Electronic Supplementary Information

A ratiometric fluorescence probe for detection of hydrogen sulfide in cells

Bin Wang, Na Jiang*, Wei Sun, Qiufen Wang, Gengxiu Zheng*

a School of Chemistry and Chemical Engineering, University of Jinan, 336 Nanxinzhuang West Road, 250022, Jinan (China)

* E-mail: chm_jiangn@ujn.edu.cn; chm_zhenggx@ujn.edu.cn

All chemicals and solvents were purchased from commercial suppliers and used without further purification. Distilled water was used after passing through a water ultrapurification system. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury 400 spectrometer. HR-MS data were obtained with a LC-MS spectrometer. UV-Vis and fluorescence spectra were recorded on a UV-Vis spectrophotometer and a fluorescence spectrophotometer with a temperature controller, respectively. Standard quartz cuvettes with a 1.0 cm lightpath were used for all optical spectra measurements.

Preparation of Solutions of BOC and Analytes. Stock solution of **BOC** (1.0 mM) was prepared in HPLC grade CH₃CN. Analytes cysteine (Cys), homocysteine (Hcy), glutathione (GSH), Na⁺, K⁺, Ca²⁺, NH₄⁺, Ba²⁺, Cu⁺, F⁻, Br⁻, NO₂⁻, ClO₄⁻ SO₄²⁻, S₂O₈²⁻, S₂O₃²⁻, SCN⁻ were dissolved in distilled water (10 mL) to afford 1 mM (for Cys, Hcy, GSH) or 5 mM (for others) aqueous solution.

Measurements of ratios of fluorescence intensity of I_{492}/I_{652} of BOC upon addition of various analytes. A solution of BOC (10 μ M) was prepared in CH₃CN-PBS solution (7:3, v/v, 10 mM PBS buffer). Then 3.0 mL of BOC solution was placed in a quartz cell until the temperature reached at 37 °C over a few minutes. The fluorescence spectra were then recorded upon addition of various analytes.

Cell incubation and imaging. HeLa and MCF-7 cells were cultured in DEME medium supplemented with 10% fetal bovine serum at 37 °C in an atmosphere containing 5% CO₂. For live cell imaging, BOC were added to cells grown in a confocal microscope dish for 15 min and washed with PBS (phosphate-buffered saline) three times. After replacement of the medium, cells were imaged using a Olympus (FV1000) confocal laser scanning microscope with a 200×objective lens. HeLa and MCF-7 cells were first stained with 5.0 μ M of **BOC** at 37 °C in an atmosphere of 5% CO₂ for 30 min, and then washed with PBS three times. Cells were then incubated with HS⁻ (200 μ M) at 37 °C in an atmosphere of 5% CO₂ for another 30 minutes, and then washed with PBS three times. After replacement of medium, cells were imaged using OLYMPUS FV1000 confocal fluorescence microscope with a 200×objective lens.

Synthesis of intermediates and BOC

Scheme S1. Synthesis of intermediates and BOC

Synthesis of compound 1a. 4-Bromomethyl-2-cyanobiphenyl (1.3 g, 4.8 mmol), 2-methyl benzothiazole (0.5 g, 3.4 mmol) was added into 20 ml acetonitrile under nitrogen to get a mixed solution. Then stirred for 24 hours under a refluxing condition (Scheme S1). The mixture was then cooled down, the precipitate filtered off and washed with diethyl ether to give compound 1a as crude product (1.1 g, yield 80 %).

¹H NMR (400 MHz, DMSO) *δ* 8.55 (1 H, d, *J* 7.9), 8.27 (1 H, d, *J* 8.3), 7.96 (1 H, d, *J* 7.6), 7.88 (1 H, t, *J* 7.6), 7.81 (2 H, dd, *J* 15.8, 7.9), 7.61 (4 H, q, *J* 7.5), 7.51 (2 H, d, *J* 7.9), 6.21 (2 H, s), 3.33 (3 H, s).

Compound 2b was prepared according to the reported procedure.^{S1}

Synthesis of BOC. BOC was conveniently synthesized via the condensation of compound 1a with 2b (Scheme S1). Compound 1a (1.03 g, 2.5 mmol), compound 2b (0.5 g, 2 mmol) were mixed in an absolute ethanol solution (20 ml). The solution was refluxed under nitrogen for 24 h, and then cooled down. The precipitate was collected, washed with diethyl ether, then dried, giving a violet solid (1.13 g, 85.7%).

¹H NMR (400 MHz, CDCl₃) δ 9.41 (1 H, s), 8.54 (2 H, dd, *J* 32.2, 15.0), 8.19 (1 H, d, *J* 8.0), 7.88 (1 H, d, *J* 8.3), 7.79 – 7.71 (2 H, m), 7.71 – 7.57 (3 H, m), 7.55 (2 H, d, *J* 8.1), 7.45 (4 H, dd,

J 13.8, 7.8), 6.64 (1 H, d, *J* 10.5), 6.42 (1 H, s), 6.33 (2 H, s), 3.49 (4 H, q, *J* 6.9), 1.84 (4 H, s), 1.26 (8 H, t, *J* 6.9).

