1	Supporting Information
2	Interactions of 1-hydroxypyrene with bovine serum albumin: Insights from
3	multi-spectroscopy, docking and molecular dynamics simulation methods
4	Jing Zhang ^a , Weixiao Chen ^{a,b} , Bowen Tang ^c , Wei Zhang ^a , Linfeng Chen ^a , Ying
5	Duan ^a ,
6	Yuxiu Zhu ^a , Yaxian Zhu ^d , Yong Zhang ^{a,e*}
7	
8	^a State Key Laboratory of Marine Environmental Sciences of China (Xiamen
9	University), College of Environment and Ecology, Xiamen University, Xiamen
10	361102, China
11	^b College of Urban and Environmental Sciences, Peking University, Beijing 100871,
12	China
13	^c College of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
14	^d Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen
15	University, Xiamen 361005, China
16	^e Zhangzhou Institute of Technology, Zhangzhou 363000, China
17	*E-mail address: yzhang:xmu.edu.cn

1

Fig. S1. Fluorescence decay curves of BSA in the absence (a) and presence of 1-OHP
(b) and the obtained instrumental response function (IRF) (c). Insets (A) and (B) show
a random distribution of the weighted residuals around zero of the two systems. C₁.

5
$$_{OHP} = C_{BSA} = 5.0 \times 10^{-6} \text{ mol } \text{L}^{-1}$$

7 Calculation of the dynamic and static quenching constant of 1-OHP and BSA

8 To extract a more quantitative view of the mixed quenching mechanism, the data was
9 analyzed using the Eq. (S1)¹:

$$F_{0} / F = (1 + K_{D} [Q])(1 + K_{S} [Q]) = K_{D} K_{S} [Q]^{2} + (K_{D} + K_{S})[Q] + 1$$
(S1)

11 F_0 and F represent the fluorescence intensity in the absence and presence of the 12 quencher (1-OHP in this case), respectively; K_S , K_D are the static and dynamic 13 quenching constants, respectively; Q is the concentration of the quencher. It's 14 calculated that $K_D \cdot K_S$ equals 3.12×10^9 and $(K_D + K_S)$ equals 1.16×10^5 . Therefore, the

1 possible solutions, 7.48×10^4 and 4.14×10^4 , are the values of K_D and K_S . Additional analysis is followed to resolve the definitive value of each. Different from the static 2 quenching, where $\tau_0 / \tau = 1$. The fluorescence intensity (*F*) and lifetime (τ) in dynamic 3 quenching of the protein is described by Eq. (S2) ^{1,2}: 4 $F_0 / F = \tau_0 / \tau = 1 + K_q \tau_0 [Q] = 1 + K_D [Q]$ 5 (S2) 6 In Eq (S2), τ_0 is the average lifetime of BSA in the absence of 1-OHP. Quenching 7 data of BSA has been fit to the Stern–Volmer plot, (τ_0 / τ) vs. C_{1-OHP} (see Fig. S2). 8 From the slope of the linear function, namely the dynamic quenching constant, K_D , is 9 calculated to be 4.35×10^4 L mol⁻¹. 4.14×10^4 and 4.35×10^4 L mol⁻¹are on the same 10 order of magnitude and strikingly similar and as a result, K_D is determined to be 11 12 4.14×10⁴ L mol⁻¹, giving K_S a value of 7.48 ×10⁴ L mol⁻¹.

14

Fig. S2. Stern–Volmer plot of (τ_0/τ) vs. C_{1-OHP} in Tris-HCl buffer (pH 7.40). τ_0 is the lifetime of BSA without 1-OHP, and τ is the lifetime in the presence of 0, 0.2, 0.4, 0.5, 0.6×10^{-5} mol L⁻¹ 1-OHP, $C_{BSA} = 5.0 \times 10^{-6}$ mol L⁻¹.

