TABLE S1. The calculated bond lengths (R), vibrational frequencies (ω_e), binding energies (E_b), and corresponding experimental values for the ground electronic states of the Au₂, CO, AuH, NO, and OH molecules.

molecule	method	R (Å)	$w_{\rm e}$ (cm ⁻¹)	$E_{\rm b}\left({\rm eV}\right)$
Au_2	In this work	2.564	173	2.07
	BP	2.563	172.9	1.964
	PW91	2.561	174.2	2.093
	Expt.	2.472 a	191 ^a	2.29 ± 0.02^{a}
СО	In this work	1.142	2089.8	11.969
	BP	1.142	2110.5	11.794
	PW91	1.141	2117.0	11.991
	Expt.	1.120 b	2082.07^{b}	11.109±0.004 ^c
AuH	In this work	1.545	2191.4	2.925
	BP	1.545	2324.6	3.027
	PW91	1.544	2331.4	3.087
	Expt.	1.524 ^b	2305.01 ^b	3.1 ^b
	In this work	1.164	1890.6	7.609
NO	BP	1.165	1887.2	7.396
NO	PW91	1.163	1893.7	7.596
	Expt.	1.151 ^b	1904.03 ^b	6.49 ^b
ОН	In this work	0.985	3631.6	5.005
	BP	0.984	3632.7	4.988
	PW91	0.984	3630.9	5.031
	Expt.	0.971 ^b	3735.21 ^b	4.39 ± 0.22^{c}

^a Taken from Ref. 36

Noting that the references are the same as in the manuscript.

^b Taken from Ref. 37

^c Taken from Ref. 38

TABLE S2. The ionization potential, IP (eV), of Au, C, O, and N atoms.

Atom	Method				
	In this work	BP	PW91	Expt.	
Au	9.572	9.584	9.650	9.225	
C	11.610	11.643	11.685	11.261	
O	13.643	13.602	13.502	13.61	
N	14.856	14.903	14.945	14.533	