Electronic Supplementary Material (ESI) for RSC Advances.

This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Asymmetric Transfer Hydrogenation of γ -aryl α , γ -dioxo-butyric acid

esters[†]

Yuan-Zhao Mo, Hui-Fang Nie, Yang Lei, Dong-Xu Zhang, Xiao-Ye Li, Sheng-Yong Zhang* and Qiao-Feng Wang*

^{*a*} Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, P. R. China. E-mail: zytwqf@fmmu.edu.cn; syzhang@fmmu.edu.cn; Fax: +86-29-84776945;Tel: +86-29-84776807 ext. 611

*Corresponding author's E-mails: zytwqf@fmmu.edu.cn; syzhang@fmmu.edu.cn

1. ¹ HNMR, ¹³ CNMR and ³¹ P NMR Spectra of L_1 - L_6	S2-S9
2.HRMS of L ₁ -L ₆	S10-S14
3. ¹ H and ¹³ C NMR Spectra of 4a-4g	S15-S21
4.HPLC charts of 4a-4g [catalyst was RuCl(<i>p</i> -cymene)(Ts-DPEN)]	S22-S30
5.HPLC charts of 4a-4g [catalysts were ferrocene-based chiral ligands]	S31-S37
6.Single crystal diffraction of 4b and 4e	S38-S55

1.¹HNMR, ¹³CNMR and ³¹P NMR Spectra of L₁-L₆

¹H NMR Spectra of L₁

¹H NMR Spectra of L₂

S4

¹H NMR Spectra of L_3

³¹P NMR Spectra of L₃

¹³C NMR Spectra of L₃

¹H NMR Spectra of L₄

¹³C NMR Spectra of L₄

¹H NMR Spectra of L₅

 $^{\rm 13}C$ NMR Spectra of $L_{\rm 5}$

¹H NMR Spectra of L₆

2.HRMS of L₁-L₆

HRMS of L_2

HRMS of L_3

S12

HRMS of L₄

HRMS of L₅

HRMS	of	L ₆
------	----	----------------

3.¹H and ¹³C NMR Spectra of 4a-g

¹H NMR Spectra of (S)-4a

¹³C NMR Spectra of (S)-4a

¹³C NMR Spectra of (*R*)-4b

¹H NMR Spectra of (R)-4c

¹³C NMR Spectra of (*R*)-4c S18

¹H NMR Spectra of (R)-4d

¹³C NMR Spectra of (R)-4d

¹H NMR Spectra of (R)-4e

¹³C NMR Spectra of (*R*)-4e S20

¹H NMR Spectra of (R)-4f

¹³C NMR Spectra of (*R*)-4f S21

¹H NMR Spectra of (R)-4g

¹³C NMR Spectra of (*R*)-4g S22

4.HPLC charts of [catalyst was RuCl [TsDPEN](cymene)]

4-phenyl-2-hydroxy-4-oxo-butyric acid ethyl ester (4a)

85% yield, 84% ee in DMF, 30% yield, 73% ee in MeOH, 73% yield, 50% ee in THF, 80% yield, 22% ee in EtOAc, 77% yield, 60% ee in dixane., 82% yield, 81% ee in *t*-BuOMe, 75% yield, 79% ee without solvent at r.t., 80% yield, 84% ee in DMF at 0°C, 68% yield, 94% ee in DMF at -20°C, 68% yield, 94% ee in DMF at -20°C (*R*configuration) for 4days, determined by HPLC analysis (Chiralcel OD-H column, Hexane/i-PrOH=95/5, Flow rate: 0.5 mL/min, UV detection at 254 nm).

WCLA, Noningth 254 on (A	CHORE IN CREWING					
166 祭 祭 器						H H O
28- 28-			V		(S) 84% ee in l	-4a DMF at r.t.
155	3		4 e	đ		
#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	40.821	21060.3	381.8	0.9193	0.596	92.808
2	45.283	1632.1	29.6	0.9186	0.859	7.192

#	Т	ime	Peak area	Peak height	Peak width	Symmetry	Peak area%
						factor	
1	4	1.881	9898.4	119.1	1.2439	0.54	74.470
2	4	6.286	3393.5	36.2	1.4092	0.589	25.530

1.6179

0.512

0.625

19.687

9.582

166.9

44

2

2

46.37

46.01

18136.9

3704.5

1.4038

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	41.014	74418.6	841.1	1.4747	0.336	89.566
2	45.885	8669	91.9	1.5723	0.613	10.434

ΟH

Ô (S)-4a

0

0 II

					factor	area%
1	41.638	20774.9	295.9	1.0682	0.467	96.944
2	46.592	655	8.7	1.1186	0.825	3.056

4-(4-F-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4b) ——RuCl(p-cymene)[(R,R)-Ts-DPEN]

61% yield, 91% ee determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

4-(4-Cl-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4c) ——RuCl(*p*-cymene)[(*R*,*R*)-Ts-DPEN]

58% yield, 91% ee determined by HPLC analysis (Chiralcel OD-H column, Hexane/i-PrOH=93/7, Flow rate: 1

mL/min, UV detection at 254 nm).

