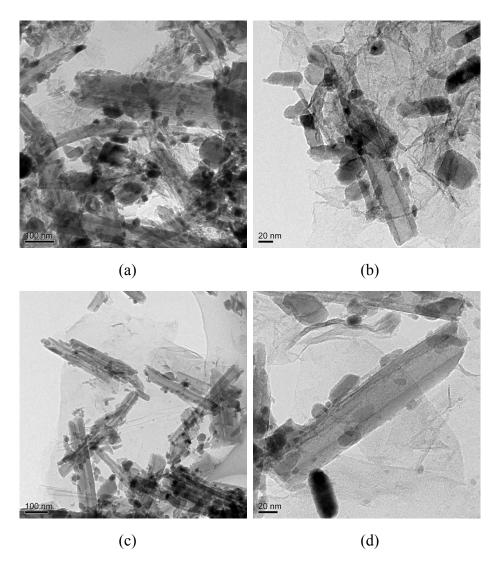
Electronic Supplementary Information (ESI) for Novel Fe₃O₄/HNT@rGO composite via a facile co-precipitation method for the removal of contaminants from aqueous system

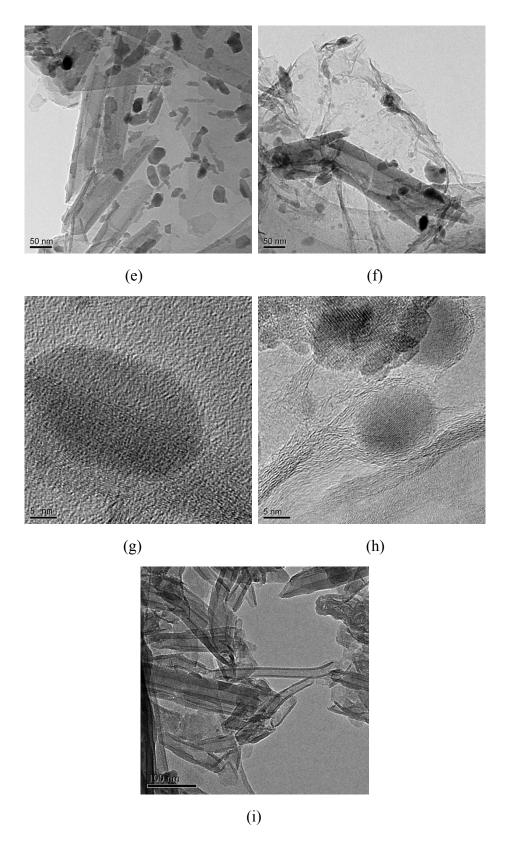
Chengwei Gao,^a Baojun Li,^a Ning Chen,^a Jie Ding, *,^a Qiang Cai, ^b Jianmin Zhang^a and Yushan Liu,*,^a

^a College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P R China

b Key Laboratory for Advanced Materials of Ministry of Education and College of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China *Corresponding author. E-mail: liuyushan@zzu.edu.cn and jieding@zzu.edu.cn

Experimental section


Synthesis of graphene oxide.


Graphene oxide (GO) was synthesized using the following modified Hummer's method. S1 Graphite (2 g) was mixed with concentrated H₂SO₄ (69 mL) and the mixture was stirred for 30 min within an ice bath. KMnO₄ (8 g) was added very slowly into the dark suspension and the reaction mixture was stirred and sonicated for another 15 min under a reaction temperature of 20 °C. Then the ice bath was removed, and the mixture was stirred at 35 °C overnight. Distilled water was added to the pasty solution under magnetic stirring and the color of the solution turned to yellowish brown. After another 2 h of vigorous stirring, H₂O₂ (30wt %, 25 mL) was added and the color turned golden yellow immediately. The mixture was washed with HCl (5 %) for several times and then deionized water until the solution became acid free. The

reaction mixture was filtered and dried under vacuum at 65 °C. The GO was obtained as a gray powder and used for the further experimental.

