Supporting Information

Organocatalytic One-pot Asymmetric Synthesis of

2-Aryl-2,3-dihydro-4-quinolones

Gao-Fei Pan, Li Su, Yan-Lei Zhang, Shi-Huan Guo, and Yong-Qiang Wang* Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China <u>mailto:wangyq@nwu.edu.cn</u>

Table of Contents

1.	General information	
2.	Experimental procedures and characterization data	S3
3.	References	
4.	¹ H NMR and ¹³ C NMR spectra	
5.	HPLC spectra	
6.	¹ HNMR, ¹³ CNMR and HRMS for the mechanism	
7.	X-Ray structure of 3a, 3l	

1 General information

All commercial reagents and solvents were used as received without further purification. Reactions were followed with TLC (0.254 mm silica gel 60-F plates). Visualization was accomplished with UV light. Flash chromatographies were carried out on silica gel 200-300 mesh. Optical rotations were reported as follows: $[\alpha]^{27}_{D}$ (c g/100 mL, in solvent). Melting points (m. p.) were measured on electrothermal digital melting point apparatus and were uncorrected. ¹HNMR and ¹³CNMR spectra were recorded at 400 MHz using CDCl₃ or (CD₃)₂SO as solvent. Spectra were referenced internally to the residual proton resonance in $CDCl_3$ (δ 7.26 ppm), $(CD_3)_2SO$ (δ 2.50 ppm) or with tetramethylsilane (TMS, $\delta 0.00$ ppm) as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) in δ scale downfield from TMS. Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, m =multiplet, br. s = broad singlet. Infrared (IR) data were recorded as films on potassium bromide plates on a Bruker Tensor 27 FT-IR spectrometer. Absorbance frequencies are reported in reciprocal centimeters (cm⁻¹). High resolution mass spectra were acquired on a Bruker Daltonics MicroTof-QII mass spectrometer. X-ray crystal structure analyses were measured on Bruker Smart APEXIICCD instrument using Mo-Ka radiation. The structures were solved and refined using the SHELXTL software package. High performance liquid chromatography (HPLC) analysis was performed on a SHIMADZU LC-2010AHT instrument equipped with a quaternary pump, using a Daicel Chiralcel AD column (250×4.6 mm). UV absorption was monitored at 214 nm.

2. Experimental procedures and characterization data

General procedure for 2-Aryl-2,3-dihydro-4-quinolones synthesis:

To a 1.5 mL test tube were added 0.01mmol (10 mmol%) of organocatalyst **4a**, 0.1 mmol of 2'-hydroxyacetophenones and 0.1 mmol of benzaldehydes. Then the reaction mixture was left at room temperature for sufficient time (based on monitoring by thin-layer chromatography), and finally purified by column chromatography with 10% EtOAc/hexanes as eluent to give the products (**3**).

(R)-2-phenyl-2,3-dihydroquinolin-4(1H)-one (3a)^[1,2,3] Prepared according to general procedure to afford as yellow solid (72% yield). $R_{\rm f} = 0.42$ (EtOAc/hexanes 1:10); m. p. = 144–145 °C. $[\alpha]^{23.2}_{D} = -21.5$ (c = 0.5, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.88$ (d, J = 8.0Hz, 1H, H-Ar), 7.47–7.33 (m, 6H, H-Ar), 6.80 (t, J =8.0Hz, 1H, H-Ar), 6.72 (d, J = 8.0Hz, 1H, H-Ar), 4.76 (dd, J = 4.0Hz, 16.0Hz, 1H, CH), 4.52 (s, 1H, NH), 2.93–2.76 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): $\delta =$ 193.4, 151.7, 141.1, 135.6, 129.1, 128.6, 127.8, 126.8, 119.2, 118.6, 116.1, 58.7, 46.59. HRMS (ESI) m/z calcd for C₁₅H₁₃NONa 246.0889 [M+Na⁺]; found 246.0879. IR (KBr): 3338, 3127, 1658, 1351, 1351, 1330, 1108, 792, 765, 717 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 28.4 min, minor enantiomer t_R, 32.0 min; 98% ee]. Absolute configuration was determined as R by comparison of optical rotation to literature values, [lit., $[\alpha]_D^{20} = +27.1$ (c = 0.42, CHCl₃) for 98% ee of the (S)-enantiomer], and the configurations of other products were assigned by analogy. ^[2, 3]Analytical data match those reported in the literature. ^[2] CCDC1418014 contains the crystallographic data for 3a that can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