4-(4-Br-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4d) ——RuCl(*p*-cymene)[(*R*,*R*)-Ts-DPEN]

60% yield, 91% ee determined by HPLC analysis (Chiralcel OD-H column, Hexane/i-PrOH=90/10, Flow rate: 0.5 mL/min, UV detection at 254 nm).

				area%
1	35.575	735.0525	818.551	48.15
2	39.983	791.6492	795.476	51.85

4-(4-OMe-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4e) ——RuCl(*p*-cymene)[(*R*,*R*)-Ts-DPEN]

58% yield, 94.5% ee determined by HPLC analysis (Chiralcel AD-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	68.377	219.7	2.8	1.3139	0.909	2.725
2	72.535	7842	86.7	1.5071	0.842	97.275

4-furyl-2-hydroxy-4-oxo-butyric acid ethyl ester (4f) — RuCl(p-cymene)[(R,R)-Ts-DPEN]

55% yield, 96% ee determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

1.578

Peak

area%

52.401

47.599

0.451

506.5

2

53.118

53179.9

4- thienyl -2-hydroxy-4-oxo-butyric acid ethyl ester (4g) — RuCl(p-cymene)[(R,R)-Ts-DPEN]

71% yield, 95% ee. determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

6U)						
300-					о он	
25				1		
20-						
					S I	
5-						
8	4	ê 5	<u>s</u> s			
#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
#	Time	Peak area	Peak height	Peak width	Symmetry factor	Peak area%
#	Time 46.813	Peak area	Peak height	Peak width	Symmetry factor 0.468	Peak area% 51.012

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	46.828	26226.1	306.8	1.2814	0.471	98.708
2	51.993	343.2	4.9	0.9975	0.726	1.292

5.HPLC charts 4a-4g [catalyst was ferrocene-based chiral ligand]

4-phenyl-2-hydroxy-4-oxo-butyric acid ethyl ester (4a)

72% yield, 5% ee catalyzed by L_2 in DMF at r.t., 57% yield, 90% ee catalyzed by L_1 , 60% yield, 65% ee catalyzed by L_2 , 55% yield, 50% ee catalyzed by L_3 , 47% yield, racemic catalyzed by L_4 , 50% yield, 40% ee catalyzed by L_5 , 52% yield, 37% ee catalyzed by L_6 in DMF at -20°C for 4days, determined by HPLC analysis (Chiralcel OD-H column, Hexane/i-PrOH=95/5, Flow rate: 0.5 mL/min, UV detection at 254 nm).

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	43.05	5475.5	49.9	1.614	0.588	50.736
2	48.077	5317	46.5	1.6733	0.517	49.265

#	Time	Peak area	Peak height	Peak width	Symmetry factor	Peak area%
1	42.284	16737.3	148.2	1.8828	0.562	47.507
2	47.139	18199.8	153.8	1.9722	0.501	52.493

				O OH	.0		
#	Time	Peak area	Peak height	Peak width	Symmet	ry factor	Peak area%
1	40.432	14740.9	269.7	0.911	0.668		49.301
2	44.351	15159.2	249.9	1.011	0.656		50.699
6 6 2					0 OH (<i>R</i>)-44 90% ee (L ₁	0, a)	
#	Time	Peak area	Peak height	Peak width	Symmetry	Peak	
					factor	area%	
1	39.483	469.3	5.9	1.1422	0.765	5.091	

1.33

0.554

94.909

99.2

2

43.878

8748.5

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	43.279	46839.3	426.6	1.6099	0.349	25.757
2	47.545	135011.3	891.2	2.1804	0.215	74.243

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	44.49	6473.9	64.3	1.4882	0.51	70.528
2	49.81	2705.3	22.8	1.6719	0.542	29.472

4-(4-F-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4b) ——L₁

55% yield, 69% ee determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

4-(4-Cl-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4c) — L₁

58% yield, 67% ee determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

VICEA, Reviergh-254 to \$2	SN24543					
640. 1200-		A a				
		[]			0 0	u
					U U	n
						$\sim 0 < 1$
					Íľ	Ĩ
						0
					· · ·	
					(<i>R</i>)-4c	
-						
\$						
	· ·		· · ·			
ш	Time e	Dealsaraa	Deelsheisht	Deelessidth	C. mana a tra	Deel
Ħ	Time	Реак area	Peak neight	Peak width	Symmetry	Реак
					factor	aroa%
					Tactor	al ea /o
1	31.41	6620.2	102.1	0.9703	0.574	83,369
-	01.11	002012		0.07.00	0.07	22.205
2	34 772	1320.7	20.2	0 9871	0 648	16 631
2	54.772	1520.7	20.2	0.5071	0.040	10.051

4-(4-Br-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4d) — $-L_1$

53% yield, 75% ee determined by HPLC analysis (Chiralcel OD-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

4-(4-OMe-phenyl)-2-hydroxy-4-oxo-butyric acid ethyl ester (4e) — L₁

50% yield, 69% ee determined by HPLC analysis (Chiralcel AD-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

4-furyl-2-hydroxy-4-oxo-butyric acid ethyl ester (4f) ——L₁

48% yield, 75% ee determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

VBCLA, Wankept-CSA on	#2#24245(0)					
40° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1			i	8	о он (<i>R</i>)-4f	0
#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	48.298	26841	172.8	2.2983	0.725	87.815
2	56.4	3724.4	26.5	1.9414	0.863	12.185

4- thienyl -2-hydroxy-4-oxo-butyric acid ethyl ester (4g) — $-L_1$

45% yield, 87% ee determined by HPLC analysis (Chiralcel OJ-H column, Hexane/i-PrOH=95/5, Flow rate: 1 mL/min, UV detection at 254 nm).

