SUPPLEMENTARY INFORMATION

Lewis-Acid Catalyzed Synthesis and Characterization of Novel Castor Fatty Acid-Based

Cyclic Carbonates

Naganna Narra^{a,c}, Badari Narayana Prasad Rachapudi^{a,c}, Sahithya Phani babu Vemulapalli^{b,c} and Padmaja V.

Korlipara^{a,c} *

Figure S1. ¹H NMR spectrum of 2b.

Figure S3. ¹H NMR spectrum of 3b.

Figure S4. The mass spectrum of 3a

where the second		Five anti
		(SSR)
		stabilized
		by 15
		kJ/mol
- (DGD) 1005 1000	5 (CCD) 1005 0010	
5a syn (RSR) -1235.1990 a.u	5a <i>anti</i> (SSR) -1235.2019 a.u	
-OC(O)O-bond angle 110.14 ⁰	-OC(O)O-bond angle 110.12 ⁰	
John Color	And the forest	
5b syn (SSS) -1235.1960 a.u	5b anti (SRS) -1235.1891 a.u	
-OC(O)O-bond angle 118.57 ⁰	-OC(O)O-bond angle 118.31 ⁰	

Figure S5. Energy profiles calculated for five and six membred cyclic carbonates (Red coloured are stable structures).

Figure S6. The mass spectrum of 5

Figure S7. The mass spectrum of 6

Figure S8. ¹³C-¹H HSQC spectrum of 4a (CDCl₃, 298 K, Bruker Avance 700 MHz).

Figure S9. ¹³C-¹H HSQC spectrum of 4b (CDCl₃, 298 K, Bruker Avance 500 MHz).

Figure S10. DQFCOSY spectrum of 4a (CDCl₃, 298 K, Bruker Avance 700 MHz).

Figure S11. DQFCOSY spectrum of 4b (CDCl₃, 298 K, Bruker Avance 500 MHz).

Figure S12. ¹³C-¹H HMBC spectrum of **4a** (red arrows) (CDCl₃, 298K, Bruker Avance 700 MHz).

Figure S13. ¹³C-¹H HMBC spectrum of **4b** (red arrows)(CDCl₃, 298 K, Bruker Avance 500 MHz).

Figure S14. The mass spectrum of 4a

HRMS Spectrum of cyclic carbonates