(*R*)-2-(*p*-tolyl)-2,3-dihydroquinolin-4(1H)-one (3b)^[1,2,8] Prepared according to general procedure to afford as yellow solid (63% yield). $R_{\rm f} = 0.40$ (EtOAc/hexanes 1:10); m. p. = 149–150 °C. $[\alpha]^{23.0}{}_{\rm D} = -24.6$ (c = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.85$ (d, J = 8.0Hz, 1H, H-Ar), 7.33–7.32 (m, 3H, H-Ar), 7.20–7.18 (m, 2H, H-Ar), 6.77–6.69 (m, 2H, H-Ar), 4.68 (d, J = 16.0Hz, 1H, CH), 4.54 (s, 1H, NH), 2.88–2.70 (m, 2H, CH₂), 2.36 (s, 3H, CH₃). ¹³C NMR (100MHz , CDCl₃): $\delta = 193.6$, 151.8, 138.4, 138.1, 135.5, 129.7, 127.7, 126.6, 119.1, 118.4, 116.0, 58.3, 46.6, 21.3. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₅ONNa 260.1046 [M+Na⁺]; found 260.1035. IR (KBr): 3374, 2295, 1650, 1508, 1328, 1147, 763, 646, 495 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 28.0 min, minor enantiomer t_R, 35.5 min; 98% ee].

(*R*)-2-(*m*-tolyl)-2,3-dihydroquinolin-4(1H)-one (3c)^[1] Prepared according to general procedure to afford as yellow solid (70% yield). $R_{\rm f}$ = 0.41 (EtOAc/hexanes 1:10); m. p. = 104–105 °C. [α]^{23.0}_D = -11.4 (*c* = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.76 (d, *J* = 8.0Hz, 1H, H-Ar), 7.26–7.13 (m, 4H, H-Ar), 7.06 (d, *J* = 8.0Hz, 1H, H-Ar), 6.70–6.62 (m, 2H, H-Ar), 4.60 (dd, *J* = 4.0Hz, 16.0Hz, 1H, CH), 4.52 (s, 1H, NH), 2.78–2.60 (m, 2H, CH₂), 2.28 (s, 3H, CH₃). ¹³C NMR (100MHz , CDCl₃): δ = 193.5, 151.8, 141.0, 138.8, 135.5, 129.2, 128.9, 127.6, 127.4, 123.8, 119.0, 118.4, 116.0, 58.5, 46.5, 21.6. HRMS (ESI) *m/z* calcd for C₁₆H₁₅ONNa 260.1046; found 260.1035 [M+Na⁺]. IR (KBr): 3334, 2289, 1656, 1479, 1330, 1119, 1114, 1002, 865, 763, 701, 620 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 24.9 min, minor enantiomer t_R, 29.7 min; 98% ee].

(*R*)-2-(4-ethylphenyl)-2,3-dihydroquinolin-4(1H)-one (3d) Prepared according to general procedure to afford as yellow solid (53% yield). $R_{\rm f} = 0.39$ (EtOAc/hexanes 1:10); m. p. = 110–111 °C. $[\alpha]^{23.0}{}_{\rm D} = +15.4$ (c = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.79$ (d, J = 8.0Hz, 1H, H-Ar), 7.38–7.22 (m, 5H, H-Ar), 6.70 (t, J = 8.0Hz, 1H, H-Ar), 6.62 (d, J = 8.0Hz, 1H, H-Ar), 4.64 (dd, J = 8.0Hz, 8.0Hz, 1H, CH), 4.53 (s 1H, NH), 2.91–2.72 (m, 2H, CH₂), 2.59 (q, 2H, J = 8.0Hz, CH₂), 1.1 (t, J = 8.0Hz, 3H, CH₃). ¹³C NMR (100MHz, CDCl₃): $\delta = 193.7$, 151.8, 144.8, 138.3, 135.5, 128.6, 127.7, 126.8, 119.1, 118.4, 116.0, 58.3, 46.6, 28.7, 15.7. HRMS (ESI) m/z calcd for C₁₇H₁₇NONa 274.1202 [M+Na⁺]; found 274.1202. IR (KBr): 3301, 2976, 1611, 1511, 1476, 1333, 1259, 1219, 1213, 1120, 1035, 1069, 826, 749, 641 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 25.4 min, minor enantiomer t_R, 30.0 min; 96% ee].

(**R**)-2-(4-methoxyphenyl)-2,3-dihydroquinolin-4(1H)-one (3e)^[1,3] Prepared according to general procedure to afford as yellow solid (85% yield). $R_{\rm f} = 0.36$ (EtOAc/hexanes 1:10); m. p. = 132–133°C. [α]^{23.0}_D = -35.7 (c = 0.4, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.74$ (d, J = 8.0Hz, 1H, H-Ar), 7.26–7.16 (m, 3H, H-Ar), 6.82–6.80 (m, 2H, H-Ar), 6.68–6.61 (m, 2H, H-Ar), 4.56–4.54 (m, 2H, CH, NH), 3.71 (s, 3H, OCH₃), 2.75–2.57 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): $\delta = 193.69$, 159.58, 151.77, 135.44, 133.08, 127.88, 127.56, 118.91, 118.28, 116.02, 114.26, 57.86, 55.38, 46.54. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₅NNaO₂Na 276.0995 [M+Na⁺]; found 276.0990. IR (KBr): 3289, 2924, 1649, 1605, 1507, 1475, 1434, 1302, 1248, 1212, 1152, 1036, 910, 825, 753, 635, 442 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214nm; major enantiomer t_R, 47.7 min,

minor enantiomer t_R, 55.0 min; 85% ee].