#	Time	Peak area	Peak height	Peak width	Symmetry	Peak
					factor	area%
1	47.199	9358.3	111.7	1.2536	0.548	93.505
2	52.346	650	8	1.1669	0.717	6.495

6.Single crystal diffraction of (R)-4b and (R)-4e

(1) Single crystal diffraction of 4b

Table 1. Crystal data and structure refinement for xb8331_0m.

Identification code	xb8331_0m
Empirical formula	C12 H13 F O4
Formula weight	240.22
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space gro	oup Monoclinic, P2(1)
Unit cell dimensions a =	5.059(5) A alpha = 90 deg.
b = 1	0.704(12) A beta = 101.62(2) deg.
c = 1	1.363(12) A gamma = 90 deg.

Volume 602.6(11) A^3 Z, Calculated density 2, 1.324 Mg/m^3 Absorption coefficient 0.109 mm^-1 F(000) 252 Crystal size 0.31 x 0.23 x 0.12 mm Theta range for data collection 1.83 to 25.08 deg. Limiting indices -6<=h<=5, -12<=k<=12, -13<=l<=8 Reflections collected / unique 2945 / 2093 [R(int) = 0.0512] Completeness to theta = 25.08 99.2 % Absorption correction None Max. and min. transmission 0.9865 and 0.9674 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 2093 / 1 / 157 Goodness-of-fit on F^2 1.064 Final R indices [I>2sigma(I)] R1 = 0.0777, wR2 = 0.1627

R indices (all data)R1 = 0.1518, wR2 = 0.1941Absolute structure parameter0(3)Extinction coefficient0.036(9)Largest diff. peak and hole0.205 and -0.224 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for xb8331_0m.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)			
F(1)	3210(9)	7545(5)	13469(4)	94(2)		
O(1)	8529(10)	9672(5)	9354(5)	74(2)		
O(2)	13191(9)	7139(4)	7944(4)	59(1)		
O(3)	7179(10)	8086(6)	6865(4)	78(2)		
O(4)	10569(8)	9223(4)	6455(4)	61(1)		
C(1)	7262(14)	7087(6)	11221(6)	57(2)		
C(2)	5922(14)	6851(7)	12142(6)	61(2)		
C(3)	4501(16)	7770(8)	12558(6)	68(2)		
C(4)	4479(16)	8989(7)	12129(7)	70(2)		
C(5)	5812(13)	9240(7)	11218(6)	52(2)		
C(6)	7258(12)	8294(6)	10755(5)	46(2)		
C(7)	8602(13)	8612(6)	9757(6)	48(2)		
C(8)	10246(12)	7610(6)	9244(6)	47(2)		
C(9)	11518(12)	8114(6)	8254(5)	45(2)		
C(10)	9492(15)	8481(6)	7132(6)	52(2)		
C(11)	8891(17)	9574(10)	5287(7)	92(3)		
C(12)	10490(20)	10447(11	.) 4691(7)	114(4)		

Table 3. Bond lengths [A] and angles [deg] for xb8331_0m.

F(1)-C(3)	1.352(8)
O(1)-C(7)	1.221(7)
O(2)-C(9)	1.431(7)
O(2)-H(2)	0.8200
O(3)-C(10)	1.223(8)
O(4)-C(10)	1.300(7)
O(4)-C(11)	1.473(8)

C(1)-C(2)	1.379(9)
C(1)-C(6)	1.396(9)
C(1)-H(1)	0.9300
C(2)-C(3)	1.358(10)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.392(10)
C(4)-C(5)	1.371(9)
C(4)-H(4)	0.9300
C(5)-C(6)	1.411(9)
C(5)-H(5)	0.9300
C(6)-C(7)	1.475(9)
C(7)-C(8)	1.542(8)
C(8)-C(9)	1.505(8)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(10)	1.517(8)
C(9)-H(9)	0.9800
C(11)-C(12)	1.485(11)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(9)-O(2)-H(2)	109.5
C(10)-O(4)-C(11)	117.1(6)
C(2)-C(1)-C(6)	119.6(7)
C(2)-C(1)-H(1)	120.2
C(6)-C(1)-H(1)	120.2
C(3)-C(2)-C(1)	120.5(7)
C(3)-C(2)-H(2A)	119.8
C(1)-C(2)-H(2A)	119.8
F(1)-C(3)-C(2)	120.6(7)
F(1)-C(3)-C(4)	117.6(7)
C(2)-C(3)-C(4)	121.6(7)
C(5)-C(4)-C(3)	118.5(7)
C(5)-C(4)-H(4)	120.8
C(3)-C(4)-H(4)	120.8
C(4)-C(5)-C(6)	120.8(7)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-H(5)	119.6
C(1)-C(6)-C(5)	118.9(6)

