Supporting Information

Architecture of CdIn₂S₄/graphene nano-heterostructure for Solar Hydrogen Production and Anode for Lithium Ion Battery.

Manjiri A. Mahadadalkar[‡], Sayali B. Kale[‡], Ramchandra S. Kalubarme^{‡cd}, Ashwini P. Bhirud^a, Jalindar D. Ambekar^a, Suresh W. Gosavi^d, Milind V. Kulkarni^a, Chan-Jin Park^{*c}, Bharat B. Kale^{*ac}

^aCentre for Materials for Electronic Technology, Panchawati, Off Pashan Road, Pune 411008, India.

E-mail: *kbbb1@yahoo.com

^bMechanical Engineering Department, College of Engineering (MES), Wadia College Campus, Pune -411000, India. ^cDepartment of Materials Science and Engineering, Chonnam National University 77, Yongbongro, Bukgu, Gwangju, Korea. *E-mail:* * parkcj@jnu.ac.kr

^d Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.

Fig. S1 XRD spectrum of sample C7.

Fig. S2 EDAX of sample C4.

Fig. S3 Time verses volume of H_2 (µmole) evolution of recycled sample C4 (H_2 S Splitting).

Fig. S4 XRD spectrum of samples C4 after five cycles of photocatalytic study (H₂S Splitting).

Fig. S5. Raman spectrum of sample C4 after five cycles of photocatalytic study (H_2S Splitting).

Fig. S6. Time verses volume of H_2 (µmole/g) evolution from water of sample C4 (a) fresh sample and (b-f) after five cycles of reuse of the same sample.

Fig. S7. XRD spectrum of samples C4 after five cycles of photocatalytic study (H₂O Splitting).

Fig. S8 Raman spectrum of sample C4 after five cycles of photocatalytic study (H₂O Splitting).

Fig. S9 Charge –discharge profile of pure graphene.

Table S1. Quantum yield of Bare $CdIn_2S_4$ is 3.34% and that of Sample C4 is 6.33%.

Photocatalyst	Amount (g)	Light Source	Apparent Quantum yield %	H ₂ evolution rate (μmole h ⁻¹)	Reference
Bare CdIn ₂ S ₄ (C1)	0.2	300 W Xenon lamp	3.34	2375	Present* Work
CdIn ₂ S ₄ /graphene composite (C4)	0.2	300 W Xenon lamp	6.33	4495	Present Work*
CdIn ₂ S ₄ (marigold-flower like morphology)	1	450 W Xenon lamp	16.8	3476	1
CdIn ₂ S ₄ (nanotubes)	1	450 W Xenon lamp	17.1	3480	1
CdIn ₂ S ₄ (compact flowers)	0.5	300 W Xenon lamp	-	1007	2
CdIn ₂ S ₄ (puffy flowers)	0.5	300 W Xenon lamp	-	2320	2
CdIn ₂ S ₄ (Marigold flower with hollow cavity)	0.5	300 W Xenon lamp	-	3171	2
CdIn ₂ S ₄ (Bipyramids grown on Marigold flower)	0.5	300 W Xenon lamp	-	3238	2

*Just with 0.2gms gives good AQE just for low intensity Lamp as compared to our earlier AFM report where 1gm sample was considered and lamp was 450 watt (more no of photons).

Table S2.	Comparison of the elec	rochemcial performance	e of Metal sulphides with	n CdIn ₂ S ₄ and	CdIn ₂ S ₄ /graphene.
-----------	------------------------	------------------------	---------------------------	--	---

Sr. No	Composition	Specific capacity 1 st discharge/ charge (mAh g ⁻¹)	Capacity retention	Reference
1	CdIn ₂ S ₄	842 / 602	613 mAh g ⁻¹ (125 cycles)	This work
2	CdIn ₂ S ₄ /graphene	1091 / 678	532 mAh g ⁻¹ (125 cycles)	This work
3	In ₂ S ₃ /graphene	1820 / 1056	522 mAh g ⁻¹ (100 cycles)	3
4	In ₂ S ₃ Particles	1312 / 705	190 mAh g ⁻¹ (100 cycles)	4
5	In ₂ S ₃ nanosheet	1927 / 828	450 mAh g ⁻¹ (40 cycles)	5
6	RGO-In ₂ S ₃	1327 / 867	604 mAh g ⁻¹ (200 cycles)	6
7	ZnS/C	1021 / 482	304 mAh g ⁻¹ (300 cycles)	7
8	ZnS	914 / 598	204 mAh g ⁻¹ (200 cycles)	8
9	CuS/ Graphene	827 / 484	296 mAh g ⁻¹ (25 cycles)	9
10	CuS	547 / 514	472 mAh g ⁻¹ (100 cycles)	10

References:

- 1 B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon and C. W. Lee, Adv. Funct. Mater., 2006, 16, 1349-1354.
- 2 A. P. Bhirud, N. S. Chaudhari, L. Nikam, R. S. Sonawane, K. S. Patil, J. O. Baeg and B. B. Kale, Int. J. Hydrogen Energy., 2011, **36**, 11628-11639.
- 3 Y. Gu and Y. Wang, RSC Adv.2014, 4, 8582–8589.
- 4 X. Yang, C. Y. Chan, H. T. Xue, J. Xu, Y.-B. Tang, Q. Wang, T. L. Wong and C.-S. Lee, CrystEngComm, 2013, 15, 6578–6584.
- 5 F. Ye, C. Wang, G. Du, X. Chen, Y. Zhong and J. Z. Jiang, J. Mater. Chem., 2011, **21**, 17063–17065.
- 6 F. Ye, G. Du, Z. Jiang, Y. Zhong, X. Wang, Q. Cao and J. Z. Jiang, Nanoscale, 2012, **4**, 7354–7357.
- 7 L. He, X.-Z. Liao, K.Yang, Y.-S. He, W. Wen and Z.-F. Ma, Electrochimica Acta, 2011, 56, 1213–1218.
- 8 M. Mao, L. Jiang, L. Wu, M. Zhang and T. Wang, J. Mater. Chem. A, 2015, **3**, 13384-13389.
- 9 H.-C. Tao, X.-L. Yang , L.-L. Zhang and S.-B. Ni, J. Phys. Chem. Solids 2014, **75**, 1205–1209.
- 10 $\,$ X. Li, X. He, C. Shi, B. Liu, Y. Zhang, S. Wu, Z. Zhu and J. Zhao, ChemSusChem, 2014, 7, 3328-3333.