(*R*)-2-(4-fluorophenyl)-2,3-dihydroquinolin-4(1H)-one (3f)^[1,6,7] Prepared according to general procedure to afford as yellow solid (80% yield). $R_{\rm f} = 0.35$ (EtOAc/hexanes 1:10); m. p. = 134–135 °C. [α]^{23.0}_D = +9.3 (c = 0.2, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.86 (d, J = 8.0Hz, 1H, H-Ar), 7.53–7.51 (m, 2H, H-Ar), 7.35–7.33 (m, 3H, H-Ar), 6.83–6.72 (m, 2H, H-Ar), 4.72 (dd, J = 4.0Hz, 16.0Hz, 1H, CH), 4.42 (s, 1H, NH), 2.86–2.73 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): δ = 193.2, 162.7 (d, J_{F-C} = 246.0Hz), 151.5, 136.9, 135.6, 128.5 (d, J_{F-C} = 8.0Hz), 127.8, 119.2, 118.8, 116.1 (d, J_{F-C} = 8.0Hz), 115.9, 58.0, 46.7. HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂FONNa 264.0795; found 264.0781 [M+Na⁺]. IR (KBr): 3299, 2974, 1645, 1506, 1326, 1216, 1118, 1002, 835, 759, 649, 509 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 27.9 min, minor enantiomer t_R, 35.7 min; 99% ee].

875, 763, 640 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R , 23.9 min, minor enantiomer t_R , 25.8 min; 84% ee].

(*R*)-2-(4-chlorophenyl)-2,3-dihydroquinolin-4(1H)-one (3h)^[2] Prepared according to general procedure to afford as yellow solid (78% yield). $R_{\rm f} = 0.33$ (EtOAc/hexanes 1:10); m. p. =173–174 °C. [α]^{23.0}_D = -12.4 (c = 0.4, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.79 (d, J = 8.0Hz, 1H, H-Ar), 7.34–7.26 (m, 5H, H-Ar), 6.73 (t, J = 8.0Hz, 1H, H-Ar), 6.66 (d, J = 8.0Hz, 1H, H-Ar), 4.66 (dd, J = 4.0Hz, 16.0Hz, 1H, CH), 4.51 (s, 1H, NH), 2.86–2.71 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): δ = 192.0, 150.5, 138.7, 134.7, 133.3, 128.3, 127.1, 126.7, 118.2, 117.8, 115.1, 57.03, 45.6. HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂NOCINa 280.0500 [M+Na⁺]; found 280.0498. IR (KBr): 3305, 2906, 1650, 1481, 1328, 1147, 765, 644, 495 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 27.7 min, minor enantiomer t_R, 33.6 min; 82% ee].

(*R*)-2-(3-chlorophenyl)-2,3-dihydroquinolin-4(1H)-one (3i)^[2] Prepared according to general procedure to afford as yellow solid (84% yield). $R_{\rm f} = 0.33$ (EtOAc/hexanes 1:10); m. p. = 130–131 °C. $[\alpha]^{23.0}{}_{\rm D} = +65.3$ (c = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.85$ (d, 1H, H-Ar), 7.47 (s, 1H, H-Ar), 7.37–7.32 (m, 4H, H-Ar), 6.82–6.73 (m, 2H, H-Ar), 4.71 (dd, J = 4.0Hz, 16.0Hz, 1H, CH), 4.62 (s, 1H, NH), 2.85–2.71 (m, 2H, CH₂). ¹³C NMR (100MHz , CDCl₃): $\delta = 193.0$, 151.5, 143.2, 135.7, 134.9, 130.4, 128.7, 127.7, 126.9, 125.0, 119.1, 118.8, 116.1, 58.1, 46.4. HRMS (ESI) m/z calcd for C₁₅H₁₂NOCINa 280.0500 [M+Na⁺]; found 280.0498. IR (KBr): 3328, 2937, 1660, 1477, 1330, 1155, 997, 761, 638 cm⁻¹. [Daicel chiralpak AD column,

eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 24.1 min, minor enantiomer t_R, 26.1 min; 87% ee].

