Complexes of Carbon Dioxide with Dihalogenated Ethylenes: Structure, Stability and Interaction

Nguyen Tien Trung, ${ }^{\text {a* }}$ Nguyen Thi Thu Trang, ${ }^{\text {c }}$ Vu Thi Ngan, ${ }^{a}$ Duong Tuan

 Quang ${ }^{b}$ and Minh Tho Nguyen ${ }^{\text {d }}$${ }^{a}$ Faculty of Chemistry and Laboratory of Computational Chemistry and Modelling, Quy Nhon University, Quy Nhon, Vietnam
${ }^{b}$ Department of Chemistry - Hue University of Education, Hue, Vietnam
${ }^{c}$ Faculty of Science, Hai Phong University, Hai Phong, Vietnam
${ }^{d}$ Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium

Figure S1. Stable structures of $\mathrm{CH}_{2}=\mathrm{CH}_{2}$, cis $-\mathrm{XCH}=\mathrm{CHX}$ and trans $-\mathrm{XCH}=\mathrm{CHX}$ ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$), and CO_{2}

Table S1. Selected parameters of $\mathrm{C}_{2} \mathrm{H}_{4}$ and CO_{2} at MP2/aug-cc-pVDZ

Monomers	$\mathbf{C}_{2} \mathbf{H}_{4}$		Monomer	CO $_{2}$	
	Calculated $^{\mathrm{a}}$	Experiment ${ }^{\mathrm{b})}$		Calculated $^{\mathrm{a})}$	Experiment ${ }^{\mathrm{b})}$
$\angle \mathrm{H}_{2} \mathrm{C}_{1} \mathrm{H}_{3}$	117.4°	117.6°	$\angle \mathrm{O} 8 \mathrm{C} 709$	180	180
$\angle \mathrm{H}_{2} \mathrm{C}_{1} \mathrm{C}_{4}$	121.3°	121.2°	$\mathrm{C} 7 \mathrm{O} 8(\mathrm{O} 9)$	1.180	1.162
$\mathrm{r}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$	$1.35 \AA$	$1.339 \AA$			
$\mathrm{r}\left(\mathrm{C}_{1}-\mathrm{H}_{2(3)}\right)$ $\mathrm{r}\left(\mathrm{C}_{4}-\mathrm{H}_{5(6)}\right)$	$1.09 \AA$	$1.086 \AA$			

${ }^{\text {a) }}$ Results calculated at the MP2/aug-cc-pVDZ level of theory
${ }^{\text {b }}$)Experimental results taken from http://webbook.nist.gov/chemistry and http://cccbdb.nist.gov

Table S2. Selected parameters of cis- $\mathrm{XCH}=\mathrm{CHX}$ and trans- $\mathrm{XCH}=\mathrm{CHX}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, Br) at MP2/ aug-cc-pVDZ and corresponding experimental results

		$\mathbf{X C H}=\mathbf{C H X}$, with $\mathbf{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$					
		Calculated ${ }^{\text {a }}$			Experiment ${ }^{\text {b }}$		
		F	Cl	Br	F	CI	Br
$\begin{gathered} \text { cis- } \\ \mathrm{XCH}=\mathrm{CHX} \end{gathered}$	$\angle \mathrm{C}_{1} \mathrm{C}_{4} \mathrm{XX} 3$	122.3°	$124.3{ }^{\circ}$	125.1°	121.1°	124.2°	
	$\angle \mathrm{H}_{2} \mathrm{C}_{1} \mathrm{C}_{4}$	122.7°	126.6°	120.2°	124.0°	123.2°	-
	$\mathrm{R}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$	$1.34 \AA$	1.35 A	1.35 A	$1.324 \AA$	1.317 A	-
	$\mathrm{R}\left(\mathrm{C}_{1}-\mathrm{H}_{2}\right)$	1,09 \AA	1.09 A	1.09 A	1,089 \AA	$1.101 \AA$	-
	$\mathrm{R}\left(\mathrm{C}_{1}-\mathrm{X}_{3}\right)$	$1.36 \AA$	1.73 A	1.88 A	$1.335 \AA$	1.717 A	-
$\begin{gathered} \text { trans- } \\ \mathrm{XCH}=\mathrm{CHX} \end{gathered}$	$\angle \mathrm{C}_{1} \mathrm{C}_{4} \mathrm{X}_{3}$	119.5°	120.9°	121.01°	$119.3{ }^{\circ}$	123.8°	-
	$\angle \mathrm{H}_{2} \mathrm{C}_{1} \mathrm{C}_{4}$	125.8°	123.9°	124.0°	129.2°	-	-
	$\mathrm{R}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$	1.34 A	1.35 A	1.35 A	1.329 Å	$1.354 \AA$	-
	$\mathrm{R}\left(\mathrm{C}_{1}-\mathrm{H}_{2}\right)$	1.09 A	1.09 A	1.09 A	1.080 Å	$1.075 \AA$	-
	$\mathrm{R}\left(\mathrm{C}_{1}-\mathrm{X}_{3}\right)$	$1.36 \AA$	$1.74 \AA$	1.89 A	$1.344 \AA$	$1.718 \AA$	-