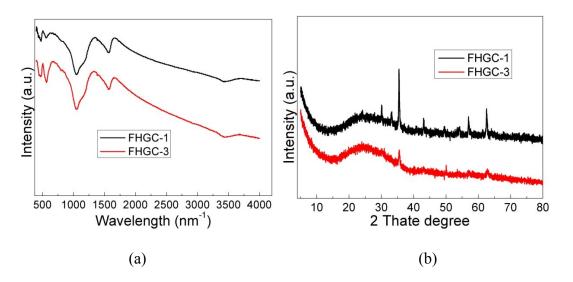
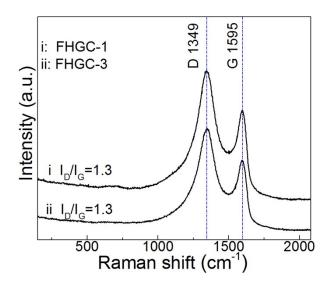
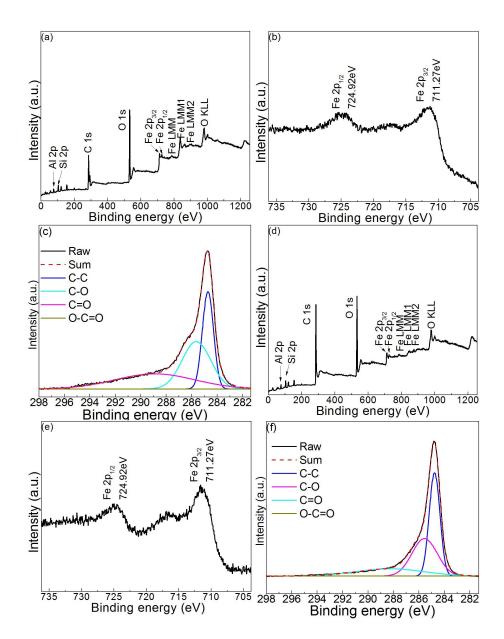
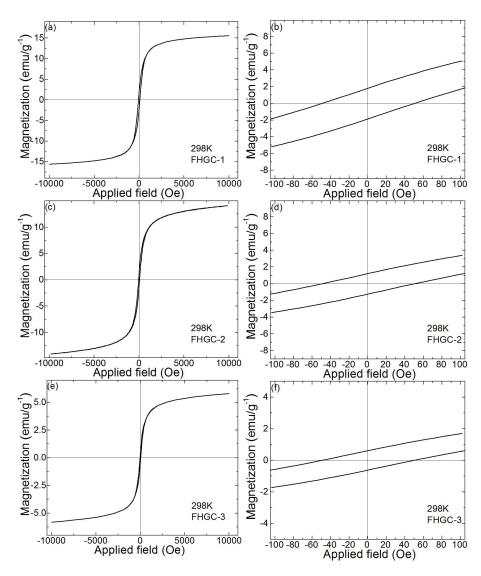
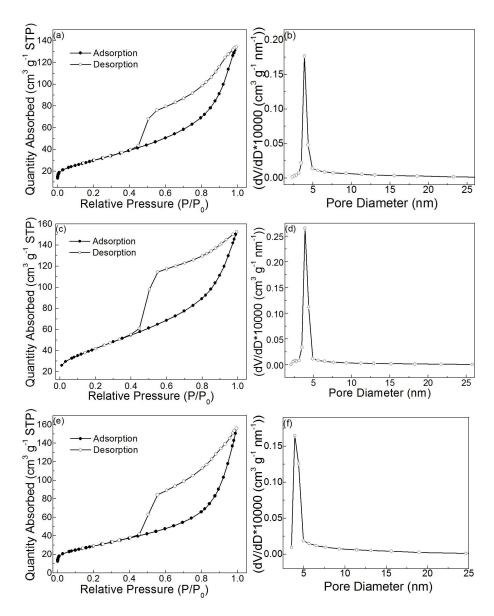

Samples	GO	HNT	FeCl ₃ ·6H ₂ O	FeSO ₄ ·7H ₂ O	NH ₄ OH	FHGC	Yield
	(g)	(g)	(g)	(g)	(mL)		
FHGC-1	0.8	0.8	2.0	1.22	24	1.8	79%
FHGC-2	0.8	0.8	1.0	0.61	24	1.5	73%
FHGC-3	0.8	0.8	0.5	0.31	24	1.2	67%

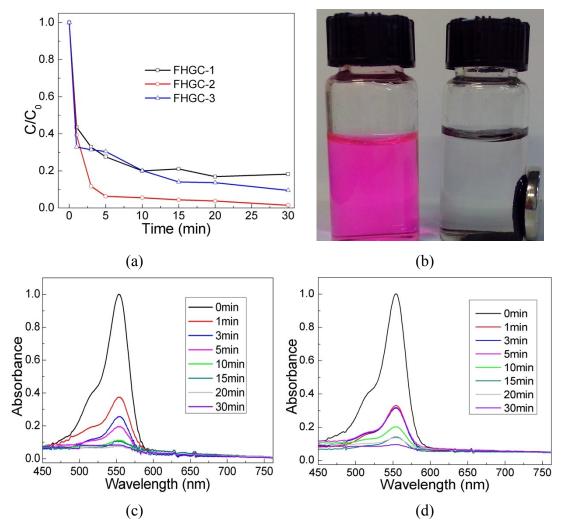
Table S1 Preparation conditions for the FHGC nanocomposites.