C(1)-C(6)-C(7)	122.7(6)
C(5)-C(6)-C(7)	118.4(6)
O(1)-C(7)-C(6)	121.3(6)
O(1)-C(7)-C(8)	118.9(6)
C(6)-C(7)-C(8)	119.8(6)
C(9)-C(8)-C(7)	112.2(5)
C(9)-C(8)-H(8A)	109.2
C(7)-C(8)-H(8A)	109.2
C(9)-C(8)-H(8B)	109.2
C(7)-C(8)-H(8B)	109.2
H(8A)-C(8)-H(8B)	107.9
O(2)-C(9)-C(8)	106.6(5)
O(2)-C(9)-C(10)	108.3(5)
C(8)-C(9)-C(10)	113.8(5)
O(2)-C(9)-H(9)	109.3
C(8)-C(9)-H(9)	109.3
C(10)-C(9)-H(9)	109.3
O(3)-C(10)-O(4)	124.0(6)
O(3)-C(10)-C(9)	124.7(6)
O(4)-C(10)-C(9)	111.3(6)
O(4)-C(11)-C(12)	107.7(6)
O(4)-C(11)-H(11A)	110.2
C(12)-C(11)-H(11A)	110.2
O(4)-C(11)-H(11B)	110.2
C(12)-C(11)-H(11B)	110.2
H(11A)-C(11)-H(11B)	108.5
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for xb8331_0m. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12	
F(1)	109(4)	115(4)	73(3)	4(3)	53(3)	-5(3)	
O(1)	80(4)	53(3)	93(4)	19(3)	25(3)	9(3)	
O(2)	47(3)	50(3)	91(4)	13(3)	39(3)	14(2)	
O(3)	42(3)	132(5)	60(3)	13(3)	8(3)	-23(3)	
O(4)	50(3)	73(3)	59(3)	22(3)	10(2)	-8(3)	
C(1)	68(5)	48(5)	52(4)	5(4)	9(4)	1(4)	
C(2)	66(5)	65(5)	53(5)	15(4)	15(4)	1(4)	
C(3)	81(5)	78(6)	46(4)	1(4)	15(4)	-3(5)	
C(4)	88(6)	51(5)	69(6)	-9(4)	7(5)	3(5)	
C(5)	58(4)	48(4)	56(5)	-1(4)	25(4)	1(4)	
C(6)	40(4)	46(4)	49(4)	0(3)	5(3)	3(3)	
C(7)	42(4)	41(4)	57(4)	1(4)	2(3)	2(3)	
C(8)	38(4)	50(4)	56(4)	2(3)	14(3)	2(3)	
C(9)	40(4)	36(4)	55(4)	8(3)	2(3)	-1(3)	
C(10)	50(4)	45(4)	60(5)	14(4)	8(4)	2(4)	
C(11)	81(6)	125(8)	61(5)	32(5)	-6(5)	-20(6)	
C(12)	121(8)	143(9)	66(7) 39(6) -6(6)	-16(7)	

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (A² x 10³) for xb8331_0m.

	х	y z	U(eq)	
H(2)	14510	7447	7737	88
H(1)	8162	6446	10913	68
H(2A)	5992	6058	12480	73
、 , 山(л)	25.90	0610	17/52	05
п(4)	5560	9019	12455	65
H(5)	5763	10043	10902	62
H(8A)	11649	7293	9885	57
H(8B)	9068	6918	8937	57
H(9)	12640	8838	8551	53
H(11A)	7244	9976	5404	110
H(11B)	8410	8837	4794	110
H(12A)	9617	11248	4595	170
H(12B)	10617	10123	3917	170
H(12C)	12268	10535	5176	170

Table 6. Torsion angles [deg] for xb8331_0m.

C(6)-C(1)-C(2)-C(3)	3.0(10)
C(1)-C(2)-C(3)-F(1)	-179.3(6)
C(1)-C(2)-C(3)-C(4)	-4.0(11)
F(1)-C(3)-C(4)-C(5)	179.0(7)
C(2)-C(3)-C(4)-C(5)	3.6(11)
C(3)-C(4)-C(5)-C(6)	-2.3(11)
C(2)-C(1)-C(6)-C(5)	-1.7(9)
C(2)-C(1)-C(6)-C(7)	-178.8(6)
C(4)-C(5)-C(6)-C(1)	1.4(10)
C(4)-C(5)-C(6)-C(7)	178.6(6)
C(1)-C(6)-C(7)-O(1)	178.8(7)
C(5)-C(6)-C(7)-O(1)	1.7(10)
C(1)-C(6)-C(7)-C(8)	-4.1(9)
C(5)-C(6)-C(7)-C(8)	178.8(6)
O(1)-C(7)-C(8)-C(9)	-1.4(8)
C(6)-C(7)-C(8)-C(9)	-178.6(5)
C(7)-C(8)-C(9)-O(2)	174.2(5)
C(7)-C(8)-C(9)-C(10)	-66.4(7)
C(11)-O(4)-C(10)-O(3)	-1.6(10)
C(11)-O(4)-C(10)-C(9)	175.2(6)
O(2)-C(9)-C(10)-O(3)	96.7(8)
C(8)-C(9)-C(10)-O(3)	-21.6(9)
O(2)-C(9)-C(10)-O(4)	-80.0(6)
C(8)-C(9)-C(10)-O(4)	161.6(6)
C(10)-O(4)-C(11)-C(12)	178.4(7)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for xb8331_0m [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

(2) Single crystal diffraction of (R)-4e

Table 1. Crystal data and structure refinement for xb8523_0m.