(*R*)-2-(3-bromophenyl)-2,3-dihydroquinolin-4(1H)-one (3j)^[1] Prepared according to general procedure to afford as yellow solid (72% yield). $R_{\rm f}$ = 0.36 (EtOAc/hexanes 1:10); m. p. = 118–119 °C. [α]^{23.0}_D = +12.0 (c = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.86 (dd, J = 4.0Hz, 16.0Hz, 1H, H-Ar), 7.64 (s, 1H, H-Ar), 7.49–7.46 (m, 1H, H-Ar), 7.38–7.33 (m, 2H, H-Ar), 7.28–7.24 (m, 1H, H-Ar), 6.83–6.73 (m, 2H, H-Ar), 4.71 (dd, J = 4.0Hz, 16.0Hz, 1H, CH), 4.56 (s, 1H, NH), 2.87–2.72 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): δ = 193.0, 151.5, 143.4, 135.7, 131.6, 130.6, 129.8, 127.6, 125.4, 123.0, 119.0, 118.7, 116.2, 58.0, 46.3. HRMS (ESI) *m/z* calcd for C₁₅H₁₂ONBrNa 323.9994 [M+Na⁺]; found 323.9998. IR (KBr):3328, 2938, 1658, 1475, 1330, 1285, 1114, 763, 642 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 23.1 min, minor enantiomer t_R, 26.1 min; 83 % ee].

(*R*)-4-(4-oxo-1,2,3,4-tetrahydroquinolin-2-yl)benzonitrile (3k) Prepared according to general procedure to afford as yellow solid (70% yield). $R_{\rm f}$ = 0.35 (EtOAc/hexanes 1:10); m. p. = 145–146 °C. [α]^{23.0}_D = +19.5 (c = 0.4, CHCl₃). ¹H NMR (400MHz, (CD₃)₂SO): δ = 7.86 (d, J = 8.0Hz, 2H, H-Ar), 7.69 (d, J = 8.0Hz, 2H, H-Ar), 7.36–7.24 (m, 2H, H-Ar), 6.90 (d, J = 8.0Hz, 1H, H-Ar), 6.66 (t, J = 8.0Hz, 1H, H-Ar), 4.89 (dd, J = 4.0Hz, 16.0 Hz, 1H, CH), 2.86–2.71 (m, 2H, CH₂). ¹³C NMR (100MHz, (CD₃)₂SO): δ = 191.9, 152.2, 147.4, 135.3, 132.6, 127.9, 126.4, 118.8, 117.8, 116.9, 116.3, 110.5, 55.8, 44.7. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₂N₂ONa 271.0842 [M+Na⁺]; found 271.0853. IR (KBr): 3338, 2956, 1693, 1607, 1472, 1364, 1305, 1226, 1150,

1116, 962, 765, 656 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 254 nm; major enantiomer t_R , 39.5 min, minor enantiomer t_R , 45.9 min; 96% ee].

(*R*)-2-(4-(trifluoromethyl)phenyl)-2,3-dihydroquinolin-4(1H)-one (3I)^[7] Prepared according to general procedure to afford as yellow solid (75% yield). $R_{\rm f} = 0.40$ (EtOAc/hexanes 1:10); m. p. = 160–161 °C. [α]^{23.0}_D = -29.5 (c = 0.45, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.86$ (d, J = 4.0Hz, 1H), 7.67–7.57 (m, 4H, H-Ar), 7.39–7.34 (m, 1H, H-Ar), 7.26 (s, 1H, H-Ar), 4.82 (dd, J = 4.0Hz, 12.0Hz, 1H, CH), 4.62 (s, 1H, NH), 2.87–2.74 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): $\delta = 191.67$, 150.39, 144.15, 134.74, 129.80 (q, $J_{F-C} = 32.0$ Hz), 126.72, 126.14, 125.18, 125.14, 125.10, 125.07, 123.03 (q, $J_{F-C} = 271.0$ Hz), 118.19, 117.97, 57.19, 45.37. HRMS (ESI) *m*/z calcd for C₁₆H₁₂F₃NONa 314.0763 [M+Na⁺]; found 314.0771. IR (KBr): 3368, 2971, 1657, 1612, 1508, 1478, 1328, 1155, 1278, 1120, 1062, 766, 690, 639, 574 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214nm; major enantiomer t_R, 30.1 min, minor enantiomer t_R, 34.7 min; 86% ee].

(*R*)-2-(3-fluoro-4-methoxyphenyl)-2,3-dihydroquinolin-4(1H)-one (3m) Prepared according to general procedure to afford as yellow solid (75% yield). $R_{\rm f} = 0.39$ (EtOAc/hexanes 1:10); m. p. = 123–124 °C. $[\alpha]^{23.0}{}_{\rm D} = -10.7$ (c = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.85$ (d, J = 4.0Hz, 1H), 7.36–7.33 (m, 1H, H-Ar), 7.19–7.13 (m, 2H, H-Ar), 6.95 (t, J = 8.0Hz, 1H, H-Ar), 6.81–6.72 (m, 2H, H-Ar),