${ }^{\text {a) }}$ Results calculated at the MP2/aug-cc-pVDZ level of theory
${ }^{\text {b) }}$ Experimental results taken from http://webbook.nist.gov/chemistry and http://cccbdb.nist.gov

Figure S2. Topological analysis of complexes of ethylene and CO_{2}

The Cartesian coordinates for all optimized structures:

P1

C,0.1854712686,0.,0.1540951812
H,0.2112045779,0.,0.9386848353
H,1.146649709,0.,-0.6747647379
С,-0.9786033701,0.,-0.8373315602
Н,-0.9926314741,0.,-1.9303841636
Н,-1.9452506848,0.,-0.3270146622
C,-2.2410988948,0.,2.6469382356
O,-1.2230374803,0.,3.2441205219
O,-3.2588514152,0.,2.0492296662
P2
С,-0.3398854535,0.,-0.1801290663
H,-0.2794666821,0.,0.9115606076
H,0.5974276309,0.,-0.7430508671
С,-1.5320557283,0.,-0.811943453
Н,-1.5965266244,0.,-1.903029517
Н,-2.4711443444,0.,-0.2527137447
С,2.6879219941,0.,1.4245178084

[^0]H,2.1420420942,0.,-0.2288605122
C,2.4758686328,0.,2.7173333631
O,1.4687444277,0.,3.3329667398
O,3.4759966391,0.,2.0903982868
F,1.162046773,0.,-2.0458970064
F,-1.2017390298,0.,-0.5826201689
C1Cl
C,0.0041701582,0.,0.0060846392
Н, $0.0194844086,0 ., 1.0972302074$
C,1.15125324,0.,-0.7040051255
H,2.1210834568,0.,-0.2037426665
C,2.4573588929,0.,2.6874326231
O, 1.4504311644,0.,3.3034861698
O,3.4577753724,0.,2.0608607673
Cl,-1.5752294977,0.,-0.6988318214
Cl,1.2245723499,0.,-2.4320198237

C 1 Br

C, $0.0048860236,0 ., 0.0076216487$
H,0.0253705153,0.,1.0994410417
C,1.1523097684,0.,-0.7026789998
Н,2.1204376369,0.,-0.1974883115
С,2.4472125173,0.,2.6710421097
O, 1.440377007,0.,3.2872692383
O,3.4477432447,0.,2.0446301985
Br,-1.7202825145,0.,-0.7340822517
$\mathrm{Br}, 1.2577014072,0 .,-2.5775720003$

C2F

C,0.098290423,0.,-0.0467639623
Н, $0.0572252801,0 ., 1.0409991155$
C,1.2431996318,0.,-0.7435513969
H,2.222496724,0.,-0.2667825431
F,1.2661856901,0.,-2.0985920658
F,-1.1149526355,0.,-0.6616455785
O,-4.0971400844,0.,0.5661730906
O,-2.305075095,0.,2.1015218299
С,-3.198190437,0.,1.3277273734
C2Cl
C,0.0465603302,0.,-0.2459222465
H,-0.1170779804,0.,0.8327587811
C,1.2907012079,0.,-0.7643914679
Н,2.1629252738,0.,-0.1082453366
O,-4.3022777336,0.,0.9476443133
O,-2.2491570426,0.,2.1115129838
C,-3.2740683466,0.,1.5233877185
Cl,-1.4011070128,0.,-1.1978252368
$\mathrm{Cl}, 1.6446075219,0 .,-2.4572410749$
C2Br
C,0.0338289095,0.,-0.2950196525
H,-0.147016542,0.,0.7818800483
C,1.289125156,0.,-0.7869561586
H,2.1435774264,0.,-0.1063460299
O,-4.3462653019,0.,1.0741923454
O,-2.2303639496,0.,2.1197131645
C,-3.2865806654,0.,1.5898328642
Br,1.7377979992,0.,-2.6103420652
Br,-1.5301656982,0.,-1.3389163006