Identification code	xb8523_0m
Empirical formula	C13 H16 O5
Formula weight	252.26
Temperature	296(2) К
Wavelength	0.71073 A
Crystal system, space gro	oup Monoclinic, P2(1)
Unit cell dimensions a = b = c =	5.0181(11) A alpha = 90 deg. 11.253(2) A beta = 90.618(4) deg. 22.901(5) A gamma = 90 deg.
Volume 1	293.1(5) A^3
Z, Calculated density	4, 1.296 Mg/m^3

Absorption coefficient 0.100 mm^-1

F(000) 536

Crystal size 0.37 x 0.25 x 0.14 mm

Theta range for data collection 0.89 to 25.10 deg.

Limiting indices -5<=h<=5, -13<=k<=12, -25<=l<=27

Reflections collected / unique 6419 / 4112 [R(int) = 0.0225]

Completeness to theta = 25.10 99.8 %

Absorption correction None

Max. and min. transmission 0.9860 and 0.9643

Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 4112 / 1 / 331

Goodness-of-fit on F^2 1.035

Final R indices [I>2sigma(I)] R1 = 0.0538, wR2 = 0.1144

R indices (all data) R1 = 0.0868, wR2 = 0.1303

Absolute structure parameter 0.9(14)

Extinction coefficient 0.0127(16)

Largest diff. peak and hole 0.175 and -0.183 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for xb8523_0m.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

O(1)	6972(6)	6430(3)	11332(1)	84(1)
O(2)	-194(5)	4730(2)	9226(1)	80(1)
O(3)	-5432(5)	7218(3)	8586(1)	82(1)
O(4)	-3452(5)	5140(3)	7878(1)	80(1)
O(5)	-55(5)	6326(3)	8073(1)	87(1)
O(6)	12397(6)	6254(2)	6411(1)	79(1)
O(7)	5117(6)	4451(2)	4341(1)	79(1)
O(8)	-218(5)	6898(3)	3712(1)	80(1)
O(9)	1665(5)	4901(3)	2973(1)	109(1)
O(10)	5200(5)	6002(3)	3174(1)	84(1)
C(1)	7251(10)	7545(4)	11623(2)	102(2)
C(2)	5217(7)	6348(3)	10886(2)	62(1)
C(3)	3612(7)	7248(3)	10684(2)	62(1)
C(4)	1877(7)	7045(3)	10222(2)	58(1)
C(5)	1704(6)	5952(3)	9953(1)	52(1)
C(6)	3353(7)	5043(3)	10163(2)	65(1)
C(7)	5077(8)	5231(4)	10618(2)	68(1)
C(8)	-130(7)	5702(3)	9458(2)	57(1)
C(9)	-1954(7)	6684(3)	9233(2)	59(1)
C(10)	-3731(7)	6256(3)	8737(2)	59(1)
C(11)	-2156(7)	5912(4)	8208(2)	64(1)
C(12)	-2225(10)	4806(6)	7327(2)	109(2)
C(13)	-3813(13)	3976(5)	7032(2)	137(2)
C(14)	12651(10)	7386(4)	6686(2)	95(2)
C(15)	10603(7)	6141(4)	5966(2)	60(1)
C(16)	8978(7)	7041(3)	5765(2)	60(1)
C(17)	7206(7)	6812(3)	5311(2)	58(1)
C(18)	7023(7)	5697(3)	5054(1)	52(1)
C(19)	8693(7)	4808(3)	5267(2)	62(1)
C(20)	10459(8)	5025(3)	5717(2)	69(1)
C(21)	5166(7)	5436(3)	4564(2)	58(1)
C(22)	3354(7)	6388(3)	4338(2)	60(1)
C(23)	1556(7)	5964(3)	3851(2)	63(1)
C(24)	3059(7)	5633(4)	3310(2)	66(1)
C(25)	2743(10)	4611(8)	2400(2)	161(3)
C(26)	970(13)	4493(7)	1995(2)	158(3)

Table 3. Bond lengths [A] and angles [deg] for xb8523_0m.

O(1)-C(2)	1.345(4)
O(1)-C(1)	1.427(5)
O(2)-C(8)	1.217(4)
O(3)-C(10)	1.418(4)
O(3)-H(3)	0.8200
O(4)-C(11)	1.318(4)
O(4)-C(12)	1.458(4)
O(5)-C(11)	1.196(4)
O(6)-C(15)	1.358(4)
O(6)-C(14)	1.425(5)
O(7)-C(21)	1.221(4)
O(8)-C(23)	1.412(4)
O(8)-H(8)	0.8200
O(9)-C(24)	1.323(4)
O(9)-C(25)	1.463(5)
O(10)-C(24)	1.196(4)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-C(3)	1.370(5)
C(2)-C(7)	1.400(5)
C(3)-C(4)	1.382(5)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.377(5)
C(4)-H(4)	0.9300
C(5)-C(6)	1.398(5)
C(5)-C(8)	1.479(5)
C(6)-C(7)	1.364(5)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(9)	1.522(5)
C(9)-C(10)	1.515(4)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.505(5)
C(10)-H(10)	0.9800
C(12)-C(13)	1.397(7)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600

