Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Nioplexes encapsulated in supramolecular hybrid biohydrogels

Supporting Information

Supporting Information

Nioplexes Encapsulated in Supramolecular Hybrid Biohydrogels as Versatile Delivery Platforms for Nucleic Acids

Santiago Grijalvo,^{*a,b,c*} Gustavo Puras,^{*c,d*} Jon Zárate,^{*c,d*} Ramon Pons,^{*b*} Jose Luis Pedraz,^{*c,d*} Ramon Eritja^{*b,c*} and David Díaz Díaz^{*a,b*}*

^a Institute of Organic Chemistry, University of Regensburg, Universitätstrasse. 31, D-93040 Regensburg (Germany). E-mail: David.Diaz@chemie.uni-regensburg.de. Tel. +(0) 941 943-4373; Fax: +(0) 941 943-4121. ^b Institute of Advanced Chemistry of Catalonia (IQAC-CSIC). ^c Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN). ^d NanoBioCel group. University of the Basque Country (EHU-UPV)

CONTENTS

	Page
¹ H-NMR of <i>lipid-</i> 1	S 3
Digital pictures of representative hydrogels	S3
Encapsulation efficiencies (EE) of hydrogels	S4
DSS measurements and critical strain (γ_c)	S4
DTS measurements	S 5
Standard curve for FITC-ODN	S5
Drug release models according to Higuchi equation	S6
Drug release models according to Korsmeyer-Peppas equation	S6
Drug release models according to Weibull equation	S6
Combination of the three FITC-ODN cumulative release from <i>hydrogels</i> -(2-4)	S7
Native polyacrylamide electrophoresis (PAGE) gels containing cationic nioplexes	S 8
Release profiles of niosomal FITC-ODN from <i>hydrogels</i> -(1-4) as a function of log cumulative release <i>vs.</i> log time	S9
Cell morphology images	S9

Figure S1. ¹H-NMR of *lipid*-1. Reaction was performed under argon atmosphere. ¹H-NMR spectra was recorded in CDCl₃ at 25 °C on a Varian Mercury 400 MHz spectrometer. The proton signal for residual non-deuterated solvent (δ 7.26) was used as an internal referente. Chemical shifts are reported in parts per million (ppm), coupling constants (*J*) in Hz and multiplicity as follows: t (triplet), dd (doublet of doublets), m (multiplet): ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 3.59 (m, 1H; C<u>H</u>-O), 3.46 (m, 2H; C<u>H</u>₂-O), 3.40 (m, 4H; 2 C<u>H</u>₂-O), 2.83 (dd, *J* = 13.4 Hz, 3.9 Hz; 1H; C<u>H</u>-N), 2.71 (dd, *J* = 13.2 Hz, 4.0 Hz; 1H; C<u>H</u>-N), 1.53 (m, 4H; 2 C<u>H</u>₂-C), 1.23 (m, 40 H; alkyl chain), 0.86 (t, *J* = 7.0 Hz, 6H; 2 C<u>H</u>₃-CH₂).

Figure S2. Supramolecular hydrogel picture selections. (A) *N*-Fmoc-protected amino acid (Fmoc-Phe-OH) containing cationic niosomes (*hydrogel*-1). (B) *N*-Fmoc-protected amino acid (Fmoc-Phe-OH) crosslinked with κ -carrageenan (1%, w/v) (*hydrogel*-4).

Entry	Sample	к-С (%, w/v)	Cationic niosomes: FITC-ODN	EE (%)	G' (kPa)	G'' (kPa)	γ (%)	γ _c (%)	tan δ
1	Hydrogel-1	-	yes	94.0±1.5	2.68	0.40	-	16.6	0.15
2	Hydrogel-2	0.5	yes	97.0±0.5	nd	nd	nd	nd	nd
3	Hydrogel-3	0.8	yes	98.0±0.4	nd	nd	nd	nd	nd
4	Hydrogel- 4	1	yes	98.0±0.8	5.29	0.57	87	20.0	0.10
5	Hydrogel-5	-	native	-	2.38	0.33	43	13.0	0.14
6	Hydrogel-6	1	native	-	7.81	0.72	68	13.4	0.09

Table S1 Encapsulation efficiencies (EE) of *hydrogels*-(1-4). Native hydrogels (*hydrogel*-5 and *hydrogel*-6) were used as controls for comparison purposes.^{*a*}

^{*a*} Abbreviations and definitions: κ -C = κ -carrageenan; G' = storage modulus; G'' = loss modulus; γ = strain at break (yield stress); γ_c = critical strain; tan δ = loss factor (G''/G'); nd = not determined. Reported data are means of three independent experiments \pm S.D.

Figure S3. DSS measurements and critical strain (γ_c).

Figure S4. DTS measurements of *hydrogel*-1, *hydrogel*-4, *hydrogel*-5 and *hydrogel*-6. (A) *Left*: Hydrogel containing cationic niosomes (*hydrogel*-1). *Right*: hydrogel crosslinked with κ -carrageenan (1%, w/v) and containing cationic niosomes (*hydrogel*-4). (B) *Left*: Native hydrogel (without cationic niosomes and κ -carrageenan; *hydrogel*-5). *Right*: Native hydrogel (without cationic niosomes but containing κ -carrageenan; *hydrogel*-6).

Figure S5. Standard curve of FITC-ODN.

Table S2. Model release parameters for hydrogels-(1-4) according to Higuchi equation

$$\frac{M_t}{M_\infty} = k * \sqrt{t}$$

Entry	Sample	k	r^2
1	Hydrogel-1	9.74	0.9891
2	Hydrogel-2	6.90	0.9717
3	Hydrogel-3	5.73	0.9765
4	Hydrogel-4	5.12	0.9947

Table S3. Model release parameters for *hydrogels*-(1-4) according to Korsmeyer-Peppas' equation. The model was calculated for the first 60% of the FITC-ODN release

$$\frac{M_t}{M_\infty} = k * t^n$$

Entry	Sample	k	п	r^2
1	Hydrogel-1	7.63	0.56	0.9935
2	Hydrogel-2	6.04	0.52	0.9940
3	Hydrogel-3	5.38	0.51	0.9938
4	Hydrogel-4	5.12	0.52	0.9952

Table S4. Model release parameters for hydrogels-(1-4) according to Weibull equation

$$\frac{M_t}{M_\infty} = a * (1 - \exp\bigl(-(kt)^b\bigr))$$

Entry	Sample	а	k	b	r^2
1	Hydrogel-1	137.8	0.013	0.77	0.9803
2	Hydrogel-2	98.9	0.013	0.96	0.9647
3	Hydrogel-3	94.5	0.011	0.93	0.9834
4	Hydrogel-4	129.7	0.005	0.73	0.9949

Figure S6. Combination of the three niosomal FITC-ODN cumulative release from *hydrogels*-(2-4).

Figure S7. A. FITC-ODN release from *hydrogel-3* containing cationic nioplexes analyzed by native gel polyacrylamide electrophoresis (PAGE). B. FITC-ODN release from *hydrogel-3* containing cationic nioplexes analyzed by native gel polyacrylamide electrophoresis. 100 mM Triton X-100 was added to the PBS receptor phase at different times. The solubilization of the niosomes produced a liberation of the unformulated FITC-ODN.

Figure S8. Release profiles of niosomal FITC-ODN from *hydrogels*-(1-4).

Figure S9. Cell morphology images of HeLa cells in the absence (*left*) and the presence of *hydrogel*-3 (*mock*) (*right*).