C3F

C, $0.0230785549,0 ., 0.0300687748$
Н,-0.0073276071,0.,1.1178695375
C,1.1721354417,0.,-0.660359876
H,2.1468848115,0.,-0.1765224032
C,2.8806834838,0.,3.4845008803
O,2.2721008555,0.,2.471657541
O,3.4875817765,0.,4.4945410374
F,-1.1884689444,0.,-0.5809869181
F,1.201382639,0.,-2.0169663054
C3Cl
C, $0.0130672286,0 ., 0.0204749048$
H,0.0266250681,0.,1.1107112772
C,1.1683644944,0.,-0.6737033745
H,2.1246248186,0.,-0.14990441
C,2.86241731,0.,3.4541011094
O,2.2537955176,0.,2.4411925906
O,3.46931502,0.,4.4641402967
Cl,1.2688290879,0.,-2.4013894835
Cl,-1.5595595228,0.,-0.7019083222

C3Br

C, $0.0117078374,0 ., 0.0185317085$
H,0.0325748337,0.,1.1095227497
C,1.1672869342,0.,-0.6758159133
H,2.120782199,0.,-0.1452090311
C,2.8561344347,0.,3.443644734
O,2.2475092956,0.,2.4307306454
O,3.4630447695,0.,4.4537049323
Br,1.3028149279,0.,-2.5495041736
Br,-1.7062927013,0.,-0.7414351874

T1F

C,0.0523383018,0.,0.0579259512
Н,0.0148046354,0.,1.1464104296

$$
\begin{aligned}
& \mathrm{C}, 1.1620210044,0 .,-0.6934036951 \\
& \mathrm{H}, 1.1939457221,0 .,-1.7819460897 \\
& \mathrm{C},-1.6883758623,0 .,-3.4053904322 \\
& \mathrm{O},-2.851750847,0 .,-3.2188612519 \\
& \mathrm{O},-0.5237625187,0 .,-3.6040297252 \\
& \mathrm{~F},-1.1720058402,0 .,-0.5499623791 \\
& \mathrm{~F}, 2.379617392,0 .,-0.0824811909 \\
& \text { T1Cl } \\
& \mathrm{C}, 0.0679386463,0 ., 0.2123483207 \\
& \mathrm{H}, 0.2083323572,0 ., 1.2943563721 \\
& \mathrm{C}, 1.0742902861,0 .,-0.6807544787 \\
& \mathrm{H}, 0.9316621089,0 .,-1.7617702278 \\
& \mathrm{C},-1.6779783556,0 .,-3.6426027895 \\
& \mathrm{O},-2.8556985545,0 .,-3.5967299347 \\
& \mathrm{O},-0.4979391506,0,-,-3.6975455105 \\
& \mathrm{Cl},-1.594005322,0 .,-0.3132435243 \\
& \mathrm{Cl}, 2.7304498475,0 .,-0.147239164 \\
& \text { T1Br } \\
& \mathrm{C}, 0.0018059378,0 ., 0.019499926 \\
& \mathrm{H}, 0.0772886533,0 ., 1.1082744074 \\
& \mathrm{C}, 1.0578451204,0 .,-0.8139186491 \\
& \mathrm{H}, 0.9816542175,0 .,-1.9018911112 \\
& \mathrm{C},-1.3978440174,0 .,-4.0596000563 \\
& \mathrm{O},-2.5717953368,0 .,-4.1650859384 \\
& \mathrm{O},-0.2203768425,0,-,-3.9644041236 \\
& \mathrm{Br}, 2.8218207059,0 .,-0.1360004412 \\
& \mathrm{Br},-1.7683210304,0 .,-0.6504946392 \\
& \text { T2F } \\
& \mathrm{C}, 0.057930031,0 .,-0.0378184635 \\
& \mathrm{H},-0.0325375737,0 ., 1.0474030586 \\
& \mathrm{C}, 1.1971554483,0 .,-0.742885548 \\
& \mathrm{H}, 1.2732567655,0 .,-1.8296805137 \\
& \mathrm{C},-3.303906116,0 ., 1.1910977428 \\
& \mathrm{O},-2.4484787661,0 ., 2.0060133055 \\
& \mathrm{O},-4.165498647,0 ., 0.3871439611 \\
& \mathrm{~F},-1.1357495543,0 .,-0.7043561594 \\
& \mathrm{~F}, 2.3916240095,0 .,-0.0892245317 \\
& \text { T2Cl } \\
& \mathrm{C}, 0.020238234,0 .,-0.1998662246 \\
& \mathrm{H},-0.2060020543,0 ., 0.8673179068 \\
& \mathrm{C}, 1.2617214388,0 .,-0.7180981786 \\
& \mathrm{H}, 1.4764184503,0 .,-1.7878809185 \\
& \mathrm{C},-3.4179405778,0 ., 1.3562523559 \\
& \mathrm{O},-2.4288124773,0 ., 2.0024648849 \\
& \mathrm{O},-4.4105572755,0 ., 0.7207291225
\end{aligned}
$$

