SUPPORTING INFORMATION

Comparing the Suitability of Sodium Hyposulfite, Hydroxylamine Hydrochloride and Sodium Sulfite as the Quenching Agents for Permanganate Oxidation[†]

Bo Sun^a, Dandan Rao^b, Hongyu Dong^b and Xiaohong Guan*^{a,b}

^aState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of

Technology, Harbin 150090, People's Republic of China

^bState Key Laboratory of Pollution Control and Resources Reuse, College of

Environmental Science and Engineering, Tongji University, Shanghai 20092,

People's Republic of China

†Electronic supplementary information (ESI) available.

E-mail addresses: sunbo880628@163.com (B. Sun), 541502729@qq.com (D.D. Rao),

gndong@126.com (H.Y. Dong), hitgxh@126.com (X.H. Guan)

*Contact/Corresponding author contact information:

Xiaohong Guan, Email: hitgxh@126.com; Phone: +86(21) 65980956

Table of Contents

Figure S1. Degradation kinetic of aniline by KMnO ₄ .		
Figure S2. Conditional oxidation reduction potential of NH_2OH/N_2O and NH_3OH^+/N_2O .		
Figure S3. Variation of phenol concentration as a function of time in the $KMnO_4/Na_2SO_3$ process at pH 5.0.	S5	
Figure S4. Relative rate method	S6	
Table S1. The second-order rate constants of phenol, $Na_2S_2O_3$, NH_2OH •HCl and Na_2SO_3 with KMnO ₄ .	S7	
Table S2. The second-order rate constants of BPA and phenol oxidation by Mn(III).		
Reference.	S9	

5

Figure S2. Conditional oxidation reduction potential of NH₂OH/N₂O and
NH₃OH⁺/N₂O at different pH with 500 μM NH₂OH or NH₃OH⁺.

10Figure S3. Variation of phenol concentration as a function of time in the11 $KMnO_4/Na_2SO_3$ process at pH 5.0. Reaction conditions: $[KMnO_4]_0 = 50 \ \mu M;$

- 12 $[Na_2SO_3]_0 = 500 \ \mu M, [Phenol]_0 = 5 \ \mu M.$
- 13

15 **Figure S4.** Plots of $\ln \frac{c_{BPA}^0}{c_{BPA}^\infty}$ vs $\ln \frac{c_{phenol}^0}{c_{phenol}^\infty}$ in the KMnO₄/Na₂SO₃ process. Reaction

16 conditions: $[KMnO_4]_0 = 50 \ \mu M$, $[Na_2SO_3]_0 = 250 \ \mu M$, the concentration of phenol

17

and BPA changed from 5 μ M to 15 μ M.

19

Table S1. The second-order rate constants of phenol, $Na_2S_2O_3$, NH_2OH • HCl and

_					
	рН	$k_{phenol}(M^{-1}s^{-1})$	$k_{Na_2S_2O_3}(M^{-1}s^{-1})$	$k_{NH_2OH\bullet HCl}(M^{-1}s^{-1})$	$k_{Na_2SO_3}(M^{-1}s^{-1})$
	2.0	342	1.29×10 ⁶	175.6	-
	3.0	20.0	3.58×10 ⁵	148.0	-
	4.0	6.73	1.49×10 ⁴	57.2	2.39×10 ⁴
	5.0	4.73	2.95×10 ³	58.0	^a 3.73×10 ⁴
	6.0	0.567	1.84×10 ³	607.8	^a 4.70×10 ⁴
	7.0	15.8	2.20×10 ³	8.66×10 ³	^a 4.87×10 ⁴
	8.0	24.1	1.32×10 ³	1.16×10 ⁴	^a 4.49×10 ⁴
	9.0	43.4	1.08×10 ³	1.27×10 ⁴	^a 5.04×10 ⁴
	10.0	57.8	1.13×10 ³	1.21×10^{4}	5.67×10 ⁴
	11.0	33.1	2.70×10 ³	1.40×10 ⁴	8.4×10 ⁴

Na₂SO₃ oxidation by KMnO₄.

20

 $^{\rm a}{\rm obtained}$ from our previous ${\rm study}^{\rm l}$

	рН	${}^{b}k_{BPA} (M^{-1}s^{-1})$	$k_{\rm phenol} (\mathrm{M}^{-1}\mathrm{s}^{-1})$	
	5.0	4.21×10 ⁵	3.33×10 ⁵	
	7.0	1.37×10 ⁵	8.32×10 ⁴	
22	bo	^b obtained from our previous study ¹		
23				
24				

21 **Table S2.** The second-order rate constants of BPA and phenol oxidation by Mn(III)

Reference

1. B. Sun, H.Y. Dong, D. He, D.D. Rao, X.H. Guan, *Environ. Sci. Technol.* **2016**. http://pubs.acs.org/doi/abs/10.1021/acs.est.5b05207.