Electronic Supplementary Information

An efficient catalytic synthesis and characterization of new styryl-ferrocenes

and their *trans*- π -conjugated organosilicon materials

M. Majchrzak^a*, S. Kostera^a, M. Grzelak^a, B. Marciniec^{*a,b} and M. Kubicki^a

^aFaculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznan, Poland ^bCenter for Advanced Technology, Adam Mickiewicz University in Poznan, Umultowska 89c, 61-614 Poznan, Poland

Table of contents

- I. Synthesis procedure of palladium complex
- II. X-Ray structure determination
- III. MS spectra
- IV. GPC chromatograms
- V. NMR Spectra

Procedure for the synthesis of Palladium(0) Complex

The title compound was synthesized according to the new procedure presented below.

Bis(tris(o-tolyl)phosphine)(dibenzylideneacetone)palladium(0) – $[Pd(\eta^2-dba)(P(o-tolyl)_3)_2]^{32}$ (**3**): Pd(dba)₂ (0.3 g, 5.22 x 10⁻⁴ mol), tris(*o*-tolyl)phosphine (0.321 g, 1.054 x 10⁻³ mol) were placed in a Schlenk flask (25 mL) and degassed for one minute. Afterwards, 4 mL toluene (0.125M) was introduced into vigorously stirred solids of substrates and the final mixture was left for 8h at room temperature to give a yellow-orange solution. The excess of the solvent was evaporated under reduced pressure. The procedure was followed by the addition of hexane. As a result a yellow-orange precipitate was observed. Next, the precipitate was filtered ('canula' system), washed with cold hexane (4 x 10 mL) and dried in vacuum for 2h. The crude product was obtained with 93% (460 mg, yellow-orange solid) yield. Elemental analyses calcd. for C₆₀H₅₈OP₂Pd: C 74.80, H 6.07; found C 74.78, H 6.06.

X-Ray structure determination

Excalibur four-circle diffractometer with Eos CCD-detector, using MoK_{α} radiation source ($\lambda = 0.7107$ Å). The data was corrected for Lorentz-polarization as well as for absorption effects.³⁸ Accurate unitcell parameters were determined by a least-squares fit of 1984 reflections of highest intensity, chosen from the whole experiment. The structures were solved with SIR92³⁹ and refined with the full-matrix least-squares procedure on F² by SHELXL97.⁴⁰ All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed geometrically, in idealized positions, and refined as rigid groups with their U_{iso}'s as 1.2 times U_{eq} of the appropriate carrier atom. Crystallographic data (excluding structure factors) for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, No. CCDC 974168. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK. Fax: +44(1223)336-033, email:deposit@ccdc.cam.ac.uk, or www: www.ccdc.cam.ac.uk.

Notes and references

- 38 Agilent Technologies 2010. CrysAlis PRO (Version 1.171.35.4).
- 39 A. Altomare, G. Cascarano, C. A. Giacovazzo, A. Gualardi, J. Appl. Cryst. 1993, 26, 343-350.
- 40 G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

MS spectra

MS (m/z) spectra of $\mathbf{1}^{d}$ catalytic system (from Figure 1)

Figure 5. Sample of MS spectrum of 1^[d] catalytic system.

10 (A) – 1,1'-bis(4-vinylphenyl)ferrocene

8 (B) – 1-(4-vinylphenyl)ferrocene

C – 1-(4-vinylphenyl)-1'-bromo-ferrocene

D - ferrocene

E – 4,4'-divinylbiphenyl

BrFc – 1-bromoferrocene

Br2Fc – 1,1'-dibromoferrocene

GPC chromatograms

Figure 6. GPC chromatogram of copolymer P1.

Figure 7. GPC chromatogram of copolymer P2.

NMR Spectra

Compound 7¹H NMR

1HNMR in CDCl3 at 25oC Compound 7

Compound 7¹³C NMR

13CNMR in CDCI3 at 25oC Compound 7

13CNMR in CDCl3 at 25oC Compound 7

Compound 8 ¹H NMR

Compound 8¹³C NMR

13CNMR in CDCl3 at 25oC Compound 8

Compound **9** ¹H NMR (presence in the Article)

Compound 9 ¹³C NMR

13CNMR in CDCl3 at 25oC Compound 9

Compound 10 ¹H NMR

1HNMR in CDCl3 at 25oC Compound 10

Compound 10¹³C NMR

13CNMR in CDCl3 at 25oC Compound 10

13CNMR in CDCl3 at 25oC Compound 10

Compound 11 ¹H NMR

Compound 11 ¹³C NMR

Compound 11 ²⁹Si NMR

29SiNMR in CDI3 at 25oC compound 11

Compound **12** ¹H NMR

Compound 12 ¹³C NMR

Compound 12 ²⁹Si NMR

29SiNMR in CDI3 at 25oC compound 12

19	17	15	13	11	9	8	7	6	5	4	3 f1	2 (ppr	1 n)	0	-2	-4	-6	-8	-10	-12	-14

Compound 13 ¹H NMR

Compound 13 ¹³C NMR

Compound 13 ²⁹Si NMR

29Si NMR in CDI3 at 25oC Copomound 13

Compound 14 ¹H NMR

Compound 14 ¹³C NMR

Compound 14 ²⁹Si NMR

Polymer **P1** ¹H NMR

Polymer **P1**¹³C NMR

Polymer P1 ²⁹Si NMR

Polymer P1 29Si NMR in CDCl3 at 25oC

Polymer P2 ¹H NMR (presence in the Article)

Polymer P2 ¹³C NMR

Polymer **P2**²⁹Si NMR

