Supporting Information

An ICT-Based Colorimetric and Ratiometric Fluorescent Probe for Hydrogen Sulfide and Its Application in Live-Cell Imaging

Jinglu Wang, Yu Chen, Chengyu Yang, Ting Wei, Yifeng Han,* and Min Xia*

Department of Chemistry, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China. E-mail: zstuchem@gmail.com and xiamin@zstu.edu.cn.

Contents

Materials and methodsSa	3
Synthesis of NS1 S4	4
Photophysical properties of NS1······S6	6
Additional spectroscopic data S	7
Cell lines and imaging experiments S2	21
The characterization data of NS1······S2	22
References······S2	24

Materials and methods

All the solvents were of analytic grade. NMR experiments were carried out on a Bruker AV-400 NMR spectrometer with chemical shifts reported in ppm (in CDCl₃, *d*-DMSO, D₂O, or TMS as an internal standard). Mass spectra were measured on an Agilent 1290 LC-MS spectrometer. All pH measurements were made with a Sartorius basic pH-Meter PB-10. Fluorescence spectra were determined on a PerkinElmer LS55 Fluorescence spectrophotometer. Absorption spectra were collected on a Shimadzu UV 2501(PC)S UV-Visible spectrophotometer. The excitation and emission widths for measurements were all 3 nm. All the cation solutions were prepared from GSH, Cys, NaHSO₃, Na₂S₂O₄, Na₂S₂O₃, Na₂SO₃, NaClO, KI, CuCl₂, FeCl₃, and NaHS in distilled water, with a concentration of 1 mM, respectively.

Synthesis and characterization

Scheme S1 Synthesis of NS1: (a) *n*-butylamine, ethanol, reflux, 8 h, 93%; (b) i) NaOMe, MeOH, reflux, 12 h; ii) HI (57%), H₂O, reflux, 12 h, 65% over two steps; (c) 1-azido-4-(chloro-methyl) benzene, K₂CO₃, acetone, reflux, 12 h, 72%.

N-butyl-4-hydroxy-1, 8-naphthalimide (3), was obtained according to a published procedure.¹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.81 (brs, 1H), 8.48 (d, *J* = 8.3 Hz, 1H), 8.41 (d, *J* = 7.2 Hz, 1H), 8.28 (d, *J* = 8.0 Hz, 1H). 7.70 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 3.98 (t, *J* = 7.3 Hz, 2H), 1.57 (p, *J* = 7.5 Hz, 2H), 1.32 (h, *J* = 7.3 Hz, 2H), 0.90 (t, *J* = 7.3 Hz, 3H).

4-(4'-azidobenzyloxy)-N-butyl-1, 8-naphthalimide (4, NS1): compound **3** (100 mg, 0.37 mmol), K_2CO_3 (103 mg, 0.74 mmol), KI (62 mg, 0.37 mmol), and 1-azido-4-(chloromethyl) benzene (68 mg, 0.41 mmol) were dissolved in acetone (10 mL), and the mixture solution was refluxed for 12 h until all the starting material was consumed, which was monitored by TLC analysis. Then water (50 mL) was added, and the mixture solution was extracted with dichloromethane (3 × 20 mL). The extract was dried over sodium sulfate and then concentrated under vacuum. The product was purified by flash chromatography using pure dichloromethane as the eluant to give **4** as a pale white solid (107 mg, 72%).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (m, 3H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 1H), 5.31 (s, 2H), 4.15 (t, *J* = 7.3 Hz, 2H), 1.71 (p, *J* = 7.0 Hz, 2H), 1.45 (h, *J* = 15.1, 7.4 Hz, 2H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 164.34, 163.76, 159.45, 140.40, 133.10, 132.13, 131.47, 129.31, 129.20, 128.45, 125.97, 123.49, 122.44, 119.37, 115.42, 106.27, 70.21, 40.05, 30.21, 20.36, 13.82.

HR-MS (TOF-ESI): Calcd. for ([M])+, 401.1614; Found, 401.1614.

Photophysical properties of NS1

Table S1 Photophysical properties of the probe.

entry	λab (nm)	λem (nm)	Φ^{a}	$\epsilon \ / \ M^{\text{-1}} \ cm^{\text{-1}}$
NS1	370	444	0.11	9623
NS1+NaHS	455	539	0.20 ^b	14912

(a) The quantum yield (Φ) of NS1 and NS1-NaHS systems were was determined according to the literature.² (b) Φ was determined in the present of 100.0 equiv. of NaHS.

$$\Phi_{sample} = \frac{\Phi_{QS} \cdot A_{QS} \cdot F_{sample} \cdot \lambda_{exQS} \cdot \eta_{sample}^2}{A_{sample} \cdot F_{QS} \cdot \lambda_{exSample} \cdot \eta_{QS}^2}$$

.