12 efficiency of energy transfer (*E*) between the donor, Trp residues of BSA and
13 acceptor, 1-OHP can be calculated by applying equation (S3) ³:

1
$$E = 1 - \frac{F}{F_0} = \frac{R_0^6}{R_0^6 + r^6}$$
 (S3)

In the equation (S3), *F* and *F*₀ are the fluorescence intensity of BSA in the presence and absence of 1-OHP. *r* is the distance between the donor and acceptor. *R*₀ is the Förster radius (measured in Å), the critical distance at which the transfer efficiency equals 50%, is given by the following equation:

$$6 R_0^6 = 8.79 \times 10^{-25} K^2 n^{-4} \phi J (S4)$$

7 Where *K* is the orientation factor related to the geometry of the donor-acceptor 8 dipole, *n* is the refractive index of medium, φ is the fluorescence quantum yield of the 9 donor, and *J* expresses the degree of spectral overlap between the donor emission and 10 the acceptor absorption, in unit of L mol⁻¹ cm³, which is calculated by the following 11 equation:

12
$$J = \frac{\int_0^\infty F(\lambda)\varepsilon(\lambda)\lambda^4 d\lambda}{\int_0^\infty F(\lambda)d\lambda}$$

13 (S5)

14 $F(\lambda)$ is the corrected fluorescence intensity of the donor in the wavelength range 15 from λ to $\lambda + \Delta \lambda$ and $\varepsilon(\lambda)$ is the molar absorption coefficient of the acceptor at 16 wavelength λ , in unit of L mol⁻¹ cm⁻¹.

In our case,
$$k^2 = 2/3$$
, ϕ (BSA) = 0.15, and $N = 1.336$ ⁴. At the same
concentration of BSA and 1-OHP of 5×10⁻⁶ mol L⁻¹, *E* was determined to be 0.40.

1	The overlap integral, J , can be evaluated by integrating the spectra in Fig. 6 according				
2	to Eq. (S5), and was calculated to be 1.37×10^{-14} cm ³ L mol ⁻¹ . Fitting the J and E				
3	values to Eq. (S	(S4), the values	of the paramete	ers were listed in T	able S1.
4	Table S1 The calculated parameters of FRET between 1-OHP and BSA;				
5		$C_{BSA} = C_1$	$_{OHP} = 5.0 \times 10^{-6}$	$mol L^{-1}$	
		$J(\mathrm{cm}^{3}\mathrm{L} \mathrm{mol}^{-1})$	E (%)	$R_0(\mathrm{nm})$	<i>r</i> (nm)
	1-OHP-BSA	1.37×10 ⁻¹⁴	40.0	2.69	2.88

6

Interpretations for the colors in the molecular docking results shown in Fig.7 and 7 Fig. 9 For the molecular docking results shown in Fig. 7: (A). TRP 134 and TRP 213 8 residues are shown as yellow surface; 1-OHP is showed as magenta; BSA is shown as 9 10 cyan; (B). the C atoms, H atom and O atom of 1-OHP are shown as green, red and gray, respectively; BSA is shown as chainbows; (C). for amino acid residues, the C 11 12 atoms, H atoms, O atoms, and S atoms are shown as magenta, gray, blue, red and 13 orange, respectively; and the C atoms, H atom and O atom of 1-OHP are shown as green, red and gray, respectively; BSA is shown as cyan. 14 For the molecular dynamic results shown in Fig. 9: for the amino acid residues within 15 a distance of 5 Å approximately 1-OHP, the C atoms, H atoms, O atoms, and S atoms 16

are shown as magenta, gray, blue, red and orange, respectively; and the C atoms, H 17

18 atom and O atom of 1-OHP are shown as green, red and gray, respectively.

11

9 Fig. S6. (a) The overlapping graph of the four snapshots of 1-OHP-BSA complex at

10 15 ns, 25 ns, 30 ns and 40 ns. (b) The average root mean square fluctuation (RMSF)

of each atom of 1-OHP during the 2000 flames simulations.

1	a: For the snapshot at 15 ns, 20 ns, 30 ns and 40 ns, BSA is shown as green, cyan, magenta and
2	yellow, and the C atoms of 1-OHP are also shown as green, cyan, magenta and yellow,
3	respectively; and the O atom and H atom of 1-OHP are all shown as red and gray, respectively.
4	For the four snapshots, the atoms of 1-OHP are all labeled as 9294~9280. b: the RMSF values
5	represent the position shifts of each atoms of 1-OHP during the 2000 flame simulations, and the
6	2000 flames are the sum of every 500 frames before 15 ns, 20 ns, 30 ns and 40 ns.

8

 Table S2 Conformational changes of 1-OHP at four snapshots as calculated

9

using AmberTools 15				
Time (ns) ^a	RMSD of	Angle of –OH group	Dihedral angle between the -OH group and	
	1-OHP ^{a,b} (Å)	of 1-OHP ^a (°)	the four-fused ring group of 1-OHP ^a (°)	
15	10.32	102.12	-170.77	
20	13.14	104.74	102.19	
30	0	110.02	165.69	
40	7.45	104.66	178.55	

10 a The obtained values are the average values of every 500 frames before 15 ns, 20 ns, 30 ns and 40

11 ns, respectively.

