Supporting information for

Photoresponsive assemblies of linear-dendritic copolymers containing azobenzene in the dendron interior: Effect of dendron structure on dye encapsulation and release

Nagendra Kalva, Nitin B. Basutkar and Ashootosh V. Ambade*

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411008, India.

Academy of Scientific and Innovative Research, New Delhi, India

Table of contents:

Synthetic procedures and characterization data	S1-S4
Fig. S1-S14: ¹ H NMR spectra	S4-S11
Fig. S15-S28: ¹³ C NMR spectra	S12-S18
Fig. S29-S34: MALDI-TOF spectra	S19-S21
Fig. S35: TEM and DLS data for P3 and P4	S22
Fig. S36: TEM images of polymer P3 and P4	S22
Fig. S37: Plots of fluorescence intensity vs. log (conc.) for determination of cmc	S23
Fig. S38: UV-vis spectra for trans-cis-trans photoisomerization of P1, P2 and P4	S23
Fig. S39: Size distribution curves for polymer solutions after <i>trans-cis</i> isomerization	S23
Fig. S40: UV-vis spectra of 0.02 wt% solution in THF/water of P2	S24
Fig. S41: UV-vis spectra for thermal cis-trans photoisomerization of polymers	S24
Fig. S42: First order rate constant plot for thermal cis-trans isomerization of polymers	S24
Fig. S43: UV-vis spectra for encapsulation capacity experiment	S25
Fig. S44: Plot for encapsulation efficiency of aqueous solution of the copolymers	S25
Table S1: Encapsulation capacity and encapsulation efficiency data	S25
Fig. S45: Nile red emission spectra for photobleaching experiment	S26
Table S2: Data for dye release during photoisomerisation by two pathways.	S26
Fig. S46-S49: Fluorescence emission spectra of Nile red during photocycles	S26-S28
References	S28

Synthesis:

Precursors to dendron with benzyl ether on periphery were synthesized by reported procedure.¹ Procedures and data for compounds with dodecyloxy group are given below. 3,5-didodecyloxybenzyl alcohol was synthesized using reported procedure.²

Scheme S1. Synthesis of dendron D1.

Compound 1: 3,5-didodecyloxy benzyl alcohol (1g, 2.1 mmol) was dissolved in dry THF and triphenyl phosphine (0.82g, 3.1 mmol), CBr_4 (1.04g, 3.1 mmol) was added and stirred at 0°C for 30 min. The reaction was monitored by the TLC. After completion of the reaction, evaporated the solvent under reduced pressure washed with water and extracted with dichloromethane and dried over anhydrous sodium sulphate. Solvent was evaporated on rotary evaporator under reduced pressure. The crude product was purified by flash column chromatography by eluting with 10% ethyl acetate and pet ether. This compound was further used for the next step. Yield:80 %.

Compound 2: 4-(4'-hydroxy phenylazo) benzyl alcohol (2.67g, 11.7 mmol) and Compound 1 (5.4g, 14 mmol) were dissolved in 50 mL dry acetone, added the K_2CO_3 (3.74g, 28 mmol) and 18-Crown-6 ether (0.6g, 2.3 mmol) reflux for 24 h. After completion of the reaction solvent was removed under the reduced pressure and extract the product in ethyl acetate. Organic layer was dried over sodium sulphate and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography in 20% ethyl acetate and pet ether. Yield 80%. ¹H NMR (200.13 MHz, CDCl₃) δ : 0.89(s, 6H,-CH₂), 1.27(s, 36H, -CH₂), 1.77(m, 4H), 3.95(t, 4H, J=6Hz), 4.78(d, 2H, J=2Hz), 5.08(s, 2H), 6.43(s, 1H), 6.58(s, 2H), 7.06(d, 2H, J=10Hz), 7.53-(d, 2H, J=10Hz), 7.87-7.94(t, 4H, J=6Hz) ppm. ¹³C NMR (CDCl₃, 50.32 MHz): 14.16, 22.73, 26.08, 29.64, 31.96, 64.98, 68.13, 70.31, 100.87, 105.67, 115.16, 122.82, 124.76, 127.47, 138.61, 143.19, 147.13, 152.25, 160.61, 161.23 ppm.

