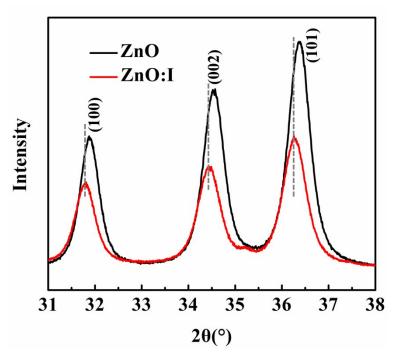
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016


Functionalization of ZnO Aggregate Films via Iodine-Doping and TiO₂ Decorating for Enhanced Visible-Light-Driven Photocatalytic Activity and Stability

Yuan Wang^a, Hua-Bin Fang^a, Rong-Qin Ye^a, Yan-Zhen Zheng^{a,b*}, Nan Li^a, Xia

Tao^{a*}

^aState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

^bResearch Center of the Ministry of Education for High Gravity Engineering & Technology, Beijing University of Chemical Technology, Beijing 100029, China

Fig. S1. The fine-scanned (100), (002), and (101) peaks of ZnO and ZnO:I, showing the peaks shifting due to the doping.

Fig. S2. EDS image of ZnO: $I@TiO_2$ aggregate film.

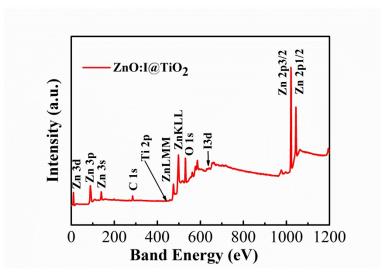


Fig. S3. XPS survey spectrum of ZnO:I@TiO₂ film.

Table S1. Photodegradation rate constants of RhB over different catalysts using $ln(C_0/C)=k_at$ as fitting equation

Photocatalysts	Ka [h-1]	\mathbb{R}^2
Pure ZnO	0.194	0.999
P25	0.229	0.991
2.5%ZnO:I	0.361	0.990
5.0%ZnO:I	0.681	0.999
7.5%ZnO:I	0.496	0.994
5.0%ZnO:I@TiO ₂	0.855	0.998