# **Supporting Information**

# La<sub>2</sub>O<sub>3</sub> catalysts with diversely spatial dimensionality for oxidative

### coupling of methane to produce ethylene and ethane

Tao Jiang,<sup>a,b</sup> Jianjun Song,<sup>a,b</sup> Minfeng Huo,<sup>a,c</sup> NaTing Yang,<sup>a,b</sup> Jingwei Liu,<sup>a</sup> Jun Zhang,<sup>a</sup> Yuhan Sun<sup>\*a</sup> and Yan Zhu<sup>\*a,c</sup>

 <sup>a</sup> CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China
<sup>c</sup> School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

### **Experimental:**

Synthesis of La<sub>2</sub>O<sub>3</sub> nanoparticles:  $3.5 \text{ g C}_7\text{H}_5\text{O}_4\text{N}$  was added in a 50 mL solvent mixed with 80% alcohol and 20% deionized water. Then 5 mL 0.5 M La(NO<sub>3</sub>)<sub>3</sub> was dropped into the above solution, and stirred for about 1 hour. After that, the mixture was putted to the 100 mL autoclave and then kept at 120°C for 24 hours. After the claves cooled to room temperature, the product was separated and washed by centrifugation by alcohol and deionized water. Finally the product was dried at 80°C and calcined at 680°C for 3 hours.

Synthesis of La<sub>2</sub>O<sub>3</sub> nanorods: 4.33 g La(NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O and 2.22 g PVP(10000) were added to 200 mL deionized water, and stirred for about 2 hours. Then the ammonia was added to the solution slowly and the solution became white. The gel sample was transferred to 100 mL autoclave and heated at 150°C for 24 hours. The product was separated and washed by deionized water after the autoclaves cooled down. Finally the product was dried at 80°C in a drying cabinet and calcined for 3 hours at 680°C at furnace.

**Synthesis of La<sub>2</sub>O<sub>3</sub> nanosheets:** 1.625 g La (NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O and 6 mL PEG400 were added in 50 mL deionized water, and stirred for 3h at 40°C. After that, the solution

was transferred to 100 mL autoclave and heated at 150°C for 24 hours. The product was washed with deionized water. Finally the product was dried at 80°C in a drying cabinet and calcined for 2 hours at 680°C at furnace.

Synthesis of La<sub>2</sub>O<sub>3</sub> nanoflowers: 10 g La(NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O, 2 mL water and 2 mL acetic acid were mixed into 60 mL glycol, then and stirred them for about 3 hours until dissolved. The solution was transferred into 100 mL autoclave and heated at  $180^{\circ}$ C for 3 hours. After the autoclaves cooled down, the product was separated and washed for 5 times in alcohol. The product was dried at  $80^{\circ}$ C and calcined for 2 hours at  $680^{\circ}$ C.

### **OCM** catalytic test

The oxidative coupling of methane (OCM) activity was evaluated in fixed bed quartz tubular reactor in at atmospheric pressure. 0.2 g 40-60 mesh La<sub>2</sub>O<sub>3</sub> catalyst and 0.8 g silica sand were mixed together and then putted in quartz tubular. The catalyst was pretreated in N<sub>2</sub> atmosphere with 30 mL/min flow rate at 800°C for 2 hours. When the feed temperature droped to 400°C, the reactant gas was went into fixed bed reactor in the rate of 240 mL/min which consist of 75% methane and 25% oxygen. A cold trap was placed at the outlet of the quartz tube to separate any condensed water vapor from the reaction products. And the products were detected online by a micro gas chromatograph (3000 Micro GC; Inficon) equipped with two thermal conductivity detectors (TCD), one Molecular sieve 5A and one Plot U columns.

### Characterization

SEM characterization was detected by ZEISS Supra 55. Powder XRD measurements were carried out with a Rigaku D/Max-RB X-ray diffractometer with Cu Kα radiation. TEM characterization was performed with JEOL JEM-2100 Electron Microscope (JEOL). The Brunauer–Emmett–Teller (BET) surface areas were recorded by nitrogen adsorption-desorption isotherm measurements at 77 K (ASAP 2010). X-ray photoelectron spectra (XPS) were detected on a Thermo Fisher Scientific K-Alpha X-ray photoelectron spectrometer. CO<sub>2</sub> temperature-programmed desorption measurements were examined on Micromeritics AutoChem II 2920 instrument connected to a MKS cirrus mass spectrum and our CO<sub>2</sub>-TPD data was from mass

signal of molecular weight 44. The catalyst power (150 mg) was heated a He flow from 60 to 800°C with a heating rate of 10°C /min and then keep for 60 min at 800°C, and cooled down to 60°C. The CO<sub>2</sub> was injected at 60°C for 60 min. after that He was injected and flow for 60 min, finally the temperature was raised to 880°C with a rate of 10°C/min ,the CO<sub>2</sub> desorption was detected by mass spectrograph.

# **Supporting Figures**



Fig.S1 XRD patterns of La<sub>2</sub>O<sub>3</sub> catalysts.



**Fig.S2** (a) Feed and bed temperatures for OCM reaction over La<sub>2</sub>O<sub>3</sub> catalysts. (b) Spatial temperature distribution in silica tube for OCM reaction over La<sub>2</sub>O<sub>3</sub> catalysts.



Fig.S3 The catalytic results of only silica sand for OCM reaction.





Fig. S4 The  $N_2$  adsorption-desorption isotherms of  $La_2O_3$  catalysts after catalytic reaction: (a) nanoparticles, (b) nanords, (c) nanosheets, and (d) nanoflowers. Insets are corresponding pore-size distributions.



Fig. S5 The stability of 2D La<sub>2</sub>O<sub>3</sub> and 1D La<sub>2</sub>O<sub>3</sub> catalysts for OCM reaction at 550°C.