Highly sensitive and selective "naked eye" sensing of Cu (II) by a novel amido-imine based receptor: a spectrophotometric and DFT study with practical application

Arghyadeep Bhattacharyya, Soumen Ghosh, Nikhil Guchhait,

Department of Chemistry, University of Calcutta, 92, A.P.C Road, Kolkata-700009, India

Table of contents:

1. Characterization of compound 1	S2
2. UV-Vis spectra	S3
3. Limit of detection	S4
4. IR spectrum of complex	S5
5. Table for optimized structure parameters	S6

1. Characterization of compound 1:

a) FTIR spectrum:

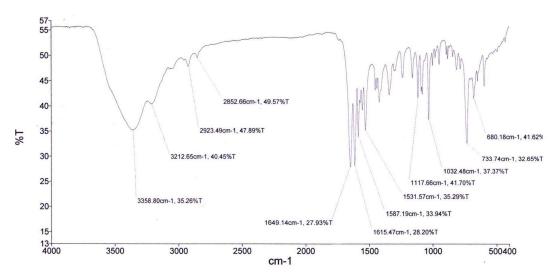


Fig S1: FTIR spectrum of 1

b) ¹H-NMR spectrum:

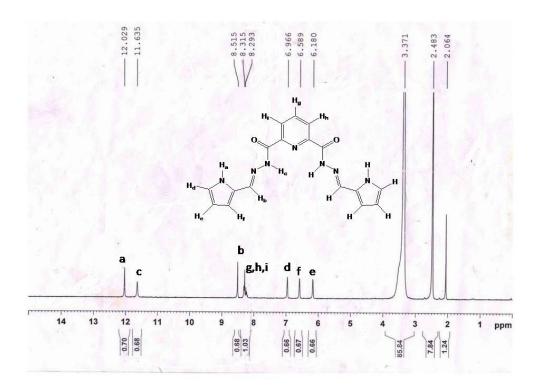


Fig S2: ¹H NMR of compound 1

c) ¹³C NMR:

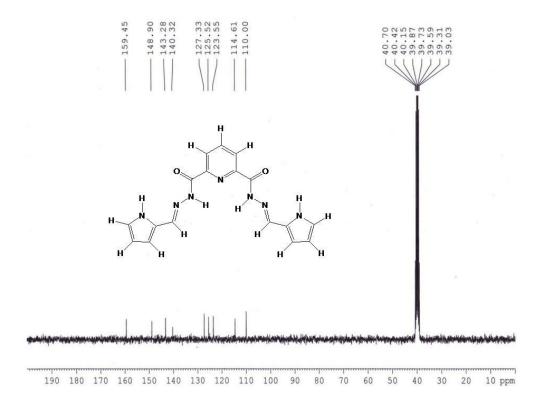


Fig S3: ¹³C NMR of compound 1

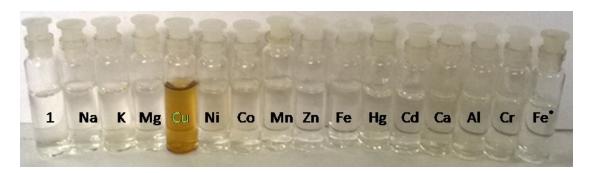


Fig S4: Change in color of receptor 1(far left) upon addition of 10 μ M aqueous solution of various metals (Fe* denotes Fe (III)).

2. UV-VIS Spectrum:

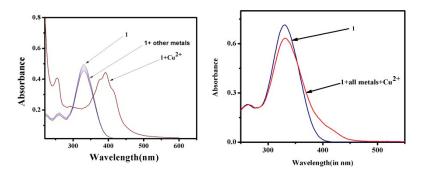


Fig S5a (left): Response of 1 to Cu^{2+} over other metals (Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Fe²⁺, Hg²⁺, Cd²⁺ and Mg²⁺). Fig S5b (right): Response of 1 to Cu^{2+} in a mixture of metals (Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Fe²⁺, Hg²⁺, Cd²⁺ and Mg²⁺) (2 equiv.).

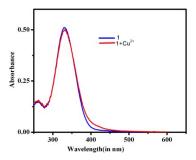


Fig S6: Response of 1 towards 2 μ L of 10 μ M aqueous solution of Cu²⁺

3. Limit of detection (LOD):

Table of concentration and absorbance values:

Table-S1:

$[Cu^{2+}](4.0\times10^{-8} (M))$	Absorbance at 392 nm
2	0.093
4	0.135
6	0.185
8	0.245
10	0.285
12	0.337
14	0.389
16	0.434
18	0.464
20	0.496
22	0.521

We have,

Standard deviation (S.D) of the blank solution = 5.471×10^{-4}

Slope of the calibration curve= $4.355 \times 10^5 \text{ M}^{-1}$

Thus, LOD= $(3\times S.D)/Slope = 3.989\times 10^{-9} M\approx 4.0\times 10^{-9} M$

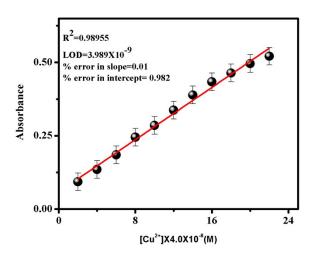


Fig S7: Plot of Absorbance vs. concentration of Cu (II) for calculating LOD

4. IR spectrum of Complex:

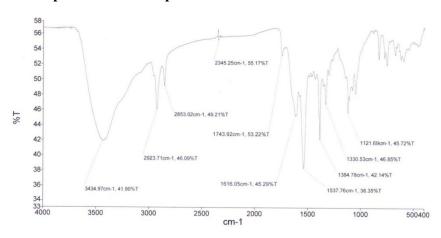


Fig S8: IR spectrum of complex of 1 with Cu²⁺

5. Table for optimized structure parameters:

Following are tabulated the bond lengths (in \AA) of the functional groups of 1 as well as its complex for showing the effect of complexation on bond length as obtained from DFT (B3LYP/6-311++g**) optimized structures of 1 and its Cu(II) complex.

Table-S2:

Species	C=O(in Å)	C-N(in Å)	N-H(in Å) (amide)	N-N(in Å)	C=N (in Å) (imine)	N-H(in Å) (pyrrole)
1	1.21451	1.37049	1.01614	1.35739	1.28503	1.00865
1+Cu ²⁺	1.25407	1.36583		1.36429	1.31169	