | 53.311 | 51.844 | 46.926 | 42.481 | 34.515 | 33.033 |
| 3.4          | 61.054 | 61.014 | 53.379 | 51.633 | 46.885 | 42.192 | 32.846 | 32.597 |
| 3.5          | 61.193 | 61.001 | 53.440 | 51.143 | 46.633 | 41.925 | 31.153 | 32.239 |
| 3.6          | 61.318 | 61.018 | 53.498 | 51.364 | 46.308 | 41.732 | 30.154 | 32.176 |

**Table S5** Energy of singlet and triplet NM in presence of an external field in the -x direction.

| F/a.u.   | 0.00   | -0.01  | -0.02  | -0.03   | -0.04  | -0.05   |
|----------|--------|--------|--------|---------|--------|---------|
| r(C-N)/Å |        |        |        |         |        |         |
| 1.3      | 17.071 | 25.302 | 31.634 | 36.025  | 38.326 | 34.190  |
| 1.35     | 8.669  | 16.856 | 23.120 | 27.420  | 29.532 | 22.592  |
| 1.4      | 3.522  | 11.663 | 17.851 | 22.017  | 23.845 | 14.558  |
| 1.45     | 0.834  | 8.941  | 15.034 | 19.013  | 20.446 | 10.460  |
| 1.5      | 0.004  | 8.082  | 14.037 | 17.764  | 18.679 | 5.300   |
| 1.55     | 0.56   | 8.575  | 14.378 | 17.789  | 18.028 | 2.376   |
| 1.6      | 2.13   | 10.082 | 15.675 | 18.677  | 18.101 | 1.972   |
| 1.7      | 7.223  | 14.963 | 19.974 | 21.906  | 19.306 | 9.265   |
| 1.8      | 13.66  | 21.048 | 25.269 | 25.867  | 20.931 | 6.999   |
| 1.9      | 20.458 | 27.359 | 30.647 | 29.797  | 22.451 | 4.345   |
| 2.0      | 27.019 | 33.321 | 35.643 | 33.420  | 23.723 | 0.869   |
| 2.1      | 32.994 | 38.637 | 40.107 | 36.710  | 24.682 | -4.000  |
| 2.2      | 38.21  | 43.223 | 44.024 | 39.711  | 25.208 | -9.948  |
| 2.3      | 47.104 | 53.523 | 47.447 | 42.482  | 25.015 | -16.031 |
| 2.4      | 52.983 | 56.728 | 50.413 | 45.037  | 23.550 | -21.891 |
| 2.5      | 55.828 | 58.633 | 52.979 | 47.396  | 21.077 | -27.278 |
| 2.6      | 57.596 | 59.732 | 55.082 | 49.590  | 17.940 | -32.753 |
| 2.7      | 58.694 | 60.348 | 56.811 | 51.606  | 14.566 | -40.230 |
| 2.8      | 59.4   | 60.721 | 58.181 | 53.947  | 11.295 | -44.604 |
| 2.9      | 59.88  | 60.952 | 59.203 | 56.639  | 8.164  | -48.774 |
| 3.0      | 60.229 | 61.107 | 59.965 | 57.141  | 5.160  | -52.800 |
| 3.1      | 60.498 | 61.223 | 60.504 | 55.549  | 2.235  | -56.761 |
| 3.2      | 60.716 | 61.317 | 60.832 | 53.926  | -0.654 | -60.708 |
| 3.3      | 60.900 | 61.393 | 60.963 | 52.279  | -3.527 | -64.687 |
| 3.4      | 61.058 | 61.461 | 60.922 | 50.610  | -9.385 | -68.747 |
| 3.5      | 61.197 | 61.522 | 60.670 | 48.917  | -9.372 | -73.364 |
| 3.6      | 61.322 | 61.580 | 60.345 | -46.148 | -9.436 | -77.768 |