Compound 3: Compound **2** (5g, 7.2 mmol) was dissolved in dry THF and triphenyl phosphine (2.86g, 10.9 mmol), CBr₄ (3.61g, 10.9 mmol) was added and stirred at 0°C for 30 min. The reaction was monitored by the TLC. After completion of the reaction, evaporated the solvent under reduced pressure washed with water and extracted with dichloromethane and dried over anhydrous sodium sulphate. Solvent was evaporated on rotary evaporator under reduced pressure. The crude product was purified by flash column chromatography by eluting with 20% ethyl acetate and pet ether. This compound was further used for the next step. Yield 70 %.

Scheme S2. Synthesis of dendrons D2 and D4.

Compound 4: Compound **3** (3.7g, 1.6 mmol), 3,5 dihydroxy benzyl alcohol (0.314g, 0.6 mmol) were dissolved in 50 mL of dry acetone-THF (1:1) mixture, K_2CO_3 (1.24g, 2.7 mmol) and 18-crown-6 ether (0.118g, 0.2 mmol) were added and refluxed for 24 h. After completion of the reaction solvent was removed under reduced pressure and the product was extracted in dichloromethane. Organic layer was dried over sodium sulphate and solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography in 20% ethyl acetate and pet ether. Yield 75%. ¹H NMR (200.13 MHz, CDCl₃) δ : 0.89(s, 12H, -CH₂), 1.27(s, 72H, -CH₂), 1.75(m, 8H), 3.95(t, 8H, J=6Hz), 4.64(d, 2H, J=8Hz), 5.08(m, 8H), 6.43(s, 2H), 6.59-6.66(m, 7H, Ar-H), 7.06(d, 4H, J=10Hz), 7.53(d, 4H, J=10Hz), 7.88-7.94(m, 8H) ppm. ¹³C NMR (CDCl₃, 50.32 MHz) δ : 14.17, 22.74, 26.09, 29.68, 31.96, 68.13, 70.32, 100.88, 101.42, 105.67, 115.16, 122.85, 124.81, 127.97, 138.60, 147.13, 152.44, 160.04, 160.61, 161.29 ppm.

Compound 6: Compound **5** (2.5g, 4.9 mmol), 3,5 dihydroxy benzyl alcohol (0.095g, 2.2 mmol) were dissolved in 50 mL of dry acetone-THF (1:1) mixture, K_2CO_3 (0.36g, 2.7 mmol) and 18-Crown-6 ether (0.071g, 0.2 mmol) were added and refluxed for 24 h. After completion of the reaction solvent was removed under reduced pressure and the product was extracted in dichloromethane. Organic layer was dried over sodium sulphate and solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography in 20% ethyl acetate and pet ether. Yield 65%.¹H NMR (200.13 MHz, CDCl₃) δ : 0.89(t, 24H, J=6Hz), 1.27(bs, 144H), 1.78(m, 16H), 3.95(t, 16H, J=6Hz), 4.57(d, 2H, J=6Hz), 4.99- 5.11(m, 20H), 6.43-6.68(m, 21H), 7.06(d, 8H, J=8Hz), 7.51(d, 8H, J=8Hz), 7.85-7.94(t, 16H, J=8Hz) ppm. ¹³C NMR (CDCl₃, 50.32 MHz):14.15, 22.72, 26.08, 29.28, 29.38, 29.66, 31.95, 65.23, 68.12, 70.32, 100.90, 105.69, 106.32, 115.16, 122.83, 124.81, 127.97, 138.60, 139.12, 139.54, 147.12, 152.40, 160.03, 160.62, 161.30.

Scheme S3. Synthesis of dendron D3

Compound 7: 4-(4'-hydroxy phenylazo) benzyl alcohol (2g, 8.7 mmol), dodecyl bromide (2.61g, 10.5 mmol) were dissolved in 50 mL of dry acetone:THF mixture (1:1), K_2CO_3 (4.8g, 28 mmol) and catalytic amount of KI were added and refluxed for 24 h. After completion of the reaction solvent was removed under reduced pressure, product was extracted in ethyl acetate. Organic layer was dried over sodium sulphate and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography in 10% ethyl acetate and pet ether. Yield 80%. ¹H NMR (200.13 MHz, CDCl₃) δ : 0.89(s, 3H,-CH2), 1.28(m, 18H, -CH₂), 1.78(m, 4H), 4.05(t, 2H, J=6Hz), 4.77(d, 2H, J=2Hz), 6.99(d, 2H, J=8Hz), 7.48(d, 2H, J=8Hz), 7.86(t, 4H, J=8Hz) ppm. ¹³C NMR (CDCl₃, 50.32 MHz): 14.12, 22.68, 26.00, 29.63, 31.9, 64.95, 68.36, 114.69, 122.74, 124.73, 127.43, 143.02, 146.8, 152.25, 161.73 ppm.

Compound 8: Compound 8 (1.8 g, 4.5 mmol) was dissolved in dry THF and triphenyl phosphine (1.78 g, 6.6 mmol), CBr_4 (2.2 g, 6.6 mmol) was added and stirred at 0°C for 30 min. After completion of the reaction as indicated by TLC, solvent was evaporated under reduced pressure, crude product was washed with water and extracted with dichloromethane. Organic layer was dried over anhydrous sodium sulphate. Solvent was evaporated on rotary evaporator under reduced pressure. The crude product was purified by flash column chromatography by eluting with 20% ethyl acetate and pet ether. This compound was further used for the next step. Yield 70 %.

Compound 9: Compound 9 (1.5 g, 3.2 mmol), 3,5 dihydroxy benzyl alcohol (0.207 g, 1.4 mmol) were dissolved in 40 mL dry acetone:THF mixture (1:1). K_2CO_3 (0.82 g, 5.8 mmol) and 18-Crown-6ether (0.072 g, 0.2 mmol) were added and refluxed for 24 h. solvent was removed under reduced pressure and product was extracted in dichloromethane. Organic layer was dried over sodium sulphate and solvent was evaporated on rotary evaporator. Crude product was purified by flash column chromatography in 20% ethyl acetate and pet ether. ¹H NMR (200.13 MHz, CDCl₃) δ : : 0.89(s, 6H,-CH2), 1.28(bs, 36H, -CH₂), 1.83(m, 4H), 4.05(t, 4H, J=6Hz), 4.67(d, 2H, J=4Hz), 5.13(s, 4H), 6.57(s, 1H), 6.66(d, 2H, J=2Hz), 6.99(d, 4H, J=8Hz), 7.53(d, 4H, J=8Hz), 7.88-7.94(m, 8H) ppm. ¹³C NMR (CDCl₃, 50.32 MHz): 14.15, 22.72, 26.04, 29.67, 31.95, 64.61, 68.41, 69.68, 105.92, 114.73, 122.80, 124.81, 127.96, 143.59, 146.85, 152.49, 160.04, 161.82 ppm. Yield 75%.

Compound 10: Synthesis was carried out by following same procedure as for compound **8**. Yield 65%.

Compound 11: Compound **8** (2 g, 2.08 mmol), 3,5 dihydroxy benzyl alcohol (0.132g, 0.9 mmol) were dissolved in 60 mL of dry acetone: THF mixture (1:1), K_2CO_3 (0.527g, 3.7 mmol) and 18-Crown-6 ether (0.049g, 0.18mmol) were added reflux for 24 h. ¹H NMR (200.13 MHz, CDCl₃) δ : 0.89(t, 12H, J=6Hz), 1.28(bs, 72H, -CH₂), 1.82(m, 8H), 4.03(t, 8H, J=6Hz), 4.58(d, 2H, J=4Hz), 4.98(s, 4H), 5.11(s, 8H), 6.53-6.67(m, 9H), 6.97(d, 2H, J=2Hz), 6.99(d, 8H, J=8Hz), 7.50(d, 8H, J=6Hz), 1.28(bs, 72H, -CH₂), 1.82(bs, 72H, -CH

J=8Hz), 7.88-7.93(t, 16H, J=8Hz) ppm. ¹³C NMR (CDCl₃, 50.32 MHz): 14.15, 22.72, 26.04, 29.67, 31.95, 61.9, 63.36, 65.27, 68.41, 69.69, 101.78, 105.93 114.73, 122.80, 124.81, 127.96, 143.59, 146.85, 152.49, 160.04, 161.82 ppm. Yield 79%.

General procedure for synthesis of Gn-Azo-alkyne dendrons

In a dry three-necked round bottom flask NaH (1.2mol, 60% suspension in mineral oil) was taken and washed with hexanes under argon. Dry THF followed by dendron with benzyl alcohol at the focal point (1 mol) were added and stirred for 10 min followed by addition of propargyl bromide (1.1mol). The reaction mixture was stirred for 12h and poured in water and extracted with dichloromethane, organic layer was washed with water, brine and dried over anhydrous sodium sulphate before concentrating on rotary evaporator. The crude product was purified by precipitating it in cold diethyl ether.

Dendron D1: ¹H NMR (200 MHz, CDCl₃) δ : 2.48(t, 1H, J=2Hz), 4.1(d, 2H, J=4Hz), 4.58(s, 2H, - CH₂), 5.06-5.14(m, 16H, -CH₂), 6.61-6.71(m, 9H, Ar H), 7.05(d, 4H, J=8Hz), 7.36-7.42(m, 20H, Ar H), 7.54(d, 4H, J=8Hz), 7.89-7.93(m, 8H, Ar H) ppm. ¹³C NMR (CDCl3, 50.32 MHz) : 57.17, 69.71, 70.20, 71.41, 74.78, 101.77, 106.41, 107.14, 115.20, 122.85, 124.83, 127.57, 128.64, 136.78, 138.94, 139.22, 147.23, 152.48, 159.99, 160.29, 161.19 ppm. MALDI-TOF MS: Calcd. 1203.41 Found 1203.39 for [M⁺]. Yield 80%.

Dendron D2: ¹H NMR (200 MHz, CDCl₃) δ:0.89(t, 12H, J=6Hz),1.27(bs, 72H), 1.78(m, 8H), 2.48(t, 1H, J=2Hz), 3.95(t, 8H, J=6Hz) 4.19(t, 2H, J=2Hz),4.58(s, 2H), 5.08-5.13(m, 8H, -ArCH₂), 6.43(s, 2H, Ar H), 6.59-6.65(m, 7H), 7.06(d, 4H, J=10Hz), 7.54(d, 4H, J=8Hz), 7.88-7.92(m, 8H, Ar H) ppm. ¹³C NMR (CDCl₃, 50.32 MHz): 14.17, 22.74, 26.09, 29.29, 29.64, 31.96, 57.14, 62.96, 68.15, 70.34, 74.78, 100.91, 105.69, 107.09, 115.18, 122.85, 124.82, 128.03, 138.63, 138.63, 139.17, 147.16, 152.46, 159.98, 160.63, 161.30 ppm. MALDI-TOF MS: Calcd. 1516.20 Found 1538.85 for [M⁺⁺ Na⁺]. Yield 78%.

Dendron D3: ¹H NMR (200 MHz, CDCl₃) δ:0.89(t, 12H, J=6Hz),1.27(bs, 72H), 1.78(m, 8H), 2.46(t, 1H, J=2Hz), 4.04(t, 8H, J=6Hz) 4.16(d, 2H, J=2Hz),4.55(s, 2H), 4.99(s, 4H), 5.12(s, 8H, -ArCH₂), 6.60-6.70(m, 9H), 6.98(d, 8H, J=8Hz), 7.52(d, 8H, J=8Hz), 7.87-7.93(m, 16H, Ar-H) ppm. ¹³C NMR (CDCl₃, 125.76 MHz): 14.51, 23.09, 26.43, 29.61, 30.07, 32.33, 57.52, 68.80, 70.31, 71.82, 75.11, 80.02, 102.18, 106.90, 107.43, 111.53, 115.12, 123.18, 125.19, 128.36, 139.41, 139.88, 147.27, 152.87, 160.44, 162.19 ppm. MALDI-TOF MS: Calcd. 1936.11 Found 1958.92 for [M⁺+ Na⁺]. Yield 82%.

Dendron D4: ¹H NMR (500.13 MHz, CDCl₃) δ: 0.90(t, 24H, J=10Hz), 1.28(bs, 144H), 1.78(m, 16H), 3.95(t, 16H, J=5Hz), 4.17(d, 2H, J=5Hz), 4.56(s, 2H), 5.00- 5.12 (m, 20H), 6.43(s,4H), 6.58-6.71(m, 17H), 7.07(d, 8H, J=10Hz), 7.52(t, 8H, J=10Hz), 7.87-7.93(t, 16H, J=8Hz) ppm. ¹³C NMR (CDCl₃, 50.32 MHz):14.15, 22.71, 26.07, 29.37, 29.62, 29.66, 31.93, 57.11, 68.10, 70.30, 100.88, 105.66, 106.48, 115.13, 122.83, 124.80, 127.99, 138.58, 139.09, 147.12, 152.42, 160.02, 160.60, 161.26. MALDI-TOF MS: Calcd. 3098.46 Found 3097.55 for [M⁺]. Yield 65%.

Fig. S1. 200 MHz ¹H NMR spectrum of compound 2 in CDCl₃.

Fig. S2. 200 MHz ¹H NMR spectrum of compound 4 in CDCl₃.

Fig. S3. 200 MHz ¹H NMR spectrum of compound 4 in CDCl₃.

Fig. S4 200 MHz ¹H NMR spectrum of compound 5 in CDCl₃.

Fig. S5 200 MHz ¹H NMR spectrum of compound 7 in CDCl_{3.}.

Fig. S6. 200 MHz ¹H NMR spectrum of compound 9 in CDCl₃.

Fig. S7. 200 MHz ¹H NMR spectrum of D1 in CDCl₃.

Fig. S8. 200 MHz ¹H NMR spectrum of D2 in CDCl₃.

Fig. S9. 200 MHz ¹H NMR spectrum of D3 in CDCl₃.

Fig. S10. 500 MHz ¹H NMR spectrum of D4 in CDCl₃.

Fig. S11. 400 MHz ¹H NMR spectrum of P1 in CDCl₃.

Fig. S12. 400 MHz ¹H NMR spectrum of P2 in CDCl₃.

Fig. S13. 400 MHz ¹H NMR spectrum of P3 in CDCl₃.

Fig. S14. 400 MHz ¹H NMR spectrum of P4 in CDCl₃.

Fig. S15. 50 MHz ¹³C NMR spectrum of compound 2 in CDCl₃.

Fig. S16. 50 MHz ¹³C NMR spectrum of compound 4 in CDCl₃.

Fig. S17. 50 MHz ¹³C NMR spectrum of compound 6 in CDCl₃.

Fig. S18. 50 MHz ¹³C NMR spectrum of compound 5 in CDCl₃.

Fig. S19. 50 MHz ¹³C NMR spectrum of compound 7 in CDCl₃.

Fig. S20. 50 MHz ¹³C NMR spectrum of compound 9 in CDCl₃.

Fig. S21. 50 MHz ¹³C NMR spectrum of D1 in CDCl₃.

Fig. S22. 50 MHz ¹³C NMR spectrum of D2 in CDCl₃.

Fig. S23. 125 MHz ¹³C NMR spectrum of D3 in CDCl₃.

Fig. S24. 100 MHz ¹³C NMR spectrum of D4 in CDCl₃.

Fig. S25. 100 MHz ¹³C NMR spectrum of P1 in CDCl₃.

Fig. S26. 50 MHz ¹³C NMR spectrum of P2 in CDCl₃.

Fig. S27. 125 MHz ¹³C NMR spectrum of P3 in CDCl₃.

Fig. S28. 100 MHz ¹³C NMR spectrum of P4 in CDCl₃.

Fig. S29. MALDI-TOF spectrum of D1.

Fig. S30. MALDI-TOF spectrum of D2.

Fig. S31. MALDI-TOF spectrum of D3.

Fig. S32. MALDI-TOF spectrum of D4.

Fig. S33. MALDI-TOF spectrum of P1.

Fig. S34. MALDI-TOF spectrum of P2.

Fig. S35: a) TEM image and b) DLS size distribution curve for P3 through dialysis of THF-H₂O solution.

Fig. S36: TEM images of polymer P3 (left) and P4 through dialysis of DMF-H₂O solution.

Fig. S37: Plots of fluorescence intensity vs. log (conc.) for polymers (a) P1 (b) P2 c) P3 and (d) P4.

Fig. S38: UV-vis spectra for irradiation of 0.02 wt% aqueous solution of (a) P1, (c) P2 (e) P4 with 365 nm light and of (b) P1, (d) P2 (e) P4 with 450 nm light.

Fig. S39: Size distribution curves for aqueous solutions of (a) P1 (b) P2 (c) P3 (d) P4 after *trans-cis* isomerization. Average size (D_h) is 75 nm, 25 nm, 68 nm and 139 nm for P1, P2, P3, P4 respectively.

Fig. S40: UV-vis spectrum of 0.02 wt% solution of P2 in THF:water (1:3 v/v).

Fig. S41: UV-vis spectra for thermal cis-trans isomerization of azobenzene at different time intervals for 0.02 wt% aqueous solution of (a) P1 (b) P2 c) P3 and (c) P4.

Fig. S42: Plots for calculation of first order rate constant of thermal *cis-trans* isomerisation for a) P1 b) P2 c) P3 and d) P4

Nile red encapsulation capacity experiment

A thin film of the dye (0.5 mg) was prepared in each vial by solvent evaporation and vials were dried under vacuum for 5h. Then 0.5 wt% of aqueous solution of the polymer was added and stirred at room temperature for 12h. The insoluble dye was filtered through 0.45μ m PVDF filter. From these solutions a known volume (0.5 mL) was taken into vials and lyophilized. The lyophilized samples were dissolved in methanol (4 mL) and absorption spectrum was recorded. The concentration of the dye was found by using reported value for molar extinction coefficient of the dye in methanol.

Fig. S43: UV-Vis spectra of Nile red in aqueous solution of P1, P2, P3 and P4 for calculation of encapsulation efficiency and encapsulation capacity.

Fig. S44: Plot for encapsulation efficiency of aqueous solution of the copolymers (0.5 wt%) using Nile red.

Table S1.	Dye enca	psulation data	for the o	copolymers
-----------	----------	----------------	-----------	------------

Polymer	Encapsulation efficiency (mg/gof polymer)	Encapsulation capacity (mmol/mol of polymer)
P1	0.32	3.2
P2	0.20	2.24
P3	0.32	3.98
P4	0.22	4.12

Dye encapsulation experiments were performed at 0.5 wt% aqueous solution of the polymers.

Fig. S45: Nile red emission spectra in MeOH: H2O (1:1) irradiating at a) 365 nm b) 450 nm.

Table S2. Data for dye release during photoisomerisation by two pathways.

Polymer	%decrease in fluorescence intensity (UV-dark)	%decrease in fluorescence intensity (UV –Vis)
P1	49	33
P2	12	39
Р3	42	36
P4	41	49

Fig. S46: Fluorescence emission spectra after irradiation at 365 nm for (a) P1 (b) P2 and (c) P3 (d) P4 followed by irradiation at 450 nm for (e) P1 (f) P2 and (g) P3 (h) P4 (first photocycle).

Fig. S47: Fluorescence emission spectra after irradiation at 365 nm for (a) P1 (b) P2 and (c) P3 (d) P4 followed by irradiation at 450 nm for (e) P1 (f) P2 and (g) P3 (h) P4 (second consecutive photocycle).

Fig. S48: Fluorescence emission spectra of Nile red after irradiation at (a)(b)(c) 365 nm and (d)(e)(f) 450 nm of aq. solution of **P1**, **P2**, **P3**, **P4** respectively after 12h thermal restoration (third photocycle).

Fig. S49: Fluorescence emission spectra of Nile red after irradiation at (a)(b)(c)(d) 365 nm and (e)(f)(g)(h) 450 nm of aq. solution of P1, P2, P3, P4 respectively after 4h thermal restoration (fourth photocycle).

References

1) L. X. Liao; D. M. Junge; D. V. McGrath Macromolecules 2002, 35, 319.

2) N. Kalva; V. K. Aswal; A. V. Ambade Macromol. Chem. Phys. 2014, 215, 1456.