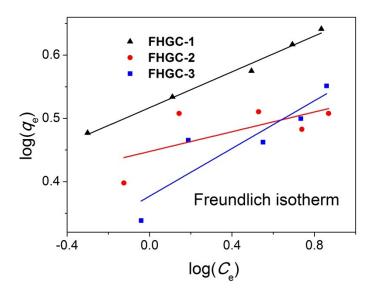
Fig. S1. (a) and (b)TEM images of FHGC-1; (c) and (d)TEM images of FHGC-2; (e) and (f)TEM images of FHGC-3; (h) TEM image of Fe_3O_4 on HNT; (h) HRTEM image of Fe_3O_4 on rGO sheets; (i) TEM image of raw HNT.

Fig. S2. (a) FT-IR spectra of FHGC-1 and FHGC-3; (b) XRD patterns of FHGC-1 and FHGC-3.


Fig. S3.Raman spectra of FHGC-1 and FHGC-3.


Fig. S4. (a) and (d) XPS spectra of FHGC-1 and FHGC-3; (b) and (e) is the high spectra of Fe of FHGC-1 and FHGC-3; (c) and (f) is the high spectra of C 1s of FHGC-1 and FHGC-3.


Fig. S5 (a) and (b) Magnetization curves for the FHGC-1, (c) and (d) Magnetization curves for the FHGC-2, (e) and (f) Magnetization curves for the FHGC-3.

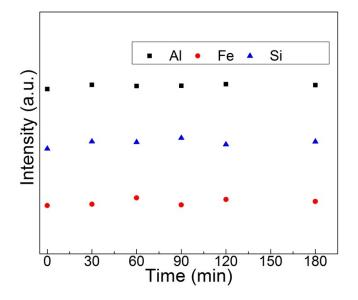

Fig. S6. (a), (c) and (e) Nitrogen adsorption desorption isotherms at 77K and (b), (d) and (f) pore width distribution of FHGC-1, FHGC-2, FHGC-3.

Fig. S7. (a) C/C₀ versus time plots with FHGC-1, FHGC-2, and FHGC-3 at various times. (b) photograph for the RhB solution (1.0*10⁻⁵ M, left) and for FHGC and RhB solution with applied magnetic field (right). (c) UV-vis spectra of the original RhB solution (1.0*10⁻⁵ M, 20mL) and those after treatment with FHGC-1 (50 mg) at different times. (d) UV-vis spectra of the original RhB solution (1.0*10⁻⁵ M, 20mL) and those after treatment with FHGC-3 (50 mg) at different times.

Fig. S8. Linearized Freundlich isotherm for As(V) adsorption of the FHGC-n (n = 1, 2, 3) samples.

Fig. S9. Concentrations of Fe, Al, and Si during the adsorption process in the mixture system.

FHGC-1	As(V) Langmuir isotherm		$q_{\rm m}({ m mg~g}^{-1})$	4.42
			$K_{\rm L}({\rm L/mg})$	2.09
			R ²	0.957
	As(V) Freun	dlich isotherm	n	7.06
	115() 110411			3.29
			$K_{\mathrm{F}}(\mathrm{mg}^{1-(1/\mathrm{n})} \qquad \mathrm{L}^{1/\mathrm{n}}$	3.27
			g ⁻¹)	
			\mathbb{R}^2	0.985
FHGC-2	As(V) Langr	nuir isotherm	$q_{\rm m}({\rm mg~g^{-1}})$	3.23
			$K_{\rm L}({ m L/mg})$	9.54
			\mathbb{R}^2	0.996
FHGC-3	As(V) Langmuir isotherm		$q_{\rm m}({\rm mg~g^{-1}})$	3.68
			$K_{\rm L}({ m L/mg})$	1.37
			\mathbb{R}^2	0.969
parameter	s of arsenic ac	Isorption kinetic	S	
Sorbent		sotherm constan	As(V)	
FHGC-1	Q	l'e	3.70	
	k	<u></u>		0.098
	7	70		1.34
		\mathbb{R}^2		0.997
FHGC-2	Q	l'e	2.78	
				0.30
	1	70	2.33	
		\mathbb{R}^2		0.996
FHGC-3	G	l'e	2.59	
				0.20
	1	70		1.37
		\mathcal{R}^2		0.966

Table S2. Equilibrium adsorption isotherm fitting parameters for As(V) in cases FHGC-n (n = 1, 2, 3), and parameters of a pseudo-second-order kinetic model fitting arsenic adsorption kinetics in cases FHGC-n (n = 1, 2, 3).

References

S1. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339–1339.