12 b The RSMD represents the relative position shifts of 1-OHP at different time, setting the position

13 of 1-OHP at 30 ns as a reference. Notably, the RMSD here is calculated as the no-fit RMSD,

14 which considers the translations and rotations of 1-OHP.

15

16

3

the simulation process ^a						
Acceptor ^b	Donor H ^b	Donor ^b	Occupancy ^c (%)	Averaged Distance (Å)	Averaged Angle (°)	
GLU 182:OE1	1-OHP:H10	1-OHP:O1	34.42	2.63	165.42	
GLU 182:OE2	1-OHP:H10	1-OHP:O1	17.24	2.63	165.42	
1-OHP:O1	TYR 160:HH	TYR 160:OH	2.65	2.81	157.87	
GLU 140:OE2	1-OHP:H10	1-OHP:O1	2.49	2.66	163.94	
LYS 114:0	1-OHP:H10	1-OHP:O1	1.57	2.73	158.51	
LEU 115:O	1-OHP:H10	1-OHP:O1	0.82	2.73	159.18	
TYR 160:OH	1-OHP:H10	1-OHP:O1	0.46	2.85	161.84	
PRO 117:0	1-OHP:H10	1-OHP:O1	0.31	2.77	157.21	
LIG 584:01	LYS 116:HZ3	LYS 116:NZ	0.20	2.92	145.78	
LIG 584:01	LYS 116:HZ1	LYS 116:NZ	0.18	2.91	151.25	
LIG 584:01	LYS 116:HZ2	LYS 116:NZ	0.15	2.89	155.85	
LIG 584:01	ARG 185:HH11	ARG 185:NH1	0.13	2.93	161.57	
PRO 113:0	1-OHP:H10	1-OHP:O1	0.11	2.76	162.98	

4 Table S3 The geometry of hydrogen bonds formed between 1-OHP and BSA during

6 ^a For the hydrogen bonds, the distance between the acceptor and donor heavy atoms is less than

7 3.5 Å. The angles of acceptor and donor diatomic groups are no less than 120°.

8 ^b The first one character of the atom name consists of the chemical symbol for the atom type. All

9 the atom names beginning with "H" are hydrogen atoms; "N" indicates a nitrogen and "O"

10 indicates oxygen. The next character is the remoteness indicator code, which is transliterated

11 according to: "E" stands for (~) " ϵ "; "Z"~" ζ "; "H"~" η ".

12 ° The hydrogen bond occupancy is calculated as the ratio of conformations with hydrogen bonds to

1 the total 5000 conformations.

- 2
- 4
- 3
- 4

5 Table S4 Secondary structural alterations of BSA at four snapshots as calculated by

6		AmberTools15 using DSSP method						
_	Time ^a	Parallel	Anti-parallel	3-10	Alpha	Pi(3-14)	Turn ^b	Bend
	(ns)	Beta-sheet ^b	Beta-sheet ^b	helix ^b	helix ^b	helix ^b	(%)	b
		(%)	(%)	(%)	(%)	(%)		(%)
-	15	0	0	2.43	68.69	0.06	10.25	5.88
	20	0	0	2.31	68.74	0.09	10.33	5.91
	30	0	0	2.15	68.73	0.12	10.48	5.99
	40	0	0	2.16	68.58	0.12	10.60	5.98

7 a The obtained values are the average values of every 500 frames before 15 ns, 20 ns, 30 ns and 408 ns, respectively.

9 b There could be many possible reasons for the slight difference in the secondary structural data
10 calculated here from that derived from CD experiment: 1) The CD data corresponds to solution

11 state, whereas the calculated data using X-ray structure corresponds to crystal state, it might

12 possible that the conformation adopted by our system in solution state is different from the crystal

13 state; 2) Affects of the CD operating conditions (during the spectral measurements and during

14 deconvolution); 3) Affects of the computing methods employed in the theoretical calculation

15 part, etc.

