Supporting Information

Diphenylamino-substituted quinacridone derivative: red fluorescence based on intramolecular charge-transfer transition

Chenguang Wang, Shipan Wang, Weiping Chen, Zuolun Zhang,* Hongyu Zhang and Yue Wang

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Contents

Photophysical properties	S2-S4
TGA and DSC curves	S5-S6
Electroluminescent properties	S6-S8
NMR spectra	S8-S9
References	S9

Fig. S1 Absorption (solid line) and fluorescence (dashed line) spectra of NPh₂-QA in various solvents.

Solvents	Δf^a	$\lambda_{\rm abs}$ / nm	$\varepsilon / 10^4 \text{ M}^{-1} \text{ cm}^{-1}$	$\lambda_{\rm em}$ / nm	Stokes shift / cm ⁻¹			
Toluene	0.0131	566	0.83	602	1057			
CHCl ₃	0.1482	579	0.73	649	1863			
CH_2Cl_2	0.2171	570	0.71	644	2016			
DMSO	0.2630	575	0.73	677	2620			
CH ₃ CN	0.3046	564	0.73	674	2894			
^{<i>a</i>} orientation polarizability of the solvent.								

Table S1 Photophysical data of NPh₂-QA in various solvents.

Fig. S2 Lippert–Mataga plot of NPh₂-QA.

Lippert-Mataga plots. Lippert-Mataga equation¹ expresses the Stokes shift Δv as a function of the solvent orientation polarizability Δf :

$$\Delta v = \frac{1}{4\pi\varepsilon_0} \frac{2(\mu_e - \mu_g)^2}{hca^3} \Delta f + constant$$
$$= \frac{(9.05 \times 10^{34})(\mu_e - \mu_g)^2}{a^3} \Delta f \ [C^{-2}] + constant$$

where ε_0 represents dielectric constant of vacuum, *h* represents Planck constant, *c* represents light velocity, *a* represents radius of Onsager cavity, μ_g and μ_e represent the dipole moment in ground and excited states, respectively. *C* is the unit of quantity of electric charge. For NPh₂-QA, DFT-calculation at B3LYP/6-31G* level gives *a* value of 6.65 Å. Based on the Lippert-Mataga equation, the difference of dipole moment between ground and excited states ($\mu_e - \mu_g$) is 13.4 D.

Table S2 Fluorescence quantum yields of C₈-QA and NPh₂-QA in various solvents.

Compound	Toluene	CHCl ₃	CH ₂ Cl ₂	DMSO	CH ₃ CN
C ₈ -QA	0.96	0.97	0.96	0.95	0.96
NPh ₂ -QA	0.56	0.13	0.09	0.02	0.02

Fig. S3 Fluorescence spectra of solid thin films of C₈-QA (yellow line) and NPh₂-QA (deep red line).

Fig. S4 Fluorescence microscopy image of the crystalline powder of NPh₂-QA.

Fig. S5 TGA curves of C₈-QA and NPh₂-QA.

Fig. S6 Two heating (solid line)-cooling (dashed line) cycles of the DSC measurements of NPh₂-QA.

Fig. S7 Two heating (solid line)-cooling (dashed line) cycles of the DSC measurements of C_8 -QA.

Fig. S8 EL spectra of the OLED device at different driving voltages.

Fig. S9 Current density–Voltage–Brightness characteristics of the OLED device.

Fig. S10 Current efficiency and power efficiency *versus* brightness characteristics of the OLED device.

Fig. S11 External quantum efficiency versus brightness characteristics of the OLED device.

Fig. S12 ¹H NMR spectrum of NPh₂-QA (400 MHz, CD₂Cl₂).

Fig. S13 $^{13}C{^{1}H}$ NMR spectrum of NPh₂-QA (100 MHz, CD₂Cl₂).

References

[1] *Principles of Fluorescence Spectroscopy*, e.d. J. R. Lakowicz, Springer, 3rd edn., New York, 2006.