C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-C(16)	1.377(5)
C(15)-C(20)	1.380(5)
C(16)-C(17)	1.385(5)
C(16)-H(16)	0.9300
C(17)-C(18)	1.388(4)
C(17)-H(17)	0.9300
C(18)-C(19)	1.389(5)
C(18)-C(21)	1.482(5)
C(19)-C(20)	1.375(5)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
C(21)-C(22)	1.494(5)
C(22)-C(23)	1.504(4)
C(22)-H(22A)	0.9700
C(22)-H(22B)	0.9700
C(23)-C(24)	1.504(5)
C(23)-H(23)	0.9800
C(25)-C(26)	1.284(7)
C(25)-H(25A)	0.9700
C(25)-H(25B)	0.9700
C(26)-H(26A)	0.9600
C(26)-H(26B)	0.9600
C(26)-H(26C)	0.9600
C(2)-O(1)-C(1)	118.4(3)
C(10)-O(3)-H(3)	109.5
C(11)-O(4)-C(12)	117.1(3)
C(15)-O(6)-C(14)	118.1(3)
C(23)-O(8)-H(8)	109.5
C(24)-O(9)-C(25)	117.6(3)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(3)	125.6(4)
O(1)-C(2)-C(7)	115.1(3)
C(3)-C(2)-C(7)	119.3(4)

C(2)-C(3)-C(4)	119.9(4)
C(2)-C(3)-H(3A)	120.1
C(4)-C(3)-H(3A)	120.1
C(5)-C(4)-C(3)	121.8(3)
C(5)-C(4)-H(4)	119.1
C(3)-C(4)-H(4)	119.1
C(4)-C(5)-C(6)	117.7(3)
C(4)-C(5)-C(8)	123.2(3)
C(6)-C(5)-C(8)	119.0(3)
C(7)-C(6)-C(5)	121.1(4)
C(7)-C(6)-H(6)	119.4
C(5)-C(6)-H(6)	119.4
C(6)-C(7)-C(2)	120.2(4)
C(6)-C(7)-H(7)	119.9
C(2)-C(7)-H(7)	119.9
O(2)-C(8)-C(5)	121.3(4)
O(2)-C(8)-C(9)	119.4(3)
C(5)-C(8)-C(9)	119.3(3)
C(10)-C(9)-C(8)	111.7(3)
C(10)-C(9)-H(9A)	109.3
C(8)-C(9)-H(9A)	109.3
C(10)-C(9)-H(9B)	109.3
C(8)-C(9)-H(9B)	109.3
H(9A)-C(9)-H(9B)	107.9
O(3)-C(10)-C(11)	108.7(3)
O(3)-C(10)-C(9)	106.7(3)
C(11)-C(10)-C(9)	112.1(3)
O(3)-C(10)-H(10)	109.8
C(11)-C(10)-H(10)	109.8
C(9)-C(10)-H(10)	109.8
O(5)-C(11)-O(4)	122.7(4)
O(5)-C(11)-C(10)	125.4(4)
O(4)-C(11)-C(10)	111.8(3)
C(13)-C(12)-O(4)	110.2(4)
C(13)-C(12)-H(12A)	109.6
O(4)-C(12)-H(12A)	109.6
C(13)-C(12)-H(12B)	109.6
O(4)-C(12)-H(12B)	109.6
H(12A)-C(12)-H(12B)	108.1
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5

C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(6)-C(14)-H(14A)	109.5
O(6)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
O(6)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
O(6)-C(15)-C(16)	124.5(4)
O(6)-C(15)-C(20)	115.2(4)
C(16)-C(15)-C(20)	120.2(4)
C(15)-C(16)-C(17)	119.1(3)
C(15)-C(16)-H(16)	120.4
C(17)-C(16)-H(16)	120.4
C(16)-C(17)-C(18)	121.7(3)
C(16)-C(17)-H(17)	119.2
C(18)-C(17)-H(17)	119.2
C(17)-C(18)-C(19)	117.8(3)
C(17)-C(18)-C(21)	122.6(3)
C(19)-C(18)-C(21)	119.6(3)
C(20)-C(19)-C(18)	121.1(3)
C(20)-C(19)-H(19)	119.5
C(18)-C(19)-H(19)	119.5
C(19)-C(20)-C(15)	120.1(4)
C(19)-C(20)-H(20)	120.0
C(15)-C(20)-H(20)	120.0
O(7)-C(21)-C(18)	120.4(4)
O(7)-C(21)-C(22)	119.8(4)
C(18)-C(21)-C(22)	119.8(3)
C(21)-C(22)-C(23)	112.8(3)
C(21)-C(22)-H(22A)	109.0
C(23)-C(22)-H(22A)	109.0
C(21)-C(22)-H(22B)	109.0
C(23)-C(22)-H(22B)	109.0
H(22A)-C(22)-H(22B)	107.8
O(8)-C(23)-C(22)	107.6(3)
O(8)-C(23)-C(24)	108.6(3)
C(22)-C(23)-C(24)	112.8(3)
O(8)-C(23)-H(23)	109.3
C(22)-C(23)-H(23)	109.3
C(24)-C(23)-H(23)	109.3