**Table S6** Energy of singlet NM in presence of an external field in the -x direction.

| F/a.u.       | 0.00   |        | 0.01   |        | 0.02   |        | 0.03   |        |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|
| r(C-<br>N)/Å | S      | Т      | S      | Т      | S      | Т      | S      | Т      |
| 1.3          | 17.066 |        | 17.086 |        | 17.097 |        | 17.109 |        |
| 1.35         | 8.665  |        | 8.690  |        | 8.702  |        | 8.726  |        |
| 1.4          | 3.518  |        | 3.528  |        | 3.541  |        | 3.564  |        |
| 1.45         | 0.829  |        | 0.834  |        | 0.841  |        | 0.856  |        |
| 1.5          | 0.000  |        | 0.000  |        | 0.000  |        | 0.000  |        |
| 1.55         | 0.556  |        | 0.551  |        | 0.543  |        | 0.525  |        |
| 1.6          | 2.126  |        | 2.118  |        | 2.096  |        | 2.055  |        |
| 1.7          | 7.219  |        | 7.206  |        | 7.166  |        | 7.086  |        |
| 1.8          | 13.656 |        | 13.632 |        | 13.565 |        | 13.440 |        |
| 1.9          | 20.454 |        | 20.437 |        | 20.365 |        | 20.211 |        |
| 2.0          | 27.015 |        | 27.000 |        | 26.921 |        | 26.740 |        |
| 2.1          | 32.989 |        | 32.973 |        | 32.890 |        | 32.699 |        |
| 2.2          | 38.205 |        | 38.193 |        | 38.189 |        | 37.933 |        |
| 2.3          | 47.100 |        | 49.360 |        | 49.349 |        | 49.157 |        |
| 2.4          | 52.979 |        | 53.623 |        | 53.655 |        | 53.520 |        |
| 2.5          | 55.824 | 66.827 | 56.386 | 66.674 | 56.463 | 66.774 | 56.397 | 66.914 |
| 2.6          | 57.591 | 65.055 | 58.082 | 64.837 | 58.176 | 64.946 | 58.164 | 64.998 |
| 2.7          | 58.689 | 63.760 | 58.757 | 63.535 | 58.659 | 63.599 | 58.607 | 63.547 |
| 2.8          | 59.395 | 62.834 | 59.473 | 62.596 | 59.373 | 62.578 | 59.312 | 62.452 |
| 2.9          | 59.876 | 62.175 | 59.958 | 62.828 | 59.879 | 62.536 | 59.958 | 61.518 |
| 3.0          | 60.225 | 61.729 | 60.302 | 61.466 | 60.313 | 62.227 | 60.313 | 60.946 |
| 3.1          | 60.493 | 61.407 | 60.658 | 61.148 | 60.583 | 61.225 | 60.528 | 61.135 |
| 3.2          | 60.712 | 61.200 | 60.787 | 60.900 | 60.784 | 60.904 | 60.728 | 60.671 |
| 3.3          | 60.896 | 61.072 | 60.956 | 60.787 | 60.959 | 60.715 | 60.876 | 60.441 |
| 3.4          | 61.054 | 61.014 | 61.104 | 60.725 | 61.102 | 60.584 | 61.021 | 60.316 |
| 3.5          | 61.193 | 61.001 | 61.235 | 60.697 | 61.224 | 60.505 | 61.130 | 60.139 |
| 3.6          | 61.318 | 61.018 | 61.350 | 60.671 | 61.329 | 60.351 | 61.222 | 60.097 |