¹³C NMR (100 MHz, CDCl₃) 172.82, 158.06, 153.88, 150.08, 147.98, 144.23, 141.26, 138.77, 133.79, 133.35, 133.03, 130.11, 129.82, 129.71, 128.22, 127.95, 127.85, 127.37, 124.20, 118.53, 115.72, 112.72, 110.97, 110.59, 110.29, 96.70, 77.36, 77.04, 76.73, 51.98, 45.46, 29.70, 12.58. HR-MS (ESI): *m*/*z*, calcd for C₃₆H₃₀N₃O₂S⁺ 568.2059 (M + H⁺), found 568.2055.

Table S1. Spectral properties of BOC in various solvents.

Solvents	$\lambda_{abs}{}^{a}$	λ_{em}^{b}	$\Delta\lambda^{c}$	$arPsi_{ m f}{}^{ m d}$	<i>e</i> ^e
PBS	357, 568	477, 647	120, 79	0.01	8100, 30200
CH_2Cl_2	363, 593	479, 646	116, 53	0.258	8800, 75500
CH ₃ CH ₂ OH	355, 565	482, 649	127, 84	0.172	8600, 81900
CH ₃ CN	354, 565	482, 653	128, 88	0.08	7700, 69600
DMSO	357, 568	489, 667	132, 99	0.186	7100, 56200

^[a] The two absorption peaks of **BOC** (nm). ^[b] The two emission peaks of **BOC** (nm), excited at 430 nm. ^[c] Stokes shift of **BOC** (nm). ^[d] Fluorescence quantum yields of **BOC**. ^[e] $\times 10^4$ mol⁻¹ cm⁻¹ L.

Figure S1. (a) Normalized UV-vis spectra of BOC (10 µM) in various solvents; (b) Normalized fluorescence

spectra of **BOC** (10 μ M) in various solvents. $\lambda_{ex} = 430$ nm.

Data for investigation of the sensing mechanism

Scheme S2. (a) H_2S sensing mechanism mentioned in the literature.^{S2} (b) Proposed H_2S sensing mechanism of BOC.

To examine the sensing mechanism of **BOC** to H_2S , the following ¹H NMR titration experiment was performed. **BOC** was dissolved in CD₃CN to get a mixed solution of 10 mM. NaHS was dissolved in D₂O, then added into the above solution in a gradient of 4 mM. From the following comparison chart we can see that the conjugated hydrogen in the minimum field is decreased continuously with the increasing concentration of NaHS. The change of absorption is saturated when the molar ratio of NaHS to **BOC** is 1:1, which indicated the sensing mechanism of **BOC** (Fig. S2).

Figure S2. The sensing mechanism of **BOC** for HS⁻. ¹H NMR spectral change of **BOC** (10 mM) in the absence and presence (2, 3, 4) of HS⁻, the gradient of HS⁻ is 4 mM.

Figure S3. Fluorescence ratio responses of **BOC** (10 μ M) to HS⁻ (667 μ M), various ions and biologically relevant species at 492 nm and 652 nm in PBS (10 mM, pH 7.40, 70% CH₃CN, v/v). Black bars represent the addition of various ions or biomacromolecules. Blue bars represent the addition of HS⁻ to the above solution, respectively. 1. Probe alone, 2. HS⁻, 3. Na⁺, 4. K⁺, 5. F⁻, 6. Br⁻, 7. NO₂⁻, 8. ClO₄⁻, 9. SO₄²⁻, 10. S₂O₈²⁻, 11. S₂O₃²⁻, 12. SCN⁻, 13. Cys, 14. GSH, 15. Hey, (3 – 12: 5 mM and 13 – 15: 1 mM). $\lambda_{ex} = 430$ nm.

Figure S4. (a) fluorescence spectra of **BOC** (10 μ M) under different pH conditions. (b) fluorescence spectra of **BOC** (10 μ M) + HS⁻ (833 μ M) under different pH conditions.

Figure S5. Time-dependent fluorescence changes of BOC (10 μ M) with HS⁻ (666.7 μ M). $\lambda_{ex} = 430$ nm, $\lambda_{em} = 495$ nm.

a. Itur	b b b b b b b b b b b b b b b b b b b	C 20um
d	e Personal and the second seco	f
200m O 7 6- 5- 5- 99/1 4- 0- 1- 0- 1-	23um	20um

Figure S6. Confocal fluorescence images (a) and (b) of MCF-7 cells incubated with 5 μ M **BOC**. Images (d) and (e) of the aboved MCF-7 cells after added 200 μ M HS⁻. Ratio images (c) and (f) of green channel compared to the red channel. (g) Ratio of 10 points that drawed from (c) and (f), respectively, black bars represent **BOC** and red bars represent **BOC** + HS⁻.

References

(S1) (a) Wu. J. S, Liu. W. M, Zhuang. X. Q, Wang. F, Wang. P. F, Tao. S. L, Zhang. X. H, Wu. S. K and Lee. S. T, *Org. Lett.*, 2007, **9**, 33-36. (b) Oushiki. D, Kojima. H, Terai. T, Arita. M, Hanaoka. K, Urano. Y and Nagano. T, *J. Am. Chem. Soc.*, 2010, **132**, 2795-2801.

(S2) Chen. Y. C, Zhu. C. C, Yang. Z. H, Chen. J. J, He. Y. F, Jiao. Y, He. W. J, Qiu. L, Cen. J. J and Guo. Z. J, Angew. Chem. Int. Edit., 2013, **125**, 1732-1735.

 ^{13}C NMR (400 MHz) spectra of **BOC** in CDCl₃