4.66 (dd, J = 4.0Hz, 12.0 Hz, 1H, CH), 4.57 (s, 1H, NH), 3.89 (s, 3H, OCH₃), 2.84–2.70 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): $\delta = 193.2$, 152.4 (d, $J_{F-C} = 225.0$ Hz), 151.5, 147.7 (d, $J_{F-C} = 10.0$ Hz), 135.6, 134.1 (d, $J_{F-C} = 5.0$ Hz), 127.6, 122.6 (d, $J_{F-C} = 3.0$ Hz), 119.1, 118.7, 116.1, 114.5 (d, $J_{F-C} = 19.0$ Hz), 113.6, 57.7, 56.4, 46.6. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₄O₂NFNa 294.0901 [M+Na⁺]; found 294.0884. IR (KBr): 3322, 2836, 1656, 1612, 1504, 1278, 1130, 767, 630, 576 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 43.1 min, minor enantiomer t_R, 48.7 min; 80% ee].

(*R*)-2-(3,4-difluorophenyl)-2,3-dihydroquinolin-4(1H)-one (3n) Prepared according to general procedure to afford as yellow solid (82% yield). $R_{\rm f}$ = 0.34 (EtOAc/hexanes 1:10); m. p. = 141–142 °C. [α]^{23.0}_D = +34.5 (*c* = 0.3, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.82 (d, *J* = 8.0Hz, 1H, H-Ar), 7.37–7.27 (m, 2H, H-Ar), 7.20–7.14 (m, 2H, H-Ar), 6.81–6.75 (m, 2H, H-Ar), 4.71–4.67 (m, 2H, CH, NH), 2.80–2.68 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): δ = 192.8, 150.5 (dd, *J_{F-C}* = 248.0Hz, 13.0Hz), 151.4, 150.1(dd, *J_{F-C}* = 248.0Hz, 13.0Hz), 138.2, 135.7, 127.5, 122.7, 118.9, 118.8, 117.8 (d, *J_{F-C}* = 18.0Hz), 116.2, 115.7 (d, *J_{F-C}* = 18.0Hz), 57.5, 46.4. HRMS (ESI) *m/z* calcd for C₁₅H₁₁ONF₂Na 282.0701 [M+Na⁺]; found 282.0715. IR (KBr): 3316, 2923, 1656, 1608, 1403, 1151, 763, 667 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 24.5 min, minor enantiomer t_R, 27.1 min; 92% ee]. CCDC1418015 contains the crystallographic data for **3l** that can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

(*R*)-2-(naphthalen-1-yl)-2,3-dihydroquinolin-4(1H)-one (3o)^[7] Prepared according to general procedure to afford as yellow solid (67% yield). $R_{\rm f}$ = 0.45 (EtOAc/hexanes 1:10); m. p. = 166–167 °C. [α]^{23.0}_D = -31.6 (*c* = 0.5, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.90–7.83 (m, 5H, H-Ar), 7.57–7.50 (m, 3H, H-Ar), 7.34–7.38 (m, 1H, H-Ar), 6.82–6.74 (m, 2H, H-Ar), 4.88 (dd, *J* = 4.0Hz, 16.0Hz, 1H, CH), 4.64 (s, 1H, NH), 2.99–2.80 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃): δ 193.4, 151.7, 138.5, 135.6, 133.4, 133.4, 129.0, 128.0, 127.9, 127.7, 126.7, 126.5, 125.7, 124.4, 119.2, 118.6, 116.1, 58.7, 46.5. HRMS (ESI) *m/z* calcd for C₁₉H₁₅ONNa 296.1046 [M+Na⁺]; found 296.1058. IR (KBr): 3320, 3054, 2978, 1656, 1605, 1508, 1326, 1149, 750, 576, 442 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 38.6 min , minor enantiomer t_R, 42.0 min; 99% ee].

(*R*)-2-(pyridin-3-yl)-2,3-dihydroquinolin-4(1H)-one (3p)^[7] Prepared according to general procedure to afford as yellow solid (78% yield). $R_f = 0.21$ (EtOAc/hexanes 1:10); m. p. = 152–153 °C. [α]^{23.0}_D = + 16.0 (c = 0.4, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 8.64 (s, 1H, H-Ar), 8.57–8.55 (m, 1H, H-Ar), 7.85–7.80 (m, 2H, H-Ar), 7.37–7.29 (m, 2H, H-Ar), 6.82–6.77 (m, 2H, H-Ar), 4.95 (s, 1H, NH), 4.76 (dd, *J* = 8.0 Hz, 8.0 Hz, 1H, CH), 2.88–2.71 (m, 2H, CH₂). ¹³C NMR (100MHz , CDCl₃): δ = 192.6, 151.5, 149.9, 148.5, 136.6, 135.7, 134.4, 127.6, 123.9, 119.0, 118.8, 116.2, 56.1, 46.0. HRMS (ESI) *m*/*z* calcd for C₁₄H₁₂N₂ONa 247.0836 [M+Na⁺]; found 247.0836. IR (KBr): 3218, 2929, 1666, 1475, 1303, 1145, 1024, 771, 710 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 254 nm; major enantiomer t_R, 27.9 min, minor enantiomer t_R, 32.7 min; 98% ee].