Where Φ is quantum yield; A is absorbance at the excitation wavelength; F is integrated area under the corrected emission spectra; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the Sample and QS refer to the sample and the standard, respectively. We chose fluorescein in 0.1 M NaOH as standard, which has the quantum yield of 0.95.³

Additional spectroscopic data

Fig. S1 The UV-vis absorption of **NS1** (10.0 μ M) at 455 and 370 nm, respectively, as a function of NaHS concentration (0-200.0 equiv.) in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH).

Fig. S2 The ratio of UV-vis absorption of **NS1** (10.0 μ M) at 455 and 370 nm ($A_{455 \text{ nm}}/A_{370 \text{ nm}}$) as a function of NaHS concentration (0-60.0 equiv.) in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH).

Fig. S3 The fluorescent intensity of NS1 (10.0 μ M) at 539 and 444 nm, respectively, as a function of NaHS concentration (0-200.0 equiv.) in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 410$ nm).

Fig. S4 The ratio of fluorescent intensity of NS1 (10.0 μ M) at 539 and 444 nm ($I_{539 \text{ nm}}/I_{444 \text{ nm}}$) as a function of NaHS concentration (0-80.0 equiv.) in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 410 \text{ nm}$).

The detection limit (DL) of H₂S using NS1 was determined from the following equation: ⁴

$$DL = 3*\sigma/K$$

Where σ is the standard deviation of the blank solution; K is the slope of the calibration curve.

Fig. S5 The comparison of fluorescence spectra of probe (NS1), control (compound 3), and the probe-NaHS mixture solution (NS1-NaHS mixture solution) in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) (λ_{ex} = 410 nm).

Fig. S6 The ¹H NMR spectra of **NS1** (4 mg in the mixture of 0.25 mL *d*-DMSO and 0.25 mL D_2O), **NS1**-NaHS mixture (4 mg of **NS1** with the addition of 20 equiv. of NaHS in 0.25 mL D_2O), and compound **3** (in *d*-DMSO- D_2O 1:1).

Scheme S2 The proposed mechanism of NS1-NaHS interactions.

Fig. S7 Time-dependent fluorescence spectra of **NS1** (10.0 μ M) upon addition of NaHS (100.0 equiv., 1 mM) in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 410$ nm). Inset: The ratio of fluorescent intensity of **NS1** (10.0 μ M) at 539 and 444 nm ($I_{444 \text{ nm}}/I_{539 \text{ nm}}$) as a function of reaction times (0-270 min).

Fig. S8 Fluorescence responses of **NS1** (10.0 μ M) in the presence of 100.0 equiv. of GSH, Cys, HSO₃⁻, S₂O₄²⁻, respectively, at 0, 30, 60, and 90 min after addition of each analytes in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 410$ nm).

Fig. S9 Fluorescence responses of **NS1** (10.0 μ M) in the presence of 100.0 equiv. of S₂O₃²⁻, SO₃²⁻, ClO⁻, I⁻, respectively, at 0, 30, 60, and 90 min after addition of each analytes in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 410$ nm).

Fig. S10 Fluorescence responses of NS1 (10.0 μ M), in the presence of 100.0 equiv. of Cu²⁺, Fe³⁺, and in the presence of 100.0 equiv. of GSH, or Cys followed by 100.0 equiv. of NaHS, respectively, at 0, 30, 60, and 90 min after addition of each analytes in HEPES buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 410$ nm).

Fig. S11 Effect of the pH on the ratio of fluorescent intensity of NS1 (10.0 μ M) alone and NS1-NaHS system (in the addition of 100.0 equiv. of NaHS) at 539 and 444 nm ($I_{539 nm}/I_{444 nm}$) ($\lambda_{ex} = 410 nm$).

Fig. S12 Effect of the pH on the fluorescent spectra of NS1 (10.0 μ M), and NS1-NaHS system (in the addition of 100.0 equiv. of NaHS) ($\lambda_{ex} = 410$ nm).

Fig. S13 Comparison of the TLC analysis of NS1, NS1-NaHS mixture in pH 7.4 solutions, NS1-NaHS mixture in pH 11.0 solutions, and compound 3 (control).

The pictures are the TLC spots of NS1 (a), NS1-H₂S mixture in pH 7.4 solutions (b), NS1-H₂S mixture in pH 11.0 solutions (c), and compound 3 (detection reaction product, d), with the left picture representing the results observed under 254 nm and the right one under 365 nm (The eluent for TLC: hexane:ethyl acetate = 6:1 (v/v)). As shown in the picture, the detection reaction is more favorable in pH 7.4 medium than that in pH 11.0. In the pH 7.4 medium, the reaction goes more rapid to give neatly compound 3. But it seems that some other reactions also take place in the pH 11.0 medium to form a compound with similar fluorescent properties to the probe itself.

