Supporting Information

In Situ Formation of Gold Nanoparticles on Magnetic Halloysite Nanotubes via Polydopamine Chemistry for Highly Effective and Recyclable Catalysis

Qiangbing Wei*, Ruirong Shi, Dedai Lu, Ziqiang Lei*

Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China

Corresponding authors: weiqiangbing@nwnu.edu.cn; leizq@nwnu.edu.cn

Figure S1. EDX spectrum of MHNTs-PDA-Au composite

Figure S2. N₂ adsorption-desorption isotherms (A) and the pore width distribution curve obtained from the desorption data through the BJH method (B).

FigureS3. Time-dependent of UV-vis spectra changes of 4-NP in the presence of MHNTs-PDA

Figure S4. Time-dependent of UV-vis spectra changes of various nitrobenzene derivatives in the presence of MHNTs-PDA-Au.

Figure S5. Time-dependent of UV-vis spectra changes of MB in the presence of MHNTs-PDA

Figure S6. TEM image of MHNTs-PDA-Au after recyling for eight cycles in the reduction of 4-nitrophenol.

Catalyst	Moles of	Content of	Required	k /s ⁻¹	Ref.
	nitrophenol	Supported Au /g	time		
MHNTs-PDA-Au	1.5×10 ⁻⁷ mol	5.8×10 ⁻⁶	10 min	7.4×10 ⁻³	This work
Au@SiO ₂ NPs	2.0×10 ⁻⁷ mol	2.7×10-5	33 min	1.9×10 ⁻³	1
Au/graphene	2.8×10 ⁻⁷ mol	2.4×10 ⁻⁵	12 min	3.1×10 ⁻³	2
hydrogel					
Fe ₃ O ₄ @P(EGDMA-	7.5×10 ⁻⁷ mol	4.5×10 ⁻⁵	3 min	5.9×10 ⁻³	3
co-MAA)/Au					
dumbbell-like	4.0×10 ⁻⁷ mol	3.8-9.6 ×10 ⁻⁴	10 min	10.5×10-3	4
Fe ₃ O ₄ -Au					

Table S1. Comparison of rate constant for nitrophenol reduction of supported Au nanocatalysts.

Table S2. Comparison of rate constant for methylene blue (MB) reduction of supported Au nanocatalysts.

Catalyst	Mass of MB/g	Content of	Required	k /s ⁻¹	Ref.
		Supported Au /g	time		
MHNTs-PDA-Au	6.0×10 ⁻⁵	1.16×10-5	50 s	8.0×10-2	This work
Au@ppy/Fe ₃ O ₄	6.0×10 ⁻⁵	4.6×10-5	42 min	4.4×10-3	5
Au@TA-GH	20.0×10-5	3.2×10 ⁻⁵	9 min	5.16×10-3	6

References:

- 1. Z. Wang, H. Fu, D. Han and F. Gu, J. Mater. Chem. A, 2014, 2, 20374-20381.
- 2. J. Li, C. Y. Liu and Y. Liu, J. Mater. Chem., 2012, 22, 8426-8430
- 3. H. Woo and K. H. Park, Catal. Commun., 2014, 46, 133-137.
- 4. F. H. Lin and R. A. Doong, J. Phys. Chem. C, 2011, 115, 6591-6598.
- 5. T. Yao, T. Cui, H. Wang, L. Xu, F. Cui and J. Wu, Nanoscale, 2014, 6, 7666-7674.
- 6. J. Luo, N. Zhang, J. Lai, R. Liu and X. Liu, J. Hazard. Mater., 2015, 300, 615-623.