O(10)-C(24)-O(9)	122.4(4)
O(10)-C(24)-C(23)	126.0(4)
O(9)-C(24)-C(23)	111.6(3)
C(26)-C(25)-O(9)	114.2(5)
C(26)-C(25)-H(25A)	108.7
O(9)-C(25)-H(25A)	108.7
C(26)-C(25)-H(25B)	108.7
O(9)-C(25)-H(25B)	108.7
H(25A)-C(25)-H(25B)	107.6
C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for xb8523_0m. The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
O(1)	100(2)	78(2)	73(2)	2(2)	-22(2)	9(2)
O(2)	88(2)	56(2)	96(2)	-21(2)	-5(2)	-2(2)
O(3)	53(2)	83(2)	110(2)	-14(2)	-11(2)	4(1)
O(4)	66(2)	102(2)	73(2)	-25(2)	17(1)	-20(2)
O(5)	57(2)	125(3)	79(2)	-8(2)	11(1)	-32(2)
O(6)	95(2)	76(2)	66(2)	0(2)	-8(2)	-3(2)
O(7)	93(2)	53(2)	93(2)	-25(2)	-1(2)	-3(1)
O(8)	55(2)	79(2)	106(2)	-20(2)	-5(2)	-3(2)
O(9)	62(2)	163(3)	102(2)	-70(2)) 20(2)	-33(2)
0(10) 56(2)	117(3)	79(2)	-10(2)) 13(1)	-25(2)
C(1)	126(4)	104(4)	76(3)	-12(3)	-26(3)	-2(3)
C(2)	63(2)	65(3)	57(2)	3(2)	5(2)	1(2)
C(3)	68(2)	58(2)	61(2)	-7(2)	1(2)	1(2)
C(4)	61(2)	50(2)	61(2)	1(2)	2(2)	8(2)
C(5)	53(2)	44(2)	58(2)	3(2)	14(2)	-3(2)
						S52

C(6)	75(3)	45(2)	75(3)	2(2)	15(2)	3(2)
C(7)	76(3)	59(3)	69(3)	11(2)	-2(2)	8(2)
C(8)	54(2)	55(3)	63(2)	-7(2)	12(2)	-7(2)
C(9)	50(2)	62(3)	64(2)	-5(2)	8(2) -	3(2)
C(10)	43(2)	65(3)	69(2)	-9(2)	4(2)	-8(2)
C(11)	48(2)	74(3)	69(2)	-1(2)	1(2) -	10(2)
C(12)	101(4)	154(5)	73(3)	-36(3)	33(3)	-29(4)
C(13)	177(6)	133(5)	102(4)	-42(4)	42(4)	-33(5)
C(14)	127(4)	87(3)	71(3)	-13(3)	-16(3)	-15(3)
C(15)	63(2)	63(3)	53(2)	1(2)	8(2)	-6(2)
C(16)	70(2)	49(2)	61(2)	-4(2)	5(2)	-2(2)
C(17)	61(2)	45(2)	67(2)	-9(2)	8(2)	2(2)
C(18)	57(2)	47(2)	53(2)	-1(2)	13(2)	-2(2)
C(19)	75(3)	42(2)	70(3)	-4(2)	17(2)	-4(2)
C(20)	81(3)	51(3)	74(3)	3(2)	3(2)	6(2)
C(21)	59(2)	49(2)	68(2)	-8(2)	22(2)	-9(2)
C(22)	56(2)	52(2)	72(2)	-13(2)	7(2)	-8(2)
C(23)	51(2)	59(2)	78(2)	-15(2)	11(2)	-12(2)
C(24)	47(2)	78(3)	72(2)	-12(2)	2(2)	-7(2)
C(25)	72(4)	303(9)	107(4)	-109(6)	14(3)	-15(5)
C(26)	149(6)	240(9)	84(4)	25(5)	4(4)	59(6)

Table 5. Hydrogen coordinates (x 10⁴) and isotropic

displacement parameters (A^2 x 10^3) for xb8523_0m.

	x	y z	U(eq)	
H(3)	-6863	6959	8466	123
H(8)	-1453	6640	3512	120
H(1A)	7904	8128	11354	154
H(1B)	8486	7465	11943	154
H(1C)	5550	7793	11767	154
H(3A)	3690	7994	10858	75
H(4)	797	7662	10089	69
H(6)	3274	4297	9989	78
H(7)	6163	4616	10750	82
H(9A)	-3055	6968	9550	71
H(9B)	-881	7345	9099	71

H(10)	-4798	5578	8867	71
H(12A)	-2005	5506	7085	131
H(12B)	-476	4469	7403	131
H(13A)	-3723	3226	7232	205
H(13B)	-3183	3881	6641	205
H(13C)	-5626	4249	7022	205
H(14A)	13228	7962	6405	143
H(14B)	13936	7336	6998	143
H(14C)	10958	7621	6839	143
H(16)	9068	7794	5932	72
H(17)	6111	7421	5175	69
H(19)	8614	4054	5101	75
H(20)	11559	4419	5854	82
H(22A)	4420	7046	4198	72
H(22B)	2270	6679	4655	72
H(23)	537	5275	3985	75
H(25A)	3974	5232	2287	193
H(25B)	3746	3876	2431	193
H(26A)	1824	4314	1633	237
H(26B)	-20	5219	1956	237
H(26C)	-220	3858	2095	237

Table 6. Torsion angles [deg] for xb8523_0m.