(*R*)-2-(thiophen-2-yl)-2,3-dihydroquinolin-4(1H)-one (3q)^[1,3] Prepared according to general procedure to afford as yellow solid (71% yield). $R_{\rm f} = 0.30$ (EtOAc/hexanes 1:10); m. p. = 140–141°C. $[\alpha]^{23.0}_{\rm D} = -30.7$ (c = 0.4, CHCl₃). ¹H NMR (400MHz, CDCl₃): $\delta = 7.76$ (d, J = 4.0Hz, 1H), 7.26–7.17 (m, 2H, H-Ar), 6.96–6.87 (m, 2H, H-Ar), 6.72–6.63 (m, 2H, H-Ar), 4.92 (dd, J = 4.0Hz, 12.0 Hz, 1H,CH), 4.71 (s, 1H, NH), 2.82–2.79 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃) : $\delta = 192.80$, 150.94, 144.55, 135.56, 127.54, 126.93, 125.18, 125.07, 119.21, 118.77, 116.11, 53.72, 47.04. HRMS (ESI) *m*/*z* calcd for C₁₃H₁₁NOSNa 252.0454 [M+Na⁺]; found 252.0462. IR (KBr): 3320, 2919, 1656, 1478, 1335, 1144, 1015, 778, 710, 678 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.4 mL/min, 214 nm; major enantiomer t_R, 24.3 min, minor enantiomer t_R, 27.3 min; 80% ee].

(*R*)-6-chloro-2-phenyl-2,3-dihydroquinolin-4(1H)-one (3r) Prepared according to general procedure to afford as yellow solid (67% yield). $R_{\rm f} = 0.42$ (EtOAc/hexanes 1:10); m. p. = 162–163 °C. $[\alpha]^{23.0}{}_{\rm D} = -29.5$ (c = 0.50, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.77$ (d, J = 4.0Hz, 1H), 7.37–7.29 (m, 5H, H-Ar), 7.22–7.19 (m, 1H, H-Ar), 4.67 (dd, J = 4.0Hz, 12.0Hz, 1H,CH), 4.48 (s, 1H, NH), 2.84–2.68 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃) : $\delta = 192.28$, 192.28, 150.03, 140.66, 135.43, 129.22, 128.80, 127.02, 126.74, 123.95, 119.83, 117.62, 58.54, 46.18. HRMS (ESI) m/z calcd for C₁₅H₁₂ONClNa 280.0500 [M+Na⁺]; found 280.0508. IR (KBr): 3439, 3338, 2923, 1657, 1615, 1497, 1402, 1198, 855, 761, 701, 494 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 26.5 min, minor enantiomer t_R, 30.3 min; 89% ee].

(R)-7-methoxy-6-methyl-2-phenyl-2,3-dihydroquinolin-4(1H)-one (3s) Prepared

according to general procedure to afford as yellow solid (62% yield). $R_{\rm f} = 0.41$ (EtOAc/hexanes 1:10); m.p. = 132–133 °C. [α]^{23.0}_D = -40.7 (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (d, J = 4.0 Hz, 1H, H-Ar), 7.43–7.41 (m, 2H, H-Ar), 7.37–7.30 (m, 3H, H-Ar), 6.39 (d, J = 4.0Hz, 1H, H-Ar), 4.66 (dd, J = 4.0Hz, 12.0Hz, 1H,CH), 4.33 (s, 1H, NH), 3.81 (s, 3H, OCH₃), 2.83–2.65 (m, 2H, CH₂), 1.94 (s, 3H, CH₃). ¹³C NMR (100MHz, CDCl₃): δ = 192.80, 162.45, 151.03, 141.58, 129.16, 128.56, 127.21, 126.82, 113.87, 108.81, 102.35, 77.48, 77.16, 76.84, 58.58, 55.89, 46.22, 8.66. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₇O₂NNa 290.1151 [M+Na⁺]; found 290.1160. IR (KBr): 3340, 3073, 3011, 1655, 1601, 1461, 1265, 1096, 1024, 758, 695, 564, 487 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214nm; major enantiomer t_R, 29.6 min, minor enantiomer t_R, 35.2 min; 84% ee].

