## **Supporting Information**

## Drug release switch based on protein-inhibitor supramolecular interaction

Xiaoliang Wang, <sup>a</sup> Pengchang Liu, <sup>a</sup> Zhijun Chen, <sup>\*a</sup> Jiacong Shen <sup>a</sup>

a State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, 2699 Qianjin Street, Chaoyang, Changchun, Jilin 130012, People's Republic of China

Corresponding Author

\*Telephone: +86-186-8663-6807 Fax: +86-431-8519-3421.

E-mail: <u>zchen@jlu.edu.cn</u>.



**Figure S1** The FT-IR spectra of the MSN–OH (black) and MSN– $NH_2$  (red). The twin peaks (stretching vibration of N–H bond) at 1430–1550cm<sup>-1</sup> indicate the presence of amino groups.



Figure S2 The SEM image of the MSN–OH nanoparticles.



Figure S3 The TEM image of the  $MSN-NH_2$  nanoparticles.



**Figure S4** The CD spectra of CTRA in the absence (0 mM) and presence of different concentration of PMSF (0–7.5 mM).



**Figure S5** Zeta potential of CTRA at different pHs. (The error bars represent the standard deviation of three measurements.)



Figure S6 Zeta potential of CTRA under different concentration of PMSF.



**Figure S7** The cargo release of CTRA–MSN– $NH_2$ @Rh 6G is approximately 42% at pH 5.9; the cargo release is approximately 14% when PMSF concentration is 1.0 mM; the cargo release is approaching 52% when both conditions are met (PMSF concentration is 1.0 mM, environmental pH is 5.9)



Figure S8 The cargo release of CTRA-MSN-NH<sub>2</sub>@Rh 6G is approximately 42% at

pH 5.9; the cargo release is approximately 29% when PMSF concentration is 2.5 mM; the cargo release is approaching 60% when both conditions are met (PMSF concentration is 2.5 mM, environmental pH is 5.9).



**Figure S9** The cargo release of CTRA–MSN– $NH_2$ @Rh 6G is approximately 42% at pH 5.9; the cargo release is approximately 60% when PMSF concentration is 5.0 mM; the cargo release is approaching 70% when both conditions are met (PMSF concentration is 5.0 mM, environmental pH is 5.9).



**Figure S10** The cargo release of CTRA–MSN– $NH_2$ @Rh 6G is approximately 70% at pH 4.9; the cargo release is approximately 14% when PMSF concentration is 1.0 mM; the cargo release is approaching 80% when both conditions are met (PMSF concentration is 1.0 mM, environmental pH is 4.9).



Figure S11 The cargo release of CTRA-MSN-NH<sub>2</sub>@Rh 6G is approximately 70% at

pH 4.9; the cargo release is approximately 29% when PMSF concentration is 2.5 mM; the cargo release is approaching 90% when both conditions are met (PMSF concentration is 2.5 mM, environmental pH is 4.9).



**Figure S12** The cargo release of CTRA–MSN– $NH_2$ @Rh 6G is approximately 70% at pH 4.9; the cargo release is approximately 60% when PMSF concentration is 5.0 mM; the cargo release is approaching 100% when both conditions are met (PMSF concentration is 5.0 mM, environmental pH is 4.9).