**Table S7** Energy of singlet and triplet NM in presence of an external field in the +y direction.

| F/a.u.   | 0.00   | 0.01   | 0.02   | 0.03    | 0.04    | 0.05    |
|----------|--------|--------|--------|---------|---------|---------|
| r(C-N)/Å |        |        |        |         |         |         |
| 1.3      | 17.071 | 15.643 | 11.337 | 4.136   | -6.039  | -19.346 |
| 1.35     | 8.669  | 7.247  | 2.942  | -4.247  | -14.412 | -27.698 |
| 1.4      | 3.522  | 2.085  | -2.219 | -9.410  | -19.572 | -32.861 |
| 1.45     | 0.834  | -0.609 | -4.919 | -12.117 | -22.291 | -35.593 |
| 1.5      | 0.004  | -1.443 | -5.760 | -12.973 | -23.168 | -36.498 |
| 1.55     | 0.56   | -0.892 | -5.217 | -12.448 | -22.671 | -36.041 |
| 1.6      | 2.13   | 0.675  | -3.664 | -10.918 | -21.172 | -34.584 |
| 1.7      | 7.223  | 5.763  | 1.406  | -5.887  | -16.220 | -29.731 |
| 1.8      | 13.66  | 12.189 | 7.805  | 0.467   | -9.919  | -23.516 |
| 1.9      | 20.458 | 18.994 | 14.605 | 7.238   | -3.217  | -16.881 |
| 2.0      | 27.019 | 25.557 | 21.161 | 13.767  | 3.295   | -10.420 |
| 2.1      | 32.994 | 31.530 | 27.130 | 19.726  | 9.259   | -4.496  |
| 2.2      | 38.21  | 36.750 | 32.428 | 24.960  | 14.501  | 0.754   |
| 2.3      | 47.104 | 47.917 | 43.589 | 36.183  | 18.931  | 5.222   |
| 2.4      | 52.983 | 52.180 | 47.895 | 40.546  | 23.011  | 9.467   |
| 2.5      | 55.828 | 54.943 | 50.703 | 43.424  | 27.405  | 13.047  |
| 2.6      | 57.596 | 56.639 | 52.415 | 45.191  | 34.242  | 20.769  |
| 2.7      | 58.694 | 57.314 | 52.899 | 45.634  | 35.375  | 21.958  |
| 2.8      | 59.4   | 58.030 | 53.613 | 46.339  | 36.093  | 22.637  |
| 2.9      | 59.88  | 58.517 | 54.119 | 46.985  | 36.603  | 23.188  |
| 3.0      | 60.229 | 58.859 | 54.553 | 47.340  | 36.967  | 23.553  |
| 3.1      | 60.498 | 59.215 | 54.823 | 47.555  | 37.219  | 21.639  |
| 3.2      | 60.716 | 59.344 | 55.024 | 47.755  | 37.407  | 22.425  |
| 3.3      | 60.900 | 59.513 | 55.199 | 47.903  | 37.552  | 23.445  |
| 3.4      | 61.058 | 59.661 | 55.342 | 48.048  | 37.665  | 24.310  |
| 3.5      | 61.197 | 59.792 | 55.464 | 48.157  | 37.749  | 25.022  |
| 3.6      | 61.322 | 59.907 | 55.569 | 48.249  | 37.887  | 24.583  |

**Table S8** Energy of singlet NM in presence of an external field in the +y direction.



Figure S1 Fukui functions of atom C, H, N, O in nitromethane under electric fields either in the +x or -x direction.

Some of the Fukui functions presented in the Figure are small and negative, which are attributed to orbital relaxation when one electron is added or removed. Negative Fukui functions have been discussed by several authors.[1-4] Our calculations reveal that the orbital relaxation becomes more common in presence of external fields.

References:

- [1] J. Melin, P. W. Ayers, and J. V. Ortiz, *J. Phys. Chem. A*, 2007, **40**, 10017–10019.
- [2] R. Bhattacharjee, R. K. Roy, Chem. Phys. Lett. 2015, 637, 88-93.
- [3] E. Echegaray, C. Cárdenas, S. Rabi, N. Rabi, S. Lee, F. H. Zadeh, A.Toro-Labbe, J. S. M. Anderson and P. W. Ayers, *J Mol Model*, 2013, 19, 2779–2783.
- [4] E. Echegaray, S. Rabi, C. Cárdenas, F. H. Zadeh, N. Rabi, S. Lee, J. S. M. Anderson, A.Toro-Labbe and P. W. Ayers, *J Mol Model*, 2014, 20, 2162.



**Figure S2** Energy landscapes of NM under electric fields in the +y direction. The field strength is 0.00 (a), 0.01 (b), 0.02 (c), and 0.03 au (d).