(*R*)-6-phenyl-6,7-dihydro-[1,3]dioxolo[4,5-g]quinolin-8(5H)-one (3t) Prepared according to general procedure to afford as yellow solid (55% yield). $R_{\rm f} = 0.29$ (EtOAc/hexanes 1:10); m. p. = 241–242 °C. [α]^{23.0}_D = +20.4 (c = 0.5, CHCl₃). ¹H NMR (400MHz, CDCl₃): δ = 7.49–7.33 (m, 6H, H-Ar), 7.29 (s, 1H, H-Ar), 6.18 (s, 1H, H-N), 5.94 (dd, J = 2.5Hz, 5.5Hz, 2H, OCH₂O), 4.70 (dd, J = 4.0Hz, 16.0Hz, 1H, CH), 2.86–2.69 (m, 2H, CH₂). ¹³C NMR (100MHz, CDCl₃) δ = 191.5, 154.4, 150.1, 141.7, 141.1, 129.1, 128.6, 126.8, 112.8, 105.1, 101.6, 95.9, 59.2, 46.0. HRMS (ESI) m/z calcd for C₁₆H₁₁NO₃Na 290.0787 [M+Na⁺]; found 290.0787. IR (KBr): 3276, 2919, 1608, 1475, 1243, 1364, 1305, 1226, 1150, 1116, 1069, 1035, 962, 889, 855, 819, 694, 654 cm⁻¹. [Daicel chiralpak AD column, eluting with hexane/isopropanol = 80 : 20, 0.3 mL/min, 214 nm; major enantiomer t_R, 38.0 min, minor enantiomer t_R, 46.5 min; 99% ee].

3. References:

- (1) Saito, K.; Moriya, Y.; Akiyama, T. Org. Lett. 2015, 17, 3202.
- (2) Kanagaraj, K.; Pichumani, K. J. Org. Chem. 2013, 78, 744.
- (3) Lei, B.-L.; Ding, C.-H.; Yang, X.-F.; Wao, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 18250.
- (4) Liu, X.-Q.; Lu, Y.-X.; Org. Lett. 2010, 12, 5592.
- (5) Cheng, S.; Zhao, L.; Yu, S. Adv. Synth. Catal. 2014, 356, 982.
- (6) Chandrasekhar, K.; Vijeender, K.; Sridhar, C. Tetrahedron lett, 2007, 48, 4935.
- (7) Sharma, S.; Thakur, V.; Budhiraja, A.; Mohinder, P.; *Letters in Drug Design & Discovery*, 2013, 10, 327.
- (8) Bhattacharya, R.; Kundu, P.; Maiti, G. Synth. Commun. 2010, 40, 476.
- (9) Chelghouma, M.; Bahnous, M.; Bouraiou, A.; Bouacida, S. ;Belfaitaha, A. *Tetrahedron lett.*, 2012, *53*, 4059.
- (10) Zheng, H.; Liu, Q.; Wen, S.; Yang, H.; Luo, Y. Tetrahedron: Asymmetry, 2013, 24, 875.

4.NMRspectra

S15

S16

5. HPLC spectra:

	120 (9) for A Chi 214 min								
[Peak#	Ret. Time	Area	Height	Area %	Height %			
[1	28.409	5548010	168979	98.948	98.639			
	2	32.039	58982	2332	1.052	1.361			
	Total		5606992	171311	100.000	100.000			

检测器 A Ch1 214nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	28.095	10910780	285351	99.382	99.490			
2	35.502	67871	1461	0.618	0.510			
Total		10978651	286812	100.000	100.000			

检测器 A Ch1 254nm Peak# Ret. Time Area Height Area % Height % 1 25.185 1457941 51031 98.853 98.662 2 28.576 16922 692 1.147 1.338 Total 1474864 51723 100.000 100.000

检测器 A Ch1 254nm Height 290912 Peak# Ret. Time Area % Height % Area 25.468 30.019 97.258 2.742 97.282 2.718 9951347 1 2 280589 8127 10231936 299040 100.000 100.000 Total

			PeakTable						
检测器 A C	检测器 A Ch1 214nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	27.887	46201997	1345823	99.282	99.293				
2	35.706	333904	9584	0.718	0.707				
Total		46535901	1355407	100.000	100.000				

1 Det.A Ch1 / 214nm

			Peak	Table	
佥测器 A C	Ch1 214nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.884	63047094	1971333	51.832	53.699
2	25.800	58589477	1699739	48.168	46.301
Total		121636571	3671072	100.000	100.000

1 Det.A Ch1 / 214nm

			PeakTable					
检测器AC	检测器 A Ch1 214nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	23.904	3054508	102987	92.127	90.880			
2	25.786	261038	10335	7.873	9.120			
Total		3315545	113323	100.000	100.000			

			I Cak Table					
检测器AC	检测器 A Ch1 214nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	27.703	1359347	37005	90.066	89.264			
2	33.624	149930	4451	9.934	10.736			
Total		1509277	41456	100.000	100.000			

PeakTable

			Peak Table					
检测器AC	检测器 A Ch1 214nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	24.067	1568865	47905	93.672	92.591			
2	26.158	105993	3833	6.328	7.409			
Total		1674858	51738	100.000	100.000			

检测器 A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	23.108	7845742	274510	91.195	91.751			
2	26.114	757489	24681	8.805	8.249			
Total		8603230	299191	100.000	100.000			