Cell lines and imaging experiments

The human breast cancer MCF-7 cell line was selected as a model cell line to test the ability of this probe to image H₂S in live cells. Cells were seeded on glass bottom dishes (35 mm, In Vitro Scientific) and cultured overnight with Dulbecco's Modified Eagle's Medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% Fetal bovine serum (Gibco, GlandIsland, NY, USA). Before treatment, the cells were washed with PBS and then incubated with the culture but not the fetal bovine serum (5μ M, in PBS) for 20 min. After probe loading, the cells were again washed quickly with PBS and further incubated with PBS containing NaHS of various concentrations (0, 100, 200 μ M) for 30 min. The cells were then observed under confocal microscopy (ZEISS LSM780) with excitation at 405 nm and emission at 507-601 nm.

The characterization data of NS1

¹H NMR of **3**

HR-MS of 4 (NS1)

x10 6 +	ESI S	can (9.321 m	in) Frag=1	75.0V LX400	D.d				
2					823.	2966			
1.75									
1.5									
1.25									
1			401.1614						
0.75									
0.5									
0.25	Ĩ.					922.0098			
0									
1(ak List	0	200 300	400 5	500 600 Counts vs	700 800 s. Mass-to-Ch	900 1000 arge (m/z)	1100	1200	1300
10 ak List /z	2	200 300 Abund	400 8	500 600 Counts vs	700 800 s. Mass-to-Ch	900 1000 arge (m/z)	1100	1200	1300
10 2000 - 10 200	2 2	200 300 Abund 270219.3	400 5	500 600 Counts vs	700 800 5. Mass-to-Ch	900 1000 arge (m/z)	1100	1200	1300
10 2010 2011 20	2 2	200 300 Abund 270219.3 184356.2	400 5	500 600 Counts vs	700 800 5. Mass-to-Ch	900 1000 arge (m/z)	1100	1200	1300
10 eak List 21.0509 36.0755 74.1124	200 Z	200 300 Abund 270219.3 184356.2 270050.5	400 €	500 600 Counts vs	700 800 3. Mass-to-Ch	900 1000 arge (m/z)	1100	1200	1300
10 eak List 21.0509 36.0755 74.1124 01.1614	2 2 1	200 300 Abund 270219.3 184356.2 270050.5 908991.9	400 £	500 600 Counts vs	700 800 3. Mass-to-Ch	900 1000 arge (m/z)	1100	1200	1300
10 eak List 21.0509 36.0755 74.1124 01.1614 02.1642	2 2 1 1	200 300 Abund 270219.3 184356.2 270050.5 908991.9 221798.6	400 5	500 600 Counts vs	700 800 5. Mass-to-Ch) 900 1000 arge (m/z)	1100	1200	1300
10 eak List 7/2 21.0509 36.0755 74.1124 01.1614 02.1642 05.1814	2 2 1 1 1	200 300 Abund 270219.3 184356.2 270050.5 908991.9 221798.6 459418.6	400 5	ó0 600 Counts vs	700 800 S. Mass-to-Ch	1 900 1000 arge (m/z)	1100	1200	1300
10 20	200 2 1 1 1 1 1	Abund 270219.3 184356.2 270050.5 908991.9 221798.6 459418.6 1774589.4	400 5	500 600 Counts vs	700 800 3. Mass-to-Ch) 900 1000 arge (m/z)	1100	1200	1300
10 2014 List 1.0509 16.0755 4.1124 1.1614 1.1614 2.1642 5.1814 3.2966 4.3	200 2 1 1 1 1 1 1 1	200 300 Abund 270219.3 184356.2 270050.5 908991.9 221798.6 459418.6 1774589.4 969955.3		500 600 Counts vs	700 800 B. Mass-to-Ch) 900 1000 arge (m/z)	1100	1200	1300
10 21.0509 16.0755 14.1124 11.1614 12.1642 15.1814 3.2966 4.3 5.3025	2 2 1 1 1 1 1 1 1 1 1	200 300 Abund 270219.3 184356.2 270050.5 908991.9 221798.6 459418.6 1774589.4 969955.3 254950.6		500 600 Counts vs	700 800 b. Mass-to-Ch	1000 900 1000 900 1000	1100	1200	1300

Qualitative Analysis Report

References

- 1 T. Liu, X. Zhang, Q. Qiao, C. Zou, L. Feng, J. Cui, and Z. Xu, *Dyes and Pigments*, 2013, **99**, 537-542.
- 2 R. A. Velapoldi, and H. H. Tønnesen, J. Fluoresc., 2004, 14, 465-472.
- 3 (a) D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107-1114; (b) D. Magde, R. Wong, and P. G.
 Seybold, Photochem. Photobiol., 2002, 75, 327-334.
- 4 (a) J. T. Yeh, P. Venkatesan and S. P. Wu, New J. Chem., 2014, 38, 6198-6204. (b) A. Roy, D. Kand, T. Saha and P. Talukdar, Chem. Commun., 2014, 50, 5510-5513.