Cl,-1.3756845504,0.,-1.2434724675

$\mathrm{Cl}, 2.6589512317,0 ., 0.3176452182$

T2Br

C,0.0327959773,0.,-0.1976349935
H,-0.1835811301,0.,0.8718721607
C,1.2682940436,0.,-0.7295647624
H,1.4738200545,0.,-1.8014004049
C,-3.3689568005,0.,1.5524667046
O,-2.3291743074,0.,2.113583257
O,-4.4120335238,0.,1.0036417285
$\mathrm{Br},-1.4996542718,0 .,-1.307652433$
Br,2.800636363,0.,0.3754356635

T3F

C,-0.0438953229,-0.0801860048,0.0571809353
H,-0.0718959145,-0.0395817721,1.1453314631
C,1.0616148674,-0.0819871906,-0.7013460138
H,1.0895274594,-0.1187957422,1.7896338093
С, $0.4354968404,3.0832709557,-0.4365189013$
O,0.0085930236,3.1141398994,0.6632209604
O,0.8623545979,3.0543886784,-1.5363306091
F,-1.2660793983,-0.1211276172,-0.5440640578
F,2.2833760464,-0.0228048208,-0.1007606825
T3Cl
С,-0.0604253711,-0.0561775179,0.0370992941
H,-0.0936319659,-0.0146472142,1.1267886442
C,1.0769823928,-0.0558522893,-0.6830777654
H,1.1100551162,-0.0916083293,1.7729759369
C, $0.4369840871,3.0191212711,-0.4341989828$
O,0.0598734776,3.0518779757,0.6835844261
O,0.8140448969,2.9885125728,-1.5520600726
Cl,-1.6097604457,-0.0989087531,-0.7522690739
Cl,2.6253114793,0.0302701462,0.1047213959
T3Br
C,-0.0634006407,-0.0378464697,0.0322231252
Н,-0.1075513742,0.0039295051,1.1218167994
C, 1.0790978881,-0.0370990344,-0.6795427208
H,1.1230914763,-0.0720968736,1.7693815207
C,0.437123617,3.0131031944,-0.433981343
O,0.0940719834,3.0474907438,0.6946911988
O,0.780104743,2.981756842,-1.5627638672
Br,-1.7416401632,-0.0777128578,-0.8341750295
Br,2.75593158,0.0634049287,0.1846625263

[^0]: O,3.2401317655,0.,0.3814720058
 O,2.1348173133,0.,2.4670893358
 P3
 C,0.,0.6750909606,-1.8955517327
 Н,-0.9331241184,1.244413106,-1.8963001371
 H,0.9331241184,1.244413106,-1.8963001371
 C,0.,-0.6750909606,-1.8955517327
 H, $0.9331241184,-1.244413106,-1.8963001371$
 Н,-0.9331241184,-1.244413106,-1.8963001371
 C,0.,0.,1.3389044164
 O,0.,1.1801049325,1.3451074592
 O,0.,-1.1801049325,1.3451074592
 P4
 C,0.0528093217,0.,0.3495602401
 H,0.0892935937,0.,1.4335691445
 H,0.8412165674,0.,-0.2785664052
 C,-1.2861676704,0.,-0.1972114628
 Н,-1.4210571764,0.,-1.2814762801
 Н,-2.1848477101,0.,0.4253981498
 C,1.1684520307,0.,-4.0696862717
 O,0.6899418507,0.,-2.9903061166
 O,1.6466046832,0.,-5.1482599483
 P5
 C, $0.5810198971,0 ., 0.2837897041$
 H,0.6823329061,0.,1.3722584686
 H,1.5017873994,0.,-0.3054604838
 С,-0.6313856913,0.,-0.3083900562
 Н,-0.73536888,0.,-1.3960369461
 H,-1.5531465178,0.,0.2782488783
 С,-4.6504570459,0.,,-2.2714399909
 O,-3.5895701677,0.,-1.7532670765
 O,-5.7106453654,0.,-2.7892717057
 P6
 C, $0.5834169723,1.8633212391,0.3516731869$
 H,0.5864230886, 1.8632461456,1.4449712618
 Н, 1.5515896975, 1.8632461455,-0.1562158674
 C,-0.5729341053,1.8677506122,-0.3453543047
 Н,-0.5759301917,1.8713955557,-1.4386463338
 H,-1.5410968006,1.8713955558,0.1625407954
 C,-0.0037963911,-1.3512150885,-0.0022883958
 O,-0.6129907978,-1.3592764987,1.0082985755
 O, $0.6053527167,-1.3592764988,-1.0129026724$

 ## C1F

 C,0.0144779645,0.,0.0156281212
 H,-0.0123437014,0.,1.1047894447
 C,1.1551990131,0.,-0.6905232935