徑 例 奋 A C	应例备 A Chi 254hiii							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	39.524	979196	22774	98.033	97.982			
2	45.914	19642	469	1.967	2.018			
Total		998839	23243	100.000	100.000			

PeakTable

	Peak lable								
检测器AC	检测器 A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	43.180	2736125	41746	91.470	91.969				
2	48.742	255167	3646	8.530	8.031				
Total		2991292	45391	100.000	100.000				

1 Det.A Ch1 / 214nm

PeakTable

			I Cak Table					
检测器 A Ch1 214nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	24.508	47771466	1537486	49.969	52.933			
2	27.099	47831470	1367097	50.031	47.067			
Total		95602936	2904582	100.000	100.000			

1 cultitueite											
金测器 A Ch1 214nm											
Peak#	Ret. Time	Area	Height	Area %	Height %						
1	24.572	551622	17274	95.813	93.967						
2	27.130	24103	1109	4.187	6.033						
Total		575725	18383	100.000	100.000						

1 cuit ruore											
检测器 A Ch1 214nm											
Peak#	Ret. Time	Area	Height	Area %	Height %						
1	38.640	37473410	584542	99.710	99.843						
2	41.945	109009	917	0.290	0.157						
Total		37582419	585459	100.000	100.000						

检测器AC	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	27.943	828580	10135	99.125	98.062
2	32.716	7318	200	0.875	1.938
Total		835898	10335	100.000	100.000

1 Det.A Ch1 / 214nm

			Peak Table		
检测器 AC	Ch1 214nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.310	3617303	123018	90.422	90.823
2	27.351	383160	12430	9.578	9.177
Total		4000463	135448	100.000	100.000
Total	27.551	4000463	135448	100.000	100.00

PeakTable

1 Det.A Ch1 / 214nm

PeakTable 检测器 A Ch1 214nm Peak# Ret. Time 1 26.575 2 29.805 Height 401140 388365 789505 Height % 50.809 49.191 Area % 50.112 49.888 Area 14226420 14162847 Total 28389267 100.000 100.000 uV 522 1000000ģ 750000-500000-250000-30.261 0 1Det.A Ch1 27.5 30.0 25.0 32.5 22.5 min

1 Det.A Ch1 / 214nm

	PeakTable										
检测器 A Ch1 214nm											
Peak#	Ret.	Гime	Area	Height	Area %	Height %					
	1	26.522	31898220	1022741	94.154	94.480					
	2	30.261	1980459	59753	5.846	5.520					
Te	otal		33878679	1082495	100.000	100.000					

PeakTable

1 cux fuore										
检测器 A Ch1 254nm										
Peak#	Ret. Time	Area	Area Height		Height %					
1	29.876	10423856	271112	91.930	92.035					
2	35.149	915021	23462	8.070	7.965					
Total		11338877	294574	100.000	100.000					

	_		
Peal	ĿТ	ahl	P
1 ca	N 1 (avı	•

			I car lable		
检测器AC					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	38.045	31238175	775189	99.498	99.453
2	46.540	157472	4263	0.502	0.547
Total		31395647	779452	100.000	100.000

6. ¹HNMR, ¹³CNMR and HRMS for the mechanism

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name

Comment -

ulaitia -

Acquisition Date 2015/6/18 15:09:10 G:\°±»ù»Æléfª\»uʾÀíÑĐ¾¿\,ß·Ö±æ\wangyongqiang-20150618-pgf-0112.d tune_low 50-500.m Operator NWU

Instrument / Ser# micrOTOF-Q II 10280

Acquisition	Para	meter												
Source Type Focus Scan Begin Scan End		ESI Not a 50 m 3000	active /z) m/z		on Polarit Set Capilla Set End P Set Collisi	y ary late Offs on Cell	Po 450 set -50 RF 110	sitive 00 V 00 V 0.0 Vpp		Set Net Set Dry Set Dry Set Dive	ulizer Heater Gas ert Valve	0.4 18(4.0 So	Bar 0 °C 1/min urce	
Intens. x10 ⁴ 2.5 2.0 1.5 1.0 0.5	432.2	273 C	29 H 29 N 433.2381	4	2415		}]			~	~	+MS, 0.1	1-0.2min #	ŧ(3-10)
0.0	32	,_, ,	433	434	, <u>, , , , , , , , , , , , , , , , , , </u>	435	- - , ,	436	437	, <u> </u>	438	43	39	m/z
Meas . m/z 433.2 381	s # 2	Form ula	m/z	err [ppm]	Mean err [ppm]	rdb	N-Rul e	ej¥ Conf	mSig ma	Std I	Std Mean m/z	Std I VarN orm	Std m/z Diff	Std Com b Dev
	1	C 29 H 29 N 4	433.2 387	1.3	1.2	17.5	ok	even	29.21	0.044 7	0.000 5	0.022 9	0.000 1	0.842 7

7. X-Ray structure of 3a, 3l