16

17

18

2

3

4

5

Table S5 Binding free energies	$(kcal mol^{-1})$ obtained by the MM-PBAS method
--------------------------------	--

			2				
Time/ ns	$\Delta E_{ m vdw}{}^{ m a}$	$\Delta E_{ m ele}{}^{ m b}$	$\Delta E_{ m polar}^{ m c}$	$\Delta E_{ m nonpolar}{ m d}$	$\Sigma E_{ m nonpolar}^{ m e}$	$\Sigma E_{\rm polar}^{\rm f}$	$\Delta E_{ m bind}{}^{ m g}$
1~5	-24.52	-13.53	21.16	-2.95	-27.47	7.63	-15.49
5~10	-26.05	-3.21	14.09	-2.92	-28.97	10.88	-13.51
10~15	-21.20	-20.34	26.11	-2.83	-24.03	5.77	-16.90
15~20	-22.60	-11.04	18.51	-2.80	-25.40	7.47	-15.70
20~25	-23.64	-9.35	17.29	-2.76	-26.40	7.94	-16.40
25~30	-22.62	-18.67	24.78	-2.60	-25.21	6.11	-18.15
30~35	-23.72	-18.83	24.32	-2.69	-26.40	5.48	-19.71
35~40	-25.59	-13.53	21.16	-2.75	-28.34	7.63	-14.12
40~45	-22.83	-21.15	25.54	-2.56	-25.40	4.38	-21.11
45~50	-22.10	-18.02	24.45	-2.73	-24.82	6.43	-16.21
Average ^h	-23.98±2.46	-18.28 ± 10.00	27.66±5.95	-2.72±0.17	-	-	-17.32±4.23

in every 5 ns MD simulation

6 ^a Van der Waals energy, calculated using the MM force field;

- 7 ^b Electrostatic energy, calculated using the MM force field;
- 8 ^c Polar solvation free energy, calculated using the PB equation;
- 9 ^d Nonpolar solvation free energy, calculated using an empirical model;

10 °
$$\Sigma E_{\text{nonpolar}} = \Delta E_{\text{vdw}} + \Delta E_{\text{nonpolar}};$$

11 f
$$\Sigma E_{\text{polar}} = \Delta E_{\text{ele}} + \Delta E_{\text{polar}};$$

12 g
$$\Delta E_{\text{bind}} = \Delta E_{\text{gas}} + \Delta E_{\text{sol}} = (\Delta E_{\text{vdw}} + \Delta E_{\text{ele}}) + (\Delta E_{\text{polar}} + \Delta E_{\text{nonpolar}});$$

- 13 hThe average values of the decomposition of binding free energies during the 50 ns simulations,
- 14 calculated using the MM force field.
- 15
- 16

Table S6 The average values of the decomposition of binding free energies (kcal

7			mol^{-1}) of	key residues		
	Residues	$\Delta E_{\rm vdw}{}^{\rm a}$	$\Delta E_{\rm ele}{}^{\rm b}$	$\Delta E_{ m polar}^{ m c}$	$\Delta E_{ m nonpolar}{ m d}$	$\Delta E_{\rm bind}^{\rm e}$
	PRO 113	-0.25	-0.02	0.10	0.00	-0.17
	LYS 114	-0.46	0.04	0.73	0.00	0.31
	LEU 115	-0.76	-0.13	0.92	0.00	0.04
	LYS 116	-2.01	-1.48	2.98	0.00	-0.50
	PRO 117	-1.60	0.05	0.46	0.00	-1.09
	PRO 119	-0.18	0.00	0.10	0.00	-0.08
	LEU 122	-0.34	-0.04	0.14	0.00	-0.25
	TYR 137	-0.27	-0.03	0.28	0.00	-0.01
	GLU 140	-0.54	-0.59	0.79	0.00	-0.34
	ILE 141	-0.27	0.01	-0.03	0.00	-0.29
	ARG 144	-0.86	-0.38	1.99	0.00	0.75
	TYR 160	-0.26	-0.11	0.54	0.00	0.17
	LEU 178	-0.36	-0.07	0.14	0.00	-0.28
	ILE 181	-0.63	0.12	0.01	0.00	-0.49
	GLU 182	-0.14	-4.12	4.60	0.00	0.34
	ARG 185	-1.91	-0.73	2.22	0.00	-0.42

8 ^{a-e} calculated in the same way as illustrated in Table S3

9 References:

10	1.	J. R. Lakowicz, <i>Principles of fluorescence spectroscopy</i> , Springer Science & Business Media, 2013.
11	2.	B. P. Pahari, S. Chaudhuri, S. Chakraborty and P. K. Sengupta, J. Phys. Chem. B, 2014, 119, 2533-
12		2545.
13	3.	T. Förster, Delocalized excitation and excitation transfer, Florida State University, 1965.
<u>1</u> 4	4.	H. Xu, Q. Liu and Y. Wen, Spectrochim. Acta A., 2008, 71, 984-988.