Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary data

Design of novolac resin-based network polymers for adsorptive removal of azo dye molecules

Samaresh Ghosh* and Mridula Acharyya

Department of Chemistry, Bankura Sammilani College, Kenduadihi, Bankura, Pin-722102, India.

Email: gsamaresh@yahoo.com

Figure 1s FTIR spectrum of 2

Figure 2s FTIR spectrum of 3

Network Polymers	TG/DTG*					
	T _d ⁵⁻⁸ (°C)	Stage	Temp. range (°C)	T _{max} (°C)	Weight loss%	Y _c at 600°C (wt%)
2	267	1	267-369	338	47.69	21
	287	2	369-455	406	43.51	
		1	245-384	346	43.59	
3	245	2	384-482	420	40.61	11

Table 1s: Thermal properties (TG/DTG) of 2 and 3.

*TGA analysis was performed at a heating rate of 10°C/min under nitrogen flow (100 ml/min); T_d^{5-8} = Temperature at which 5-8 % weight loss occurred; T_{max} = maximum rate of weight loss; Y_c = char yield.

Figure 3s Freundlich isotherms for the adsorption of MO onto 3 at (a) pH 2.30 and (b) pH 7.0 at 25°C

Figure 4s Freundlich isotherms for the adsorption of OG onto 2 at (a) pH 2.30 and (b) pH 7.0 at 25°C

Figure 5s Freundlich isotherms for the adsorption of OG onto 3 at (a) pH 2.30 and (b) pH 7.0 at 25°C