C(1)-O(1)-C(2)-C(3)	-0.9(6)
C(1)-O(1)-C(2)-C(7)	179.3(4)
O(1)-C(2)-C(3)-C(4)	-179.7(3)
C(7)-C(2)-C(3)-C(4)	0.1(5)
C(2)-C(3)-C(4)-C(5)	0.0(5)
C(3)-C(4)-C(5)-C(6)	0.0(5)
C(3)-C(4)-C(5)-C(8)	179.9(3)
C(4)-C(5)-C(6)-C(7)	-0.1(5)
C(8)-C(5)-C(6)-C(7)	180.0(3)
C(5)-C(6)-C(7)-C(2)	0.2(5)
O(1)-C(2)-C(7)-C(6)	179.6(3)
C(3)-C(2)-C(7)-C(6)	-0.2(6)
C(4)-C(5)-C(8)-O(2)	178.7(3)
C(6)-C(5)-C(8)-O(2)	-1.3(5)
C(4)-C(5)-C(8)-C(9)	-0.7(5)
C(6)-C(5)-C(8)-C(9)	179.3(3)

U(2) - U(8) - U(9) - U(10)	2.0(4)
C(5)-C(8)-C(9)-C(10)	-178.6(3)
C(8)-C(9)-C(10)-O(3)	176.8(3)
C(8)-C(9)-C(10)-C(11)	-64.4(4)
C(12)-O(4)-C(11)-O(5)	-0.6(6)
C(12)-O(4)-C(11)-C(10)	175.4(4)
O(3)-C(10)-C(11)-O(5)	88.8(4)
C(9)-C(10)-C(11)-O(5)	-28.8(5)
O(3)-C(10)-C(11)-O(4)	-86.9(4)
C(9)-C(10)-C(11)-O(4)	155.4(3)
C(11)-O(4)-C(12)-C(13)	179.3(5)
C(14)-O(6)-C(15)-C(16)	-0.9(5)
C(14)-O(6)-C(15)-C(20)	179.8(4)
O(6)-C(15)-C(16)-C(17)	-179.4(3)
C(20)-C(15)-C(16)-C(17)	-0.1(5)
C(15)-C(16)-C(17)-C(18)	0.1(5)
C(16)-C(17)-C(18)-C(19)	-0.2(5)
C(16)-C(17)-C(18)-C(21)	-179.2(3)
C(17)-C(18)-C(19)-C(20)	0.2(5)
C(21)-C(18)-C(19)-C(20)	179.3(3)
C(18)-C(19)-C(20)-C(15)	-0.2(6)
O(6)-C(15)-C(20)-C(19)	179.4(3)
C(16)-C(15)-C(20)-C(19)	0.1(6)
C(17)-C(18)-C(21)-O(7)	178.1(3)
C(19)-C(18)-C(21)-O(7)	-0.9(5)
C(17)-C(18)-C(21)-C(22)	-1.4(5)
C(19)-C(18)-C(21)-C(22)	179.6(3)
O(7)-C(21)-C(22)-C(23)	1.9(5)
C(18)-C(21)-C(22)-C(23)	-178.5(3)
C(21)-C(22)-C(23)-O(8)	174.6(3)
C(21)-C(22)-C(23)-C(24)	-65.6(4)
C(25)-O(9)-C(24)-O(10)	-4.2(7)
C(25)-O(9)-C(24)-O(10) C(25)-O(9)-C(24)-C(23)	-4.2(7) 173.1(5)
C(25)-O(9)-C(24)-O(10) C(25)-O(9)-C(24)-C(23) O(8)-C(23)-C(24)-O(10)	-4.2(7) 173.1(5) 94.6(5)
C(25)-O(9)-C(24)-O(10) C(25)-O(9)-C(24)-C(23) O(8)-C(23)-C(24)-O(10) C(22)-C(23)-C(24)-O(10)	-4.2(7) 173.1(5) 94.6(5) -24.6(6)
C(25)-O(9)-C(24)-O(10) C(25)-O(9)-C(24)-C(23) O(8)-C(23)-C(24)-O(10) C(22)-C(23)-C(24)-O(10) O(8)-C(23)-C(24)-O(9)	-4.2(7) 173.1(5) 94.6(5) -24.6(6) -82.6(4)
C(25)-O(9)-C(24)-O(10) C(25)-O(9)-C(24)-C(23) O(8)-C(23)-C(24)-O(10) C(22)-C(23)-C(24)-O(10) O(8)-C(23)-C(24)-O(9) C(22)-C(23)-C(24)-O(9)	-4.2(7) 173.1(5) 94.6(5) -24.6(6) -82.6(4) 158.2(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